
Syntax of Eiffel: a Brief Overview

EECS3311 A: Software Design
Winter 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Escape Sequences

Escape sequences are special characters to be placed in your
program text.
○ In Java, an escape sequence starts with a backward slash \

e.g., \n for a new line character.
○ In Eiffel, an escape sequence starts with a percentage sign %

e.g., %N for a new line characgter.

See here for more escape sequences in Eiffel: https://www.
eiffel.org/doc/eiffel/Eiffel%20programming%
20language%20syntax#Special_characters

2 of 39

https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters
https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters
https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters


Commands, and Queries, and Features

● In a Java class:
○ Attributes: Data
○ Mutators: Methods that change attributes without returning
○ Accessors: Methods that access attribute values and returning

● In an Eiffel class:
○ Everything can be called a feature.
○ But if you want to be specific:

● Use attributes for data
● Use commands for mutators
● Use queries for accessors

3 of 39



Naming Conventions

● Cluster names: all lower-cases separated by underscores
e.g., root, model, tests, cluster number one

● Classes/Type names: all upper-cases separated by
underscores
e.g., ACCOUNT, BANK ACCOUNT APPLICATION

● Feature names (attributes, commands, and queries): all
lower-cases separated by underscores
e.g., account balance, deposit into, withdraw from

4 of 39



Class Declarations

● In Java:

class BankAccount {
/* attributes and methods */

}

● In Eiffel:

class BANK_ACCOUNT
/* attributes, commands, and queries */

end

5 of 39



Class Constructor Declarations (1)

● In Eiffel, constructors are just commands that have been
explicitly declared as creation features:

class BANK_ACCOUNT
-- List names commands that can be used as constructors
create
make

feature -- Commands
make (b: INTEGER)
do balance := b end

make2
do balance := 10 end

end

● Only the command make can be used as a constructor.
● Command make2 is not declared explicitly, so it cannot be used

as a constructor.

6 of 39



Creations of Objects (1)

● In Java, we use a constructor Accont(int b) by:
○ Writing Account acc = new Account(10) to create a named

object acc
○ Writing new Account(10) to create an anonymous object

● In Eiffel, we use a creation feature (i.e., a command explicitly
declared under create) make (int b) in class ACCOUNT by:

○ Writing create {ACCOUNT} acc.make (10) to create a
named object acc

○ Writing create {ACCOUNT}.make (10) to create an
anonymous object

● Writing create {ACCOUNT} acc.make (10)

is really equivalent to writing

acc := create {ACCOUNT}.make (10)

7 of 39



Attribute Declarations

● In Java, you write: int i, Account acc

● In Eiffel, you write: i: INTEGER, acc: ACCOUNT

Think of : as the set membership operator ∈:
e.g., The declaration acc: ACCOUNT means object acc is a
member of all possible instances of ACCOUNT.

8 of 39



Method Declaration

● Command
deposit (amount: INTEGER)
do
balance := balance + amount

end

Notice that you don’t use the return type void

● Query
sum_of (x: INTEGER; y: INTEGER): INTEGER
do
Result := x + y

end

○ Input parameters are separated by semicolons ;
○ Notice that you don’t use return; instead assign the return value

to the pre-defined variable Result.
9 of 39



Operators: Assignment vs. Equality
● In Java:

○ Equal sign = is for assigning a value expression to some variable.
e.g., x = 5 * y changes x’s value to 5 * y
This is actually controversial, since when we first learned about =,
it means the mathematical equality between numbers.

○ Equal-equal == and bang-equal != are used to denote the equality
and inequality.
e.g., x == 5 * y evaluates to true if x’s value is equal to the
value of 5 * y, or otherwise it evaluates to false.

● In Eiffel:
○ Equal = and slash equal /= denote equality and inequality.

e.g., x = 5 * y evaluates to true if x’s value is equal to the value
of 5 * y, or otherwise it evaluates to false.

○ We use := to denote variable assignment.
e.g., x := 5 * y changes x’s value to 5 * y

○ Also, you are not allowed to write shorthands like x++,
just write x := x + 1.10 of 39



Operators: Division and Modulo

Division Modulo (Remainder)
Java 20 / 3 is 6 20 % 3 is 2
Eiffel 20 // 3 is 6 20 \\ 3 is 2

11 of 39



Operators: Logical Operators (1)

● Logical operators (what you learned from EECS1090) are for
combining Boolean expressions.

● In Eiffel, we have operators that EXACTLY correspond to
these logical operators:

LOGIC EIFFEL

Conjunction ∧ and
Disjunction ∨ or
Implication ⇒ implies

Equivalence ≡ =

12 of 39



Operators: Logical Operators (2)
● How about Java?

