Copies: Reference vs. Shallow vs. Deep
Writing Complete Postconditions

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WEI WANG
UNIVERSITY

LASSONDE

Copying Objects |50

Say variables c1 and c¢2 are both declared of type C. [ c1, c2: ¢]
e There is only one attribute a declared in class C.
e cl.aand c2.a are references to objects.

C
=
cl
(o)
=
c2

LASSONDE

ooooooooooooooooo

Copying Objects: Reference Copy

Reference Copy cl i= c2
o Copy the address stored in variable c2 and store itin c1.

= Both c1 and c2 point to the same object.

= Updates performed via c1 also visible to c2.

—

[ aliasing ]

k

cl

\

c2

LASSONDE

Copying Objects: Shallow Copy  |.ssomoe

Shallow COpy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

C
a

ANATAS




Copying Objects: Deep Copy LASSONDE
Deep Copy [c1 := c2.deep twin]
o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c3 as follows:
Base Case: a is primitive (e.g., INTEGER). = c3.a := c2.a.
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin

o Make a reference copy of c3: cl := ¢3
= c1 and c2 are not pointing to the same object.
= cl.aand c2.a are not pointing to the same object.
= No aliasing occurs at any levels.

53

g

Copying Objects LASSONDE
a
O vl 1 o1
= Initial situation: name \SieimallY o
landlord _:l
loved_one _1 03
02 “Figaro” “Susanna”
= Result of:
bi=a ]
04 “Almaviva”
c .= a.twin @_,
d := a.deep_twin @ name | _“Almaviva’ 05
landlord _:l
loved_one _1 o7
06 F|— garo” “Susanna”

LASSONDE

ooooooooooooooooo

Example: Collection Objects (1)

o In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).
o Assume the following variables of the same type:

local
imp : ARRAY [STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Ton", 3)

e Before we undergo a change on imp, we “ copy " itto old_imp.
o After the change is completed, we compare imp vs. old_imp.
e Can a change always be visible between “old” and “new” imp?

7 of 39)

LASSONDE

ooooooooooooooooo

Example: Collection Objects (2)

¢ Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

imp

imp[1] imp[2] imp[3]

STRING STRING STRING
value value value

22

old imp

8 of 39)




g\

Reference Copy of Collection Object LASSONDE

T 1

Shallow Copy of Collection Object (2)

1 ‘ old-imp := imp ‘
2 |Result := old _imp = imp -- Res = true
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [7j]
7 end Result = true
Before Executing L3 After Executing L3
-y
old_imp
o1d_inp NN i
STRING STRING STRING
[vatue [N | [vatue BRG] [vatue JECTA
imp
STRING STRING STRING
[vatue [RAEAN [value NERE [vaive [RETE “Jim”
Shallow Copy of Collection Object (1) LASSONDE
T 1
1 ‘ old-imp := imp.twin ‘
2 |Result := old imp = imp -- Result = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [7j]
7 end R 1t = false

Before Executing L3 After Executing L3

ARRAY[STRING] ARRAY[\STRING] STRING
prgvaxana / N
imp imp / X \
STRING STRING STRING STRING STRING STRING
value a value 0

ARRAY[STRING]

ARRAY[STRING]

10 of 39

T 1
1 ‘ old-imp := imp.twin ‘
2 |Result := old imp = Result = false
3 | imp[2].append ("xx*")
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [7j]
7 end R t = true

Before Executing L3 After Executing L3
ARRAY[STRING]
P van Pgvae
imp imp / \ \
STRING STRING STRING STRING STRING STRING
m “Mark” m “Tom” value pWVAES value m “Tom”
praE——
old_imp ‘ /‘ / old_imp ‘ / /
ARRAY[STRING] ARRAY[STRING]
[11 of 39
Deep Copy of Collection Object (1) LASSONDE

T 1
1 ‘ old-imp := imp.deep-twin ‘
2 |Result := old _imp = imp Result = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [j] end —- Result = false

