Syntax of Eiffel: a Brief Overview

EECS3311 A: Software Design
' Winter 2020

YORK

v CHEN-WEI WANG
\

c|c
z|z
mim
D |0
wlwn
==
<lm

LASSONDE

ooooooooooooooooooo

Escape Sequences

Escape sequences are special characters to be placed in your
program text.
o In Java, an escape sequence starts with a backward slash \
e.g., \n for a new line character.
o In Eiffel, an escape sequence starts with a percentage sign %
e.g., 3N for a new line characgter.
See here for more escape sequences in Eiffel: https://www.
eiffel.org/doc/eiffel/Eiffel%$20programming$
20language%20syntax#Special_characters

LASSONDE

ooooooooooooooooooo

Commands, and Queries, and Features

¢ In a Java class:

o Attributes: Data

o Mutators: Methods that change attributes without returning

o Accessors: Methods that access attribute values and returning
e In an Eiffel class:

o Everything can be called a feature.

o But if you want to be specific:

o Use attributes for data
o Use commands for mutators
o Use queries for accessors

LASSONDE

ooooooooooooooooooo

Naming Conventions

e Cluster names: all lower-cases separated by underscores
e.g., root, model, tests, cluster_number_one

¢ Classes/Type names: all upper-cases separated by
underscores

€.g., ACCOUNT, BANK_ACCOUNT_APPLICATION

e Feature names (attributes, commands, and queries): all
lower-cases separated by underscores

e.d., account_balance, deposit_into, withdraw_from

LASSONDE

ooooooooooooooooo

Class Declarations

e In Java:

class BankAccount {

e In Eiffel:

class BANK_ACCOUNT
/* attributes, commands, and queries */

end

LASSONDE

ooooooooooooooooo

Class Constructor Declarations (1)

¢ In Eiffel, constructors are just commands that have been
explicitly declared as creation features:

class BANK_ACCOUNT
—— List names commands that can be used tr tor
create
make
feature nds
make (b: IN ER)
do balance := b end
makeZ2
do balance := 10 end
end

¢ Only the command make can be used as a constructor.

e Command make?2 is not declared explicitly, so it cannot be used
as a constructor.

Creations of Objects (1)

¢ In Java, we use a constructor Accont (int b) by:
o Writing Account acc = new Account (10) to create a named
object acc
o Writing new Account (10) to create an anonymous object
« In Eiffel, we use a creation feature (i.e., a command explicitly
declared under create) make (int b) inclass ACCOUNT by:

o Writing create {ACCOUNT} acc.make (10) tocreate a
named object acc

o Writing create {ACCOUNT}.make (10) to create an
anonymous object

o Writing’create {ACCOUNT} acc.make (10)‘

is really equivalent to writing
acc := create {ACCOUNT}.make (10)|
[7 of 39]

LASSONDE

ooooooooooooooooo

Attribute Declarations

¢ In Java, you write: int i, Account acc
e In Eiffel, you write: i: INTEGER, acc: ACCOUNT
Think of : as the set membership operator ¢:

e.g., The declaration acc: ACCOUNT means object accis a
member of all possible instances of ACCOUNT.

8 of 39)

LASSONDE

ooooooooooooooooo

Method Declaration

e Command
deposit (amount: INTEGER)
do
balance := balance + amount
end

Notice that you don’t use the return type void

e Query
sum_of (x: INTEGER; y: INTEGER): INTEGER
do
Result := x + y
end

o Input parameters are separated by semicolons ;
o Notice that you don’t use return; instead assign the return value
to the pre-defined variable Result.

=,

LASSONDE

ooooooooooooooooo

Operators: Assignment vs. Equality

e In Java:
o Equal sign = is for assigning a value expression to some variable.
eg.,x = 5 » ychanges xsvalueto5 » y
This is actually controversial, since when we first learned about =,
it means the mathematical equality between numbers.
o Equal-equal == and bang-equal ! = are used to denote the equality
and inequality.

e.g.,x == 5 = y evaluates to frueif x’s value is equal to the
value of 5 = v, or otherwise it evaluates to false.
« In Eiffel:

o Equal = and slash equal /= denote equality and inequality.
e.g.,x = 5 » vy evaluates to frue if x’s value is equal to the value
of 5 * vy, or otherwise it evaluates to false.

o We use : = to denote variable assignment.
e.g.,x := 5 x ychanges x'svalueto5 x y

o Also, you are not allowed to write shorthands like x++,

ustwrltex = x + 1.

