Contracts vs. Implementations: Where? LASSONDE

ooooooooooooooooo

Common Eiffel Errors:

Contracts vs Implementations e Instructions for Implementations: insty, insts

¢ Boolean expressions for Contracts: expi, expo, exps, €xps, €Xps

class feature Comr
ACCOUNT withdraw
feature - Queries require
. balance: INTEGER 4 €xps
EECS3311 A: Software Design require ° insty
YO R K Winter 2020 do exps ensure
insty 4 EXPa
UNIVERSITE CHEN-WEI WANG ensure)) en
UNIVERSITY exps invariant
end €Xps
end - end of class ACCOUNT
]
Contracts vs. Implementations: Definitions |issone: Implementations: o

Instructions with No Return Values

In Eiffel, there are two categories of constructs:
o Implementations e Assignments
o are step-by-step instructions that have side-effects

’ balance := balance + a ‘
e.g.,,’across ... as ... loop ... end . . P . .
¢ Selections with branching instructions:
° change attribute values ’if a > 0 then acc.deposit (a) else acc.withdraw (-a) end ‘
e do not return values L
e ~ commands ¢ LOOps
o Contracts from £rom
« are Boolean expressions that have no side-effects unlti'f a.Lower list.start across
i > a.upper until list as cursor
eg,[... = ... ,’across ... as ... all ... end loop list.after loop
loop sum :=
Result := ; . .
. . - , list.item.wdw(10) sum + cursor.item
o use attribute and parameter values to specify a condition Result + a[i] list . forth end
e return a Boolean value (i.e., True or False) i:=1+1 end
o ~queries end

Contracts: 3

LASSONDE

ooooooooooooooooo

Expressions with Boolean Return Values

¢ Relational Expressions (using =, /=, ~, /~, >, <, >=, <=)

’ a>a»0

e Binary Logical Expressions (using and, and then, or, or else,
implies)

’ (a.lower <= index) and (index <= a.upper)

¢ Logical Quantification Expressions (using all, some)

across

a.lower |..| a.upper as cursor
all

a [cursor.item] >= 0
end

¢ old keyword can only appear in postconditions (i.e., ensure).

balance = old balance + a ‘
5 of 23]

Contracts: Common Mistake (1) Y

LASSONDE

class
ACCOUNT
feature
withdraw (a: INTEGER)
do

ensure
balance := old balance - a
end

Colon-Equal sign (: =) is used to write assignment instructions.

ooooooooooooooooo

Contracts: Common Mistake (1) Fixed

LASSONDE

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do

ensure
balance = old balance - a
end

7 of 23

Contracts: Common Mistake (2)

LASSONDE

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do

ensure
across

a as cursor
loop

end

across...loop...end is used to create loop instructions.

Contracts: Common Mistake (2) Fixed LASSONDE Contracts: Common Mistake (3) Fixed LASSONDE
class
ACCOUNT class
feature ACCOUNT
withdraw (a: INTEGER) feature
do withdraw (a: INTEGER)
oo do
ensure ...
across ensure
a as cursor postcond_1: balance = old balance - a
all —— if ant 3 postcond_2: old balance > 0
end

[11 of 23]

end
— -

Contracts: Common Mistake (3) LASSONDE Contracts: Common Mistake (4) LASsONDE
class
ACCOUNT
feature
class withdraw (a: INTEGER)
ACCOUNT require
feaFure old balance > 0
withdraw (a: INTEGER) do
do
S ensure
ensure
old balance - a eﬂéi
end

e Only postconditions may use the old keyword to specify the
relationship between pre-state values (before the execution of
Contracts can only be specified as Boolean expressions. withdraw) and post-state values (after the execution of
withdraw).
* Pre-state values (right before the feature is executed) are

—— |

Contracts: Common Mistake (4) Fixed LASSONDE

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
require
balance > 0
do

ensure

end

13 of 23]

Contracts: Common Mistake (5) LASSONDE

ooooooooooooooooo

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY[STRING]
feature Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end
feature - Commands

make do create a.make_empty end
update (i: INTEGER; v: STRING)
do ...
ensure Others nchanged
across
1 |..| count as j
all
j.item /= i implies old get (j.item) ~ get(j.item)
end
end
end

Compilation Error:

o Expression value to be cached before executing update?
[Current.get (j.item)]
o But, in the pre-state, integer cursor § does not exist!