Before Executing L3

After Executing L3

/’

imp

ARRAY[STRING]

ARRAY| m STRING
/ “Jim”
imp

STRING
[vatue [RTTR

STRING STRING

STRING STRING STRING

STRING

ARRAY[STRING]

STRING STRING
- ver I rom”

ARRAY[STRING]

12 of 39




Deep Copy of Collection Object (2)

LASSONDE

ooooooooooooooooo

oOghh WD =

T
‘ old.imp := imp.deep-twin

Result := old imp = imp Rex: = false
imp[2] .append ("xx*")
Result :=

across 1 |..| imp.count is j

all imp [j] ~ old_imp [j] end Result = false

Before Executing L3 After Executing L3

ARRAY[STRING]

/

[ ARRAY[STRING] ]

STRING STRING STRING
“Mark*
“Alan” “Mark” “Tom”

STRING STRING STRING
“Alan” Sizrk”

STRING STRING STRING
3 B [

STRING STRING STRING

How are contracts checked at runtime?

LASSONDE

ooooooooooooooooo

o All contracts are specified as Boolean expressions.

o Right before a feature call (e.g., acc.withdraw(10)):

e The current state of acc is called its pre-state.

o Evaluate pre-condition using current values of attributes/queries.

e Cache values, via[ : =], of old expressions in the post-condition .

e.g.,| (old accounts|i]).id
e.g.,| (old accounts]i].twin).id
e.g.,| (old accounts)[i].id

e.g.,’ (old accounts.twin)[i].id ‘

e.g.,| (old Current).accounts[i].id ‘

e.g.,| (old Current.twin).accounts[i].id ‘

o Right after the feature call:
e The current state of acc is called its post-state.

o Evaluate invariant using current values of attributes and queries.

[ old_accounts_i_id := accountsi].id ]

[ old_accounts._i := accounts|i] ]

[ old_accounts_i_twin := accounts|i].twin ]
[ old_accounts := accounts ]

[ old_accounts_twin := accounts.twin |

[ old_current := Current ]

[ old_current_twin := Current.twin ]

o Evaluate post-condition using both current values and “cached”

values of attributes and queries.

When are contracts complete?

LASSONDE

ooooooooooooooooo

between its pre-state value and its post-state value.
o Eiffel supports this purpose using the old keyword.

rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

The second contract is much harder to specify:
o Reference aliasing
o |terable structure

In post-condition , for each attribute , specify the relationship

This is tricky for attributes whose structures are composite

Rule of thumb: For an attribute whose structure is composite,

[ ref copy vs. shallow copy vs. deep copy ]
[ use across |

Account LASSONDE
class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
create balance = old balance + a
make end
feature - Attributes is_equal (other: ACCOUNT): BOOLEAN
owner: STRING do
balance: INTEGER Result :=
owner ~ other.owner
feature —— Commands and balance = other.balance
make (n: STRING) end
do end
owner := n
balance := 0
end




. Object Structure for lllustration e

HooL

g\

Bank 5

class BANK
create make

feature : H : . : :
ccounts: ARRAY [ACCOUNT] We will test each version by starting with the same runtime object

make do create accounts.make_empty end structure:
account_of (n: STRING): ACCOUNT

require the input name exists SR

existing: across accounts is acc some acc.owner ~ n end b.accounts 0 1
—— not (across accounts 1s acc all acc.owner /~ n end) accounts

do ... ensure Result.owner ~ n end b
add (n: STRING)

require —- the input name does not exist

ACCOUNT

non_existing: across accounts is acc all acc.owner /~ n end
. . ) ACCOUNT

not (Ci;‘,l SS accounts 18 acc some acc.owner ~ n ;“JiL!‘)
“Bill” “Steve”

local new_account: ACCOUNT
do
create new_account.make (n)
accounts. force (new_account, accounts.upper + 1)
end
end