LASSONDE

ooooooooooooooooo

Operators: Division and Modulo

| Division | Modulo (Remainder)
Java 20 / 3is6 20 % 3is2
Eiffel || 20 // 3is6 20 \\ 3is2

[11 of 39

Operators: Logical Operators (1)

¢ Logical operators (what you learned from EECS1090) are for
combining Boolean expressions.
¢ In Eiffel, we have operators that EXACTLY correspond to
these logical operators:
| Logic | EIFFEL

Conjunction A and
Disjunction % or
Implication = implies
Equivalence = =

12 of 39

Operators: Logical Operators (2) LASSONDE Selections (2) LASSONDE
e How about Java? An if-statement is considered as:
o Java does not have an operator for logical implication. o An instruction if its branches contain instructions.
o The == operator can be used for logical equivalence. o An expression if its branches contain Boolean expressions.
o The «& and | | operators only approximate conjunction and class
disjunction, due to the short-circuit effect (SCE): 00
e When evaluating el ss& e2,if el already evaluates to false, then el feature ri
will not be evaluated. x, y: INTEGER
eg.,In(y !'=0) «& (x / y > 10),the SCE guards the division feature —- C
against division-by-zero error. command R ‘ o o
e When evaluating el || e2,if el already evaluates to true, then e1 requi’”;e‘“““"““‘”“ with rrmstatements in Implementati cnract
will not be evaluated. L if x \\ 2 /= 0 then True else False end —— Or: x \\ 2 /= 0
eg.,In(y ==0) || (x / y > 10),the SCE guards the division do
against division-by-zero error. if x > 0 then y := 1 elseif x < 0 then y := -1 else y := 0 end
o However, in math, the order of the two sides should not matter. ensure
. . . = i i -1 el 0 d
« In Eiffel, we also have the version of operators with SCE: yoo HEold x v 0 then [elseif old x = 0 then i else O en
|| short-circuit conjunction | short-circuit disjunction % < 0 - -1 I (old x = 0 -0
Java ‘ &5 ‘ N
e Eiffel and then or else

Selections (1) LASSONDE Loops (1) LASSONDE

oooooooooooooooooooooooooooooooooo

¢ In Java, the Boolean conditions in for and while loops are
stay conditions.

if By then void printStuffs() f{
- B int 1 = 0;
.Jd BSL“WL“;“%; while(i < 10 /+ stay condition =*/) A
elseif 5p then System.out.println(1i);
= Ban(-By) i= i+ 1;
-- do something else) !
else }
— (=Bi)r(=B2)
end ¢ In the above Java loop, we stay in the loop
aslongasi < 10 istrue.
« In Eiffel, we think the opposite: we exit the loop
assoonas i >= 10 istrue.

Loops (2)

LASSONDE

ooooooooooooooooo

In Eiffel, the Boolean conditions you need to specify for loops
are exit conditions (logical negations of the stay conditions).

print_stuffs
local
i: INTEGER
do
from
i =0
until
i >= 10 exit condition
loop
print (1)
i =1+ 1
end] 1
end -

o Don’tput () after a command or query with no input parameters.
o Local variables must all be declared in the beginning.

Library Data Structures

LASSONDE

ooooooooooooooooo

Enter a DS name.

File Edit View Favorites
EMEG 9e a0
i~ zg&;lCIass [ARRAY i ﬂ

Project E;

Cg Searct

Explore supported features.

18 of 39

Features

= % Inherit

& RESIZABLE [G]

@ INDEXABLE [G, INTEGER]

@ TO_SPECIAL [G]
= [Initialization
make_empty
make_filled
make
make_from_array
make_from_specia
make_from_cil
= 4 Access

4 item

4 at

4 entry

& a4k g

S0 =081

|+l Groups || 4 Features| > AutoTest |»'

LASSONDE

ooooooooooooooooo

Data Structures: Arrays
e Creating an empty array:

local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make_empty

o This creates an array of 1ower and upper indices 1 and 0.
o Size of array a: ’ a.upper — a.lower + 1 ‘

¢ Typical loop structure to iterate through an array:

local
a: ARRAY[INTEGER]
i, j: INTEGER
do
from
j := a.lower
until
j > a.upper
do
1 :=a [J]
ji=3+1

m—
|

Data Structures: Linked Lists (1) LASSONDE

ooooooooooooooooo

after

1

before

r

g:G
1 4 count
Cursor
forth
—_—
item

index: INTEGER

Data Structures: Linked Lists (2) LASSONDE
e Creating an empty linked list:

local
list: LINKED_LIST[INTEGER]
do
create {LINKED_LIST[INTEGER]} list.make

Typical loop structure to iterate through a linked list:

local
list: LINKED_LIST[INTEGER]
i: INTEGER

list.start

list.after

i := list.item
list.forth

210

LASSONDE

ooooooooooooooooo

Ilterable Structures

o Eiffel collection types (like in Java) are iterable .
e If indices are irrelevant for your application, use:

