Drawing a Design Diagram
using the Business Object Notation (BON)

EECS3311 A: Software Design

YO R |IT< ' Winter 2020

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Why a Design Diagram? LassoNDE
e SOURCE CODE is not an appropriate form for communication.

e Use a DESIGN DIAGRAM showing selective sets of important:

o clusters (i.e., packages)
o classes

[deferred vs. effective]
[generic vs. non-generic]
o architectural relations
[client-supplier vs. inheritance]
o features (queries and commands)
[deferred vs. effective vs. redefined]
o contracts
[precondition vs. postcondition vs. class invariant]

* Your design diagram is called an abstraction of your system:

o Being selective on what to show, filtering out irrelevant details
o Presenting contractual specification in a mathematical form
(e.g., ¥ instead of across ... all ... end).
20125

- ___

Classes:
Detailed View vs. Compact View (1)

¢ | Detailed view | shows a selection of:

o features (queries and/or commands)

o contracts (class invariant and feature pre-post-conditions)

o Use the detailed view if readers of your design diagram should
know such details of a class.
e.g., Classes critical to your design or implementation

e |Compact view ‘ shows only the class name.
o Use the compact view if readers should not be bothered with

such details of a class.
e.g., Minor “helper” classes of your design or implementation
e.g., Library classes (e.g., ARRAY, LINKED_LIST, HASH TABLE)

e

Classes:
Detailed View vs. Compact View (2)

Detailed View I Compact View

()
FOO

feature - { A,B,C }
-- features exported to classes A, B, and C
feature -- { NONE }
-- private features
invariant
inv_1: 0 <balance < 1,000,000
_ J

4of25

/|

Contracts: Mathematical vs. Programming Jsovee

o When presenting the detailed view of a class, you should include

contracts of features which you judge as important.
o Consider an array-based linear container:

Vs

ARRAYED CONTAINER+
feature -- Queries
count+: INTEGER

-- Number of items stored in the container

feature -- Commands

assign_at+ (i: INTEGER; s: STRING)

-- Change the value at position 'i' to 's'.
require

valid_index: 1 <i < count
ensure

size_unchanged: imp.count = (old imp.twin).count
item_assigned: impl[i] ~ s
others_unchanged: /i : 1 <j < imp.count : j # i =impl[j] ~ (old imp.twin) [j]
feature — { NONE }
imp+: ARRAY[STRING]
-- Implementation of an arrayed-container

invariant

__ consistency: imp.count = count

J
¢ A tag should be included for each contract.

¢ Use mathematical symbols (e.g., V, 3, <) instead of programming
symbols (e.g., across all

.. ...,across ... some ..., <=).

/|

- ___
—

SSONDE

|

Classes: Generic vs. Non-Generic

e Aclassis generic if it declares at least one type parameters.

o Collection classes are generic: ARRAY [G], HASH_TABLE[G, H], elcC.
o Type parameter(s) of a class may or may not be instantiated:

HASH_TABLEJ[G, H] HASH_TABLE[STRING, INTEGER] HASH_TABLE[PERSON, INTEGER]

o If necessary, present a generic class in the detailed form:

| DATABASE[G] | (DATABASE[STRING]\ (DATABASE[PERSON]\

feature

- some public features here
feature - { NONE }

- imp: ARRAY[PERSON]
invariant
-- some class invariant here

feature

—- some public features here
feature -- { NONE }

-- imp: ARRAY[STRING]
invariant
-- some class invariant here

feature
—- some public features here
feature - { NONE }

— imp: ARRAY([G]
invariant
— some class invariant here

e Aclassis non-generic if it declares no type parameters.

/|

Deferred vs. Effective Lassonpe

means unimplemented (~ abstract in Java)
Effective | means implemented

- ___
—

Classes: Deferred vs. Effective

SSONDE

ks

e A deferred class has at least one feature unimplemented.

o A deferred class may only be used as a static type (for

declaration), but cannot be used as a dynamic type.
o e.g., Bydeclaring 1ist: LIST[INTEGER] (where LISTis a

deferred class), it is invalid to write:
e create list.make
o create {LIST[INTEGER]} list.make
e An effective class has all features implemented.

o An effective class may be used as both static and dynamic types.
o e.g., Bydeclaring 1ist: LIST[INTEGER],itis valid to write:

e create {LINKED LIST[INTEGER]} list.make
e create {ARRAYED_ LIST[INTEGER]} list.make

where LINKED_LIST and ARRAYED_LIST are both effective
descendants of LIST.

e

/|

Features: Deferred, Effective, Redefined (1) issono

A deferred feature is declared with its header only
(i.e., name, parameters, return type).
o The word “deferred” means a descendant class would later

implement thi

s feature.

o The resident class of the deferred feature must also be deferred.

deferred class

deferred end
end

DATABASE[G]
feature Queries
search (g: G): BOOLEAN
—-— Does item ‘g‘' exist in

database?