○ Java does not have an operator for logical implication.
○ The == operator can be used for logical equivalence.
○ The && and || operators only approximate conjunction and

disjunction, due to the short-circuit effect (SCE):
● When evaluating e1 && e2, if e1 already evaluates to false, then e1

will not be evaluated.
e.g., In (y != 0) && (x / y > 10), the SCE guards the division
against division-by-zero error.

● When evaluating e1 || e2, if e1 already evaluates to true, then e1
will not be evaluated.
e.g., In (y == 0) || (x / y > 10), the SCE guards the division
against division-by-zero error.

○ However, in math, the order of the two sides should not matter.
● In Eiffel, we also have the version of operators with SCE:

short-circuit conjunction short-circuit disjunction
Java && ||
Eiffel and then or else

13 of 39



Selections (1)

if B1 then
-- B1
-- do something

elseif B2 then
-- B2 ∧ (¬B1)

-- do something else
else
-- (¬B1) ∧ (¬B2)

-- default action
end

14 of 39



Selections (2)
An if-statement is considered as:
○ An instruction if its branches contain instructions.
○ An expression if its branches contain Boolean expressions.

class
FOO

feature --Attributes
x, y: INTEGER

feature -- Commands
command

-- A command with if-statements in implementation and contracts.
require
if x \\ 2 /= 0 then True else False end -- Or: x \\ 2 /= 0

do
if x > 0 then y := 1 elseif x < 0 then y := -1 else y := 0 end

ensure
y = if old x > 0 then 1 elseif old x < 0 then -1 else 0 end
-- Or: (old x > 0 implies y = 1)
-- and (old x < 0 implies y = -1) and (old x = 0 implies y = 0)

end
end

15 of 39



Loops (1)

● In Java, the Boolean conditions in for and while loops are
stay conditions.

void printStuffs() {
int i = 0;

while( i < 10 /* stay condition */) {
System.out.println(i);
i = i + 1;

}
}

● In the above Java loop, we stay in the loop
as long as i < 10 is true.

● In Eiffel, we think the opposite: we exit the loop
as soon as i >= 10 is true.

16 of 39



Loops (2)
In Eiffel, the Boolean conditions you need to specify for loops
are exit conditions (logical negations of the stay conditions).

print_stuffs
local
i: INTEGER

do
from
i := 0

until

i >= 10 -- exit condition
loop
print (i)
i := i + 1

end -- end loop
end -- end command

○ Don’t put () after a command or query with no input parameters.
○ Local variables must all be declared in the beginning.

17 of 39



Library Data Structures

Enter a DS name. Explore supported features.

18 of 39



Data Structures: Arrays
● Creating an empty array:

local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make empty

○ This creates an array of lower and upper indices 1 and 0.
○ Size of array a: a.upper - a.lower + 1 .

● Typical loop structure to iterate through an array:
local
a: ARRAY[INTEGER]
i, j: INTEGER

do
. . .

from
j := a.lower

until
j > a.upper

do
i := a [j]
j := j + 1

end19 of 39



Data Structures: Linked Lists (1)

20 of 39



Data Structures: Linked Lists (2)
● Creating an empty linked list:

local
list: LINKED_LIST[INTEGER]

do
create {LINKED_LIST[INTEGER]} list.make

● Typical loop structure to iterate through a linked list:
local
list: LINKED_LIST[INTEGER]
i: INTEGER

do
. . .

from
list.start

until
list.after

do
i := list.item
list.forth

end
21 of 39



Iterable Structures

● Eiffel collection types (like in Java) are iterable .
● If indices are irrelevant for your application, use:
across . . . as . . . loop . . . end

e.g.,

. . .
local
a: ARRAY[INTEGER]
l: LINKED_LIST[INTEGER]
sum1, sum2: INTEGER

do
. . .
across a as cursor loop sum1 := sum1 + cursor.item end
across l as cursor loop sum2 := sum2 + cursor.item end
. . .

end

22 of 39



Using across for Quantifications (1.1)
● across . . . as . . . all . . . end

A Boolean expression acting as a universal quantification (∀)
1 local
2 allPositive: BOOLEAN
3 a: ARRAY[INTEGER]
4 do
5 . . .
6 Result :=
7 across
8 a.lower |..| a.upper as i
9 all

10 a [i.item] > 0
11 end

○ L8: a.lower |..| a.upper denotes a list of integers.
○ L8: as i declares a list cursor for this list.
○ L10: i.item denotes the value pointed to by cursor i.

● L9: Changing the keyword all to some makes it act like an
existential quantification ∃.

23 of 39



Using across for Quantifications (1.2)
● Alternatively: across . . . is . . . all . . . end

A Boolean expression acting as a universal quantification (∀)
1 local
2 allPositive: BOOLEAN
3 a: ARRAY[INTEGER]
4 do
5 . . .
6 Result :=
7 across
8 a.lower |..| a.upper is i
9 all

10 a [i] > 0
11 end

○ L8: a.lower |..| a.upper denotes a list of integers.
○ L8: is i declares a variable for storing a member of the list.
○ L10: i denotes the value itself.