Contracts: Common Mistake (5) Fixed

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY[STRING]
feature Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end
feature —- Comn 5

make do create a.make_empty end
update (i: INTEGER; v: STRING)

do ...
ensure Others Unchanged
across
1 |..| count as j
all
j.item /= i implies (old Current) .get (j.item) ~ get(j.item)
end
end
end

o The idea is that the old expression should not involve the local
cursor variable 5 that is introduced in the postcondition.

o Whether to put (old Current.twin) or (old
Current.deep twin) is up to your need.

e

Implementations: Common Mistake (1)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance = balance + 1
end

e Equal sign (=) is used to write Boolean expressions.
¢ In the context of implementations, Boolean expression values
must appear:

o on the RHS of an assignment;
o as one of the branching conditions of an if-then-else statement; or
o as the exit condition of a loop instruction.

e

Implementations: Common Mistake (1) Fixed:ssono: Implementations: Common Mistake (2) Fixed:ssono:
1 |class
2 BANK
3 | feature
4 min_credit: REAL
5 accounts: LIST[ACCOUNT]

class 6

ACCOUNT 7 no_warning_accounts: BOOLEAN
feature 8 do
withdraw (a: INTEGER) 9 Result :=
do 10 across
balance := balance + 1 11 accounts as cursor
end 12 all
13 cursor.item.balance > min_credit
14 end
15 end
16
Rewrite L10 — L14 using across ... as ... some ... end.
Hint: Vx e P(x) = —(3x ¢ =P(x))
[17 of 23] [19 of 23]

Implementations: Common Mistake (2) LASSONDE Implementations: Common Mistake (3) LASSONDE
class class

BANK BANK
feature feature

min_credit: REAL accounts: LIST[ACCOUNT

accounts: LIST[ACCOUNT]
total_balance: REAL

no_warning_accounts: BOOLEAN do
do Result :=
across across
accounts as cursor accounts as cursor
all loop
cursor.item.balance > min credit Result := Result + cursor.item.balance
end end
end e
end

Again, in implementations, Boolean expressions cannot appear In implementations, since instructions do not return values, they
alone without their values being “captured”.

cannot be used on the RHS of assignments.
[18 of 23]

——— e

Implementations: Common Mistake (3) Fixes

jASSONDE

class
BANK
feature
accounts: LIST[ACCOUNT]

total_balance: REAL
do
across
accounts as cursor
loop
Result := Result + cursor.item.balance
end
end

Index (1)

LSSoNDE

|[Contracts vs. Implementations: Definitions|
Contracts vs. Implementations: Where?|

Implementations:

nstructions with No Return Val

[Contracts:

[Expressions with Boolean Return Values|

[Contracts:

Common Mistake (1))

[Contracts:

Common Mistake (1) Fixed|

[Contracts:

Common Mistake (2)|

[Contracts:

Common Mistake (2) Fixed|

[Contracts:

Common Mistake (3))

[Contracts:

Common Mistake (3) Fixed|

[Contracts:

Common Mistake (4))

[Contracts:

Common Mistake (4) Fixed|

Contracts:

Common Mistake (5))

Index (2)

LSSoNDE

[Contracts: Common Mistake (5) Fixed|

[Implementations:

Common Mistake (1)|

[I[mplementations:

Common Mistake (1) Fixed|

[I[mplementations:

Common Mistake (2)|

[I[mplementations:

Common Mistake (2) Fixed|

[Implementations:

Common Mistake (3)|

[I[mplementations:

Common Mistake (3) Fixed|