_ 19 of 39]

balance

Roadmap of lllustrations Mot Version 1: o
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_v1l (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER) do
from i := accounts.lower
until i > accounts.upper
VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY? loop ‘ ' ’
7 Correct lncomp/ete No J‘.f.c_acc‘oimis [i].owner ~ n then accounts[i].deposit(a) end
2 Wrong Incomplete No g
3 Wrong Complete (reference copy) No ensure
4 Wrong Complete (shallow copy) No num_of_accounts_unchanged:
5 Wrong Comp/ete (deep copy) Yes accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n) .balance + a

sy



|
—

Test of Version 1

\wy

SSONDE

HOOL OF ENGINEERING.

A

class TEST_BANK

local
b: BANK

do
comment ("t1:
create b.make

check Result end
end
end

test_bank_deposit_correct_imp_incomplete_contract:

correct imp and incomplete contract")

b.add ("Bill")
b.add ("Steve")
— deposit 100 c s to Steve’s account
b.deposit_on-vl ("Steve", 100)
Result :=
b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance = 100

BOOLEAN

e

|
—

\wy

A

Version 2:

SSOND

HOOL OF ENGINEERING.

E

Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

do ...

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n _increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a
end
end

Current postconditions lack a check that accounts other than n
are unchanged.

e

|
—

\wy

SS

Test of Version 1: Result

A

HOOL OF ENGINEERING.

E

APPLICATION

Note: * indicates a violation test case

PASSED (1 out of 1)
CoseTypl  Passed | Toa
[} 0

Violation
Boolean
All Cases

1 1
“State[contract Violation] Testhame

TEST_BANK
PASSED NONE tl: test deposit_on with correct imp and incomplete contract

1 1

Test of Version 2

\wy

A

HOOL OF ENGINEERING.

SSONDE

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract:
local
b: BANK
do
comment ("t2:
create b.make

BOOLEAN

wrong imp and incomplete contract")

b.add ("Bill")
b.add ("Steve")
—— deposit 100 c ~s to Steve’s account
b.deposit_on.v2 ("Steve", 100)
Result :=
b.account_of ("Bill") .balance = 0

and b.account_of("Steve") .balance = 100

check Result end
end
end




Test of Version 2: Result LASSONDE Test of Version 3 LASSONDE

CHOOL OF ENGINEERING.

(00L OF ENGINEERING

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref_ copy: BOOLEAN

APPLICATION local
b: BANK
Note: * indicates a violation test case do
S — comment ("£3: wrong inp and complete contract with ref copy")
[ FAILED (1 failed & 1 passed out of 20 | create b.make
b.add ("Bill")
Violation [) e b.add ("Steve")
Boolean 1 2
All Cases 1 2 -—d 100 ars c
Siste b.deposit.on.v3 ("Steve
Result :-
PASSED NONE [t1: test deposit_on with correct imp and incomplete contract) b.account_of ("Bill") .balance = 0
FAILED  [Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract and b.account_of ("Steve") .balance = 100
check Result end
end

end

27 of 39|

———— e

Version 3: LASSONDE Test of Version 3: Result LASSONDE
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end APPLICATION
local i: INTEGER Note: * indicates a violation test case
do
versi red b 1 e
accounts[accounts.lower] .deposit (a) FAILED (2 failed & 1 passed out of 3)
' :
ensure Violationl ¢ | e
num_of_accounts_unchanged: accounts.count = old accounts.count Boolean 1 3
balance_of_n_increased: All Cases 1 3
Current.account_of (n) .balance =
old Current.account_of(n).balance + a
others_unchanged : ‘ PASSED NqNE : tl: test depos?t_on ww:Lth corr‘ec? imp unrl;i incomplete contract
FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract
across old accounts is acc FAILED |Check assertion violated. [t3: test deposit_on with wrong imp, complete contract with reference copy
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end
{2601 39}




Version 4:

e

(00L OF ENGINEERING

NDE

Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end

local i: INTEGER
do
of
of 1, f
accounts[accounts.lower].deposit (a)
ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of (n) .balance =

old Current.account_of(n) .balance + a
others_unchanged :
across old accounts.twin is acc
all

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

end
end
end
.,
|

Test of Version 4

LASS!