● L9: Changing the keyword all to some makes it act like an
existential quantification ∃.

24 of 39



Using across for Quantifications (2)
class
CHECKER

feature -- Attributes
collection: ITERABLE [INTEGER] -- ARRAY, LIST, HASH_TABLE

feature -- Queries
is all positive: BOOLEAN

-- Are all items in collection positive?
do
. . .

ensure
across
collection as cursor

all
cursor.item > 0

end
end

● Using all corresponds to a universal quantification (i.e., ∀).
● Using some corresponds to an existential quantification (i.e., ∃).
25 of 39



Using across for Quantifications (3)

class BANK
. . .
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT

-- Search on accounts sorted in non-descending order.
require
-- ∀i ∶ INTEGER ∣ 1 ≤ i < accounts.count ● accounts[i].id ≤ accounts[i + 1].id
across
1 |..| (accounts.count - 1) as cursor

all
accounts [cursor.item].id <= accounts [cursor.item + 1].id

end
do
. . .

ensure
Result.id = acc_id

end

26 of 39



Using across for Quantifications (4)
class BANK
. . .
accounts: LIST [ACCOUNT]
contains_duplicate: BOOLEAN

-- Does the account list contain duplicate?
do
. . .

ensure
∀i, j ∶ INTEGER ∣

1 ≤ i ≤ accounts.count ∧ 1 ≤ j ≤ accounts.count ●

accounts[i] ∼ accounts[j] ⇒ i = j
end

● Exercise: Convert this mathematical predicate for
postcondition into Eiffel.

● Hint: Each across construct can only introduce one dummy
variable, but you may nest as many across constructs as
necessary.

27 of 39



Equality

● To compare references between two objects, use =.
● To compare “contents” between two objects of the same type,

use the redefined version of is equal feature.
● You may also use the binary operator ∼
o1 ∼ o2 evaluates to:
○ true if both o1 and o2 are void
○ false if one is void but not the other
○ o1.is equal(o2) if both are not void

28 of 39



Use of ∼: Caution

1 class
2 BANK
3 feature -- Attribute
4 accounts: ARRAY[ACCOUNT]
5 feature -- Queries
6 get_account (id: STRING): detachable ACCOUNT
7 -- Account object with ’id’.
8 do
9 across

10 accounts as cursor
11 loop
12 if cursor.item ∼ id then
13 Result := cursor.item
14 end
15 end
16 end
17 end

L15 should be: cursor.item.id ∼ id
29 of 39



Review of Propositional Logic (1)

● A proposition is a statement of claim that must be of either
true or false, but not both.

● Basic logical operands are of type Boolean: true and false.
● We use logical operators to construct compound statements.

○ Binary logical operators: conjunction (∧), disjunction (∨),
implication (⇒), and equivalence (a.k.a if-and-only-if ⇐⇒ )

p q p ∧ q p ∨ q p⇒ q p ⇐⇒ q
true true true true true true
true false false true false false
false true false true true false
false false false false true true

○ Unary logical operator: negation (¬)
p ¬p

true false
false true

30 of 39



Review of Propositional Logic: Implication
○ Written as p⇒ q
○ Pronounced as “p implies q”
○ We call p the antecedent, assumption, or premise.
○ We call q the consequence or conclusion.
○ Compare the truth of p⇒ q to whether a contract is honoured : p ≈

promised terms; and q ≈ obligations.
○ When the promised terms are met, then:

● The contract is honoured if the obligations are fulfilled.
● The contract is breached if the obligations are not fulfilled.

○ When the promised terms are not met, then:
● Fulfilling the obligation (q) or not (¬q) does not breach the contract.

p q p⇒ q
true true true
true false false
false true true
false false true

31 of 39



Review of Propositional Logic (2)
● Axiom: Definition of⇒

p⇒ q ≡ ¬p ∨ q
● Theorem: Identity of⇒

true⇒ p ≡ p
● Theorem: Zero of⇒

false⇒ p ≡ true
● Axiom: De Morgan

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

● Axiom: Double Negation

p ≡ ¬ (¬ p)
● Theorem: Contrapositive

p⇒ q ≡ ¬q ⇒ ¬p
32 of 39



Review of Predicate Logic (1)

● A predicate is a universal or existential statement about
objects in some universe of disclosure.

● Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.

● We use the following symbols for common numerical ranges:
○ Z: the set of integers
○ N: the set of natural numbers

● Variable(s) in a predicate may be quantified :
○ Universal quantification :

All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.

○ Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.