Aof25

/|

Features: Deferred, Effective, Redefined (2) issono

e An effective feature implements some inherited deferred

feature.
class

DATABASE_VI1|[G]
inherit

DATABASE
feature - Queries

search (g: G): BOOLEAN

—— Perform a linear search on the database.
deferred end

end

* A descendant class may still later re-implement this feature.

10.0t.25

/|

Features: Deferred,

Effective, Redefined (3) Jsson

e A redefined feature re-implements some inherited effective

feature.

class

DATABASE_V2[G]
inherit

DATABASE_VI1|[G]

redefine search end

feature - Queries

search (g: G): BOOLEAN

deferred end

end

Perform a binarv s
rerrorm a binary s

earch on the c

* A descendant class may still later re-implement this feature.

1ot

Classes: Deferred vs. Effective (2.1) LassonDE

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

o Deferred or effective classes may be in the compact form:

ARRAYED LIST[G]+

LIST[LIST[PERSON]]* ARRAYED_LIST[G]+

DATABASE[G]* DATABASE_V1[Gl]+ DATABASE_V2[Gl+

120125

/|

S
Classes: Deferred vs. Effective (2.2) o

Append a star * to the name of a deferred class or feature.

Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.
* Deferred or effective classes may be in the detailed form:
(. N (N ()
DATABASE[G] DATABASE VI[G]+ DATABASE V2[G]+
feature {NONE} -- Implementation feature {NONE} -- Implementation feature {NONE} -- Implementation
data: ARRAY[G] data: ARRAY[G] data: ARRAY[G]
feature -- Commands feature -- Commands feature -- Commands
add_item* (g: G) add_item+ (g: G) add_item++ (g: G)
-~ Add new item g’ into database. - Append new item 'g' into end of "data’ - Insert new item 'g' into the right slot of "data.
require
non_existing_item: — exists (g) feature -- Queries feature -- Queries
ensure count+: INTEGER count+: INTEGER
size_incremented: count = old count + 1 -- Number of items stored in database -- Number of items stored in database
exists+ (g: G): BOOLEAN exists++ (g: G): BOOLEAN
__ - Perform a linear search on ‘data’ array.) - Perform a binary search on data’ array.
invariant
sorted_data: Vi:1<i<count: data[i] < data[i + 1]

item_added: exists (g)

feature - Queries
count+: INTEGER
-- Number of items stored in database
ensure
correct_result: Result = data.count
exists* (g: G): BOOLEAN
-- Does item g’ exist in database?
ensure
L correct_result: Result = (3i : 1 <i < count : data[i] ~ g)J
e

SSONDE

|

Class Relations: Inheritance (1)

* An inheritance hierarchy is formed using red arrows.
o Arrow’s origin indicates the child/descendant class.
o Arrow’s destination indicates the parent/ancestor class.
¢ You may choose to present each class in an inheritance
hierarchy in either the detailed form or the compact form:

A

(MY_LIST_INTERFACE[G]*)

feature
-- some public features here
feature -- { NONE }
-- some implementation features here
invariant
-- some class invariant here

/|

Class Relations: Inheritance (2) LassonDE
More examples (emphasizing different aspects of DATABASE):

Inheritance Hierarchy || Features being (Re-)implemented

BASE[G]*
DATABASE[G]*
DATABASE_VI1[G]+

DATABASE V2[G]+

/|

Class Relations: Client-Supplier (1) o

e A ’ client-supplier (CS) relation ‘ exists between two classes:

one (the client) uses the service of another (the supplier).

e Programmatically, there is CS relation if in class CLIENT there
is a variable declaration [s1: SUPPLIER].
o A variable may be an attribute, a parameter, or a local variable.

e A green arrow is drawn between the two classes.
o Arrow’s origin indicates the client class.
o Arrow’s destination indicates the supplier class.
o Above the label there should be a /label indicating the supplier
name (i.e., variable name).
o In the case where supplier is an attribute, indicate after the label
name if it is deferred (), effective (+), or redefined (++).

- . - -
Class Relations: Client-Supplier (2.1) s
class DATABASE
feature {NONE} —- implementat
data: ARRAY[STRING]
feature —- Commands
add_name (nn: STRING)
e e o gatabase. class UTILITIES
require ... do ... ensure ... end feature IR
(n: STRING): BOOLEAN seaffhk(i{ é#sAYESTRIy?]E 7i s?g?ﬁG{i,EOOLEAN
o esash andatabases require ... do ... ensure ... end
end

name_exists

require ..
local
UTILITIES
... end

d;hu4 ensure
invariant
o Aftribute|data: ARRAY[STRING] |indicates two suppliers:
o Parameters nn and n may have an arrow with label ,

end

STRING and ARRAY.
pointing to the STRING class.
o Local variable u may have an arrow with label , pointing to the
UTILITIES class.
e

|

Class Relations: Client-Supplier (2.2.1)

SSONDE

If STRING is to be emphasized, label is] data: ARRAY[...]
where ... denotes the supplier class STRING being pointed to.

’

datat: ARRAY]...]