SCHOOL OF ENGINEERING.

DE

class TEST_BANK

b.deposit_on-v4

test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE

local
b: BANK
do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make
b.add ("Bill")
b.add ("Steve")

it

Result :=
b.account_of("Bill") .balance = 0
and b.account_of("Steve") .balance = 100
check Result end
end
end

Test of Version 4: Result LASSONDE

(00L OF ENGINEERING

APPLICATION

Note: * indicates a violation test case

FAILED (3 failed & 1 passed out of 4)
pe]

Total

Violation ) )

Boolean 1 4

ALl Cases 1 4
Test Nane
[PASSED [ NONE  [t1: test deposit_on with correct imp and incomplete contract |
FAILED Check assertion violated.|[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy

1 of 39

Version 5: LASSON

(00L OF ENGINEERING

Complete Contracts with Deep Object Copy

class BANK

deposit_on_v5 (n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end
INTEGER

local i:
do

a d

accounts/|
ensure

num_of_accounts_unchanged:

balance_of_n_increased:
Current.account_of (n) .balance =

old Current.account_of(n) .balance + a

posit (a)

accounts.count = old accounts.count

thers_unchanged :

o
across old accounts.deep_-twin is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end
—32or 39}




Test of Version 5 LASSONDE

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
local
b: BANK
do
comment ("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

—— deposit 100 dollars to Steve’s account
b.deposit_on.v5 ("Steve", 100)
Result :=

b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance =
check Result end
end
end

100

:
=

Test of Version 5: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)

\Violation ] )
Boolean 1 5
ALl Cases 1 5

PASSED NONE t1l: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated.|t4: test deposit_on with wrong imp, complete contract with shallow object copy
FAILED Postcondition V"Lolated] t5: test deposit_on with wrong imp, complete contract with deep object copy

:

Exercise LASSONDE

e Consider the query account_of (n: STRING) of BANK.

¢ How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o laccounts = old accounts‘ [X
o laccounts = old accounts.twin‘ X
o |accounts = old accounts.deep_twin‘ [ x]
O | accounts ~ old accounts‘ X
o laccounts ” old accounts.twin‘ [ X
o ’accounts ~ old accounts.deepﬁtwin‘ [

¢ Which equality of the above is appropriate for the
postcondition?

¢ Why is each one of the other equalities not appropriate?

[350f39]

Index (1) :AssoNDE

|Copying Objects|

[Copying Objects: Reference Copy]|
[Copying Objects: Shallow Copyj|
[Copying Objects: Deep Copy|
[Example: Copying Objects|

[Example: Collection Objects (1)|
[Example: Collection Objects (2)|
[Reference Copy of Collection Object|
[Shallow Copy of Collection Object (1)|
[Shallow Copy of Collection Object (2)|

[Deep Copy of Collection Object (1))




Index (2) LassoNDE Index (4) LAssonoe
[Version 5: |

[Deep Copy of Collection Object (2)| [Complete Contracts with Deep Object Copy|

[How are contracts checked at runtime?| [Test of Version 5|

|[When are contracts complete?| [Test of Version 5: Resuli

[Roadmap of lllustrations|

|Object Structure for lllustration|

[Version 1:
[[ncomplete Contracts, Correct Implementation|

Test of Version 1
T f Version 1: R 1

Index (3) Lassonoe

[Version 2: |
[lncomplete Contracts, Wrong Implementation|

est of Version

T f Version 2: R I
[Version 3:
|[Complete Contracts with Reference Copy|

[Test of Version 3]

Test of Version 3: Result
[Version 4:
[Complete Contracts with Shallow Object Copy|

T f Version 4
[Test of Version 4: Result|

38 of 39|