across ... as ... |loop| ... end
e.g.
local

a: ARRAY[INTEGER]
1: LINKED_LIST|[INTEGER]
suml, sumZ2: INTEGER

do

suml + cursor.item end
sum2 + cursor.item end

across a as cursor loop suml :
across 1 as cursor loop sum2 :

end

LASSONDE

ooooooooooooooooo

Using across for Quantifications (1.1)
® across ... as ... |all| ... end
A Boolean expression acting as a universal quantification (V)

local
allPositive: BOOLEAN
a: ARRAY [INTEGER]

do

Result :=
across
a.lower |..| a.upper as i
all
a [i.item] > 0
end

0O OVWoONOUA~WN =

_

o L8:a.lower |..| a.upper denotes a list of integers.

o L8: as i declares a list cursor for this list.

o L10: i.item denotes the value pointed to by cursor i.
¢ L9: Changing the keyword all to some makes it act like an
stential quantification 3.

LASSONDE

ooooooooooooooooo

Using across for Quantifications (1.2)
e Alternatively: across ... is ... |all| ... end
A Boolean expression acting as a universal quantification (V)

local
allPositive: BOOLEAN
a: ARRAY [INTEGER]

do

Result :=
across
a.lower |..| a.upper is i
all
a [i] > 0
end

0O OVWoONOUA~WN =

_

o L8:a.lower |..| a.upper denotes a list of integers.
o L8: is i declares a variable for storing a member of the list.
o L10: i denotes the value itself.
¢ L9: Changing the keyword all to some makes it act like an
stential quantification 3.

Using across for Quantifications (2) LASSONDE Using across for Quantifications (4) LASSONDE
class class BANK
CHECKER .
feature Att accounts: LIST [ACCOUNT]
collection contains_duplicate: BOOLEAN
feature —— 0O es —-— Does the account 1ist contain licate
is_all_positive: BOOLE do
Are all items in collection positive? e
do ensure
Vi j: INTEGER |
ensure 1 < i< accounts.count A 1< j< accounts.count e
across accounts[i] ~ accounts[j] = i =
collection as cursor ’ end ‘
all
cirsondtem = 0 Exercise: Convert this mathematical predicate for
en g . .
end postcondition into Eiffel.
Usi I q , | iication (i e Hint: Each across construct can only introduce one dummy
° .
sing all corresponds to a universal quantification (i.e., V). variable, but you may nest as many across constructs as
¢ Using some corresponds to an existential quantification (i.e., 3). necessary.

]

USing aCross fOI‘ Quantifications (3) :ASSONDE Equality LASSONDE
class BANK
;accounts: LIST [ACCOUNT] X
binary_search (acc_id: INTEGER): ACCOUNT e To compare references between two objects, use =.
requize o e o To compare “contents” between two objects of the same type,
Vi: INTEGER | 1< i< accounts.count e accounts[i].id < accounts[i+1].id use the redefined version of is_equal feature.
across .
1 |..| (accounts.count — 1) as cursor ¢ You may also use the binary operator ~
all . . , . ol ~ o2 evaluates to:
accounts [cursor.item].id <= accounts [cursor.item + 1].id . X
end o frue if both o1 and o2 are void
do o false if one is void but not the other
o ol.is_equal (02) if both are not void
ensure
Result.id = acc_id
end

]

LASSONDE

ooooooooooooooooo

Use of ~: Caution

O©CoOo~NO O~ WN =

class
BANK
feature Attribute
accounts: ARRAY[ACCOUNT]
feature —— Queries

get_account (id: STRING): detachable ACCOUNT
Account object with 7id’.
do
across
accounts as cursor
loop
if cursor.item ~ id then
Result := cursor.item
end
end
end
end

L15 should be: cursor.item.id ~ id

LASSONDE

ooooooooooooooooo

Review of Propositional Logic (1)

e A proposition is a statement of claim that must be of either
true or false, but not both.
¢ Basic logical operands are of type Boolean: true and false.
¢ We use logical operators to construct compound statements.
o Binary logical operators: conjunction (A), disjunction (v),
implication (=), and equivalence (a.k.a if-and-only-if <)
. p | g [[prglpvalp=qg|p+=q]|

true true true true true true
true | false || false | true false false
false | true || false | true true false
false | false || false | false true true

o Unary logical operator: negation (-)

true || false
false true

Review of Propositional Logic: Implication |.assoce

ooooooooooooooooo

Written as p = q
Pronounced as “p implies g”
We call p the antecedent, assumption, or premise.
We call g the consequence or conclusion.
Compare the fruth of p = g to whether a contract is honoured: p ~
promised terms; and g »~ obligations.
o When the promised terms are met, then:
e The contract is honoured if the obligations are fulfilled.
e The contract is breached if the obligations are not fulfilled.
o When the promised terms are not met, then:
o Fulfilling the obligation (g) or not (~q) does not breach the contract.