33 of 39



Review of Predicate Logic (2.1)
● A universal quantification has the form (∀X ∣ R ● P)

○ X is a list of variable declarations
○ R is a constraint on ranges of declared variables
○ P is a property
○ (∀X ∣ R ● P) ≡ (∀X ● R ⇒ P)

e.g., (∀X ∣ True ● P) ≡ (∀X ● True⇒ P) ≡ (∀X ● P)
e.g., (∀X ∣ False ● P) ≡ (∀X ● False⇒ P) ≡ (∀X ● True) ≡ True

● For all (combinations of) values of variables declared in X that
satisfies R, it is the case that P is satisfied.
○ ∀i ∣ i ∈ N ● i ≥ 0 [true]
○ ∀i ∣ i ∈ Z ● i ≥ 0 [false]
○ ∀i , j ∣ i ∈ Z ∧ j ∈ Z ● i < j ∨ i > j [false]

● The range constraint of a variable may be moved to where the
variable is declared.
○ ∀i ∶ N ● i ≥ 0
○ ∀i ∶ Z ● i ≥ 0
○ ∀i , j ∶ Z ● i < j ∨ i > j

34 of 39



Review of Predicate Logic (2.2)
● An existential quantification has the form (∃X ∣ R ● P)

○ X is a list of variable declarations
○ R is a constraint on ranges of declared variables
○ P is a property
○ (∃X ∣ R ● P) ≡ (∃X ● R ∧P)

e.g., (∃X ∣ True ● P) ≡ (∃X ● True ∧P) ≡ (∀X ● P)
e.g., (∃X ∣ False ● P) ≡ (∃X ● False ∧P) ≡ (∃X ● False) ≡ False

● There exists a combination of values of variables declared in X
that satisfies R and P.
○ ∃i ∣ i ∈ N ● i ≥ 0 [true]
○ ∃i ∣ i ∈ Z ● i ≥ 0 [true]
○ ∃i , j ∣ i ∈ Z ∧ j ∈ Z ● i < j ∨ i > j [true]

● The range constraint of a variable may be moved to where the
variable is declared.
○ ∃i ∶ N ● i ≥ 0
○ ∃i ∶ Z ● i ≥ 0
○ ∃i , j ∶ Z ● i < j ∨ i > j

35 of 39



Predicate Logic (3)

● Conversion between ∀ and ∃
(∀X ∣ R ●P) ⇐⇒ ¬(∃X ●R ⇒ ¬P)
(∃X ∣ R ●P) ⇐⇒ ¬(∀X ●R ⇒ ¬P)

● Range Elimination

(∀X ∣ R ●P) ⇐⇒ (∀X ●R ⇒ P)
(∃X ∣ R ●P) ⇐⇒ (∃X ●R ∧P)

36 of 39



Index (1)
Escape Sequences
Commands, Queries, and Features
Naming Conventions
Class Declarations
Class Constructor Declarations (1)
Creations of Objects (1)
Attribute Declarations
Method Declaration
Operators: Assignment vs. Equality
Operators: Division and Modulo
Operators: Logical Operators (1)
Operators: Logical Operators (2)
Selections (1)
Selections (2)

37 of 39



Index (2)
Loops (1)
Loops (2)
Library Data Structures
Data Structures: Arrays
Data Structures: Linked Lists (1)
Data Structures: Linked Lists (2)
Iterable Data Structures
Using across for Quantifications (1.1)
Using across for Quantifications (1.2)
Using across for Quantifications (2)
Using across for Quantifications (3)
Using across for Quantifications (4)
Equality
Use of ∼: Caution

38 of 39



Index (3)
Review of Propositional Logic (1)

Review of Propositional Logic: Implication

Review of Propositional Logic (2)

Review of Predicate Logic (1)

Review of Predicate Logic (2.1)

Review of Predicate Logic (2.2)

Predicate Logic (3)

39 of 39


	Escape Sequences
	Commands, Queries, and Features
	Naming Conventions
	Class Declarations
	Class Constructor Declarations (1)
	Creations of Objects (1)
	Attribute Declarations
	Method Declaration
	Operators: Assignment vs. Equality
	Operators: Division and Modulo
	Operators: Logical Operators (1)
	Operators: Logical Operators (2)
	Selections (1)
	Selections (2)
	Loops (1)
	Loops (2)
	Library Data Structures
	Data Structures: Arrays
	Data Structures: Linked Lists (1)
	Data Structures: Linked Lists (2)
	Iterable Data Structures
	Using across for Quantifications (1.1)
	Using across for Quantifications (1.2)
	Using across for Quantifications (2)
	Using across for Quantifications (3)
	Using across for Quantifications (4)
	Equality
	Use of : Caution
	Review of Propositional Logic (1)
	Review of Propositional Logic: Implication
	Review of Propositional Logic (2)
	Review of Predicate Logic (1)
	Review of Predicate Logic (2.1)
	Review of Predicate Logic (2.2)
	Predicate Logic (3)