DATABASE+
feature
add_name+ (nn: STRING)
-- Add name “nn" into database.
require
ensure
n,nn
name_exists+ (n: STRING): BOOLEAN
-- Does name 'n" exist?
require
ensure
(UTILITIES+)
invariant u feature
search+ (a: ARRAY[STRING]; n: STRING): BOOLEAN
_ Y, - Does name 'n" exist in array ‘a"?
require

ensure

/|

Class Relations: Client-Supplier (2.2.2) o

If ARRAY is to be emphasized, label is [data |
The supplier's name should be complete: ARRAY [STRING]

DATABASE+

feature
add_name+ (nn: STRING) data+

S +
-- Add name “nn’ into dc

ARRAY[STRING]

require

ensure

require

ensure u

n, nn
name_exists+ (n: STRING): BOOLEAN
-- Does name 'n" exist?

invariant

_ Y,

19.0t.95

Class Relations: Client-Supplier (3.1)

Known: The deferred class LIST has two effective
descendants ARRAY LIST and LINKED_LIST)
e DESIGN ONE:
class DATABASE V1
feature {NONE} —— nplementation
imp: ARRAYED LIST[PERSON]
— more ,e ures GAJJLZ contracts
end
e DESIGN TWO:
class DATABASE_ V2
feature {NONE} - implementation
[DESIGN TWO]

imp: LIST[PERSON]
end more reatures anad 1C I
Question: Which design is better?
Rationale: Program to the interface, not the implementation
e

N
Class Relations: Client-Supplier (3.2.1) h&%os

We may focus on the PERSON supplier class, which may not
help judge which design is better.
)
imp+: ARRAYED LISTJ...]

(DATABASE V1+

feature
-- some public features here

feature -- { NONE }
-- some implementation features here

invariant
-- some class invariant here

imp+: LIST[...]

(DATABASE v+
feature
-- some public features here
feature -- { NONE }
-- some implementation features here
invariant
-- some class invariant here
J
—

/|

Class Relations: Client-Supplier (3.2.2) LassonDE

Alternatively, we may focus on the LIST supplier class, which in
this case helps us judge which design is better.

(DATABASE_V1+

feature imp+ R
- some public features here)

feature - { NONE } ARRAYED_LIST[PERSON]
-- some implementation features here

invariant
-- some class invariant here

J

(DATABASE vo+
feature imp+

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant
-- some class invariant here

N
LINKED_LIST[PERSON]

+
ARRAYED_LIST[PERSON]

Clusters: Grouping Classes

SSONDE

|

Use clusters to group classes into logical units.

model

DATABASE[G]+

ature -- Commands
tem++ (g: G)
sert new item g’ into the right slot of *data’.

imp

base-library

*

feature - Queries
count+: INTEGER
-~ Number of items stored in database

exisist (g: G): BOOLEAN
—- Perform a binary search on "data’ array.

invariant

_ sorted_data: ¥i:1<i< count: data[i] < data[i + 9

LIST[G]

Index (1) _;HASSONDE
Why a Design Diagram?

Classes:

Detailed View vs. Compact View (1)

Classes:

Detailed View vs. Compact View (2)
Contracts: Mathematical vs. Programming
cl .G N NOD-G :
Deferred vs, Effective

Classes: Deferred vs, Effective

Features: Deferred, Effective, Redefined (1)

Features: Deferred, Effective, Redefined (2)

Features: Deferred, Effective, Redefined (3)

Classes: Deferred vs. Effective (2.1)

Classes: Deferred vs. Effective (2.2)
e

Index (2) _;HASSONDE
Class Relations: Inheritance (1)
Class Relations: Inheritance (2)

Class Relations: Client-Supplier (1

Class Relations: Client-Supplier (2.1

Class Relations: Client-Supplier (2.2.1)

Class Relations: Client-Supplier (2.2.2)

Class Relations: Client-Supplier (3.1)

Class Relations: Client-Supplier (3.2.1)

Class Relations: Client-Supplier (3.2.2)
Clusters: Grouping Classes

25.0t.25

	Why a Design Diagram?
	Classes: Detailed View vs. Compact View (1)
	Classes: Detailed View vs. Compact View (2)
	Contracts: Mathematical vs. Programming
	Classes: Generic vs. Non-Generic
	Deferred vs. Effective
	Classes: Deferred vs. Effective
	Features: Deferred, Effective, Redefined (1)
	Features: Deferred, Effective, Redefined (2)
	Features: Deferred, Effective, Redefined (3)
	Classes: Deferred vs. Effective (2.1)
	Classes: Deferred vs. Effective (2.2)
	Class Relations: Inheritance (1)
	Class Relations: Inheritance (2)
	Class Relations: Client-Supplier (1)
	Class Relations: Client-Supplier (2.1)
	Class Relations: Client-Supplier (2.2.1)
	Class Relations: Client-Supplier (2.2.2)
	Class Relations: Client-Supplier (3.1)
	Class Relations: Client-Supplier (3.2.1)
	Class Relations: Client-Supplier (3.2.2)
	Clusters: Grouping Classes