. p | g [p=q]
true | true true
true | false || false
false | true true
false | false true

O O O O O

31 of 39

Review of Propositional Logic (2)

e Axiom: Definition of =

, p=qg=-pvq
e Theorem: Identity of =

frue=p=p
e Theorem: Zero of =

false = p = true

Axiom: De Morgan

-(brq) = -pPv-q
-(pvq) = -pr-q
¢ Axiom: Double Negation
p=-(=p)

Theorem: Contrapositive

p=q=-q9=-p

Review of Predicate Logic (1)

ooooooooooooooooo

e A predicate is a universal or existential statement about
objects in some universe of disclosure.

¢ Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.
¢ We use the following symbols for common numerical ranges:
o Z: the set of integers
o N: the set of natural numbers
¢ Variable(s) in a predicate may be quantified:
o Universal quantification :
All values that a variable may take satisfy certain property.
e.g., Given that / is a natural number, i is always non-negative.
o Existential quantification :

Some value that a variable may take satisfies certain property.
e.g., Given that / is an integer, i can be negative.

e

Review of Predicate Logic (2.1) o

» A universal quantification has the form (VX | R ¢ P)
o X is a list of variable declarations
o Ris a constraint on ranges of declared variables
o Pis a property
o (YX|R e P)=(VYX o R=P)
eg., (VX | True ¢ P)=(VX o True= P)=(VX o P)
eg., (VX | False ¢« P)= (VX e False = P)= (VX e True) = True
e for all (combinations of) values of variables declared in X that
satisfies R, it is the case that P is satisfied.
o Vi|ieN e >0 [true]
o Vi|ieZ o i>0 [false]
oVijlieZNjeZl o i<jvi>] [false]
e The range constraint of a variable may be moved to where the
variable is declared.
o Vi:N e >0
o Vi:Z e i>0
o Vij:7Z e i<jvi>j

Review of Predicate Logic (2.2) o

ooooooooooooooooo

* An existential quantification has the form (3X | R ¢ P)
o X is a list of variable declarations
o Ris a constraint on ranges of declared variables
o Pis a property
o (3IX|R e P)=(3X e RAP)
e.g., (3X | True ¢ P)=(3X o TruenP)= (VX o P)
e.g., (3X | False ¢« P)=(3X e Falsen P)=(3X e False) = False
e There exists a combination of values of variables declared in X
that satisfies R and P.

o Jj|ieN e j>0 [true]
o Jji|ieZ o i>0 [true]
o i jlieZnjeZ o i<jvi>j [true]

e The range constraint of a variable may be moved to where the
variable is declared.
o 3i:Neij>0
o 3j:7Z e >0
o i, j:7Z e i<jvi>]j
35 of 39]

Predicate Logic (3) Mot

ooooooooooooooooo

e Conversion between V and 3
(VX|ReP) «<— —(3X ¢ R=-P)
(3IX|ReP) «<— —(VX ¢«R=-P)
¢ Range Elimination

(VX|ReP) «<— (VX ¢«eR=P)
(IX|ReP) «<— (IX ¢« RAP)

Index (1) Lassonoe

[Escape Sequences|

[Commands, Queries, and Features|
[Naming Conventions|

Class Declarations

[Class Constructor Declarations (1))
[Creations of Objects (1))

Attribute Declarations

[Method Declaration|

[Operators: Assignment vs. Equality|
[Operators: Division and Modulo|
[Operators: Logical Operators (1)|
|[Operators: Logical Operators (2)|

Selections (1)
Selections (2)

[37 O1"3Y]

Index (2) :AssoNDE

[Library Data Structures|

[Data Structures: Arrays|

[Data Structures: Linked Lists (1)|

[Data Structures: Linked Lists (2)|
lterable Data Structures|

|Using across for Quantifications (1.1)|
|[Using across for Quantifications (1.2)|
|[Using across for Quantifications (2)|
|[Using across for Quantifications (3)|
[Using across for Quantifications (4)|

Equality
%f ~: Caution

Index (3) Lassonoe

[Review of Propositional Logic (1)|

[Review of Propositional Logic: Implication|

[Review of Propositional Logic (2)|

[Review of Predicate Logic (1)|

[Review of Predicate Logic (2.1))

[Review of Predicate Logic (2.2)|

[Predicate Logic (3)|

