Design-by-Contract (DbC)

Readings: OOSC2 Chapter 11

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WEI WANG
UNIVERSITY

LASSONDE

ooooooooooooooooooo

Motivation: Catching Defects — When?

e To minimize development costs , minimize software defects.
e Software Development Cycle:

Requirements — Design — Implementation — Release

Q. Design or Implementation Phase?

Catch defects as early as possible .

Design and Integration Customer Postproduct
architecture Implementation testing beta test release
1X* 5X 10X 15X 30X

-~ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.

¢ Discovering defects after release costs up to 30 times more
than catching them in the design phase.

¢ Choice of design language for your project is therefore of

paramount importance.
: Minimizing code defects to improve software quality and lower development costs.

What This Course Is About e

ooooooooooooooooooo

e Focusis design

o Architecture: (many) inter-related modules
o Specification: precise (functional) interface of each module

¢ For this course, having a prototypical, working implementation
for your design suffices.

e Alater refinement into more efficient data structures and
algorithms is beyond the scope of this course.

[assumed from EECS2011, EECS3101]
.. Having a suitable language for design matters the most.
Q: Is Java also a “good” design language?
A: Let’s first understand what a “good” design is.

LASSONDE

ooooooooooooooooooo

Terminology: Contract, Client, Supplier
e A supplier implements/provides a service (e.g., microwave).

e A client uses a service provided by some supplier.
o The client is required to follow certain instructions to obtain the

service (e.g., supplier that client powers on, closes

door, and heats something that is not explosive).
o If instructions are followed, the client would that the

service does what is guaranteed (e.g., a lunch box is heated).
o The client does not care how the supplier implements it.
e What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions
SUPPLIER || assume instructions followed | provide a service

e There is a contract between two parties, violated if:
o The instructions are not followed. [Client’s fault]
o_Instructions followed, but service not satisfactory. [Supplier’s fault]

Client, Supplier, Contract in OOP (1)

class Microwave {
private boolean on;
private boolean locked;

class MicrowaveUser {
public static void main(...) {

void power() {on = true;} Microwave m = new Microwave() ;
void lock () {locked = true;}

m.power (); m.lock();]

m. heat (obj);
b}

1
\
|
Object obj = ; ‘
|
\

)
\
\
|
void heat (Object stuff) { ‘

Method call m.heat(obj) indicates a client-supplier relation.

o Client: resident class of the method call [MicrowaveUser]
o Supplier: type of context object (or call target) m [Microwave]

ooooooooooooooooo

Client, Supplier, Contract in OOP (2) %

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock () {locked = true;}
void heat (Object stuff) {

\
\
\
e The contract is honoured if:

’ Right before the method call ‘:

e State of mis as assumed: m.on==true and m. locked==ture
e The input argument ob 7 is valid (i.e., not explosive).
’ Right after the method call ‘: ob 7 is properly heated.
e If any of these fails, there is a contract violation.
e m.onOrm.lockedis false = MicrowaveUser’s fault.
e ob7j is an explosive = MicrowaveUser’s fault.
A fault from the client is identified = Method call will not start.
e Method executed but ob 5 not properly heated = Microwave'’s fault

class MicrowaveUser ({
public static void main(...) {

Microwave m = new Microwave();

1
\
Object obj = [222]; \
\
\

m.power(); m.lock();

m. heat (obj);

LASSONDE

What is a Good Design? [Lssonee

¢ A “good” design should explicitly and unambiguously describe
the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We call such a contractual relation a specification .

¢ When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
o Instructions to clients should not be unreasonable.
e.g., asking them to assemble internal parts of a microwave
o Working conditions for suppliers should not be unconditional.
e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!
o You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.
e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]
o Upon contract violation, there should be the fault of only one side.

o This design process is called Design by Contract (DbC) .

LASSONDE

ooooooooooooooooo

A Simple Problem: Bank Accounts

Provide an object-oriented solution to the following problem:

: Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.

[REQ2: We may withdraw an integer amount from an account.
|REQ3 |: Each bank stores a list of accounts.

: Given a bank, we may add a new account in it.

[REQ5 |: Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").

[REQ6 |: Given a bank, we may withdraw from a specific
account, identified by its name, for an integer amount.

Let’s first try to work on | REQ1 | and | REQ2 | in Java.
This may not be as easy as you might think!

Playing the Various Versions in Java LASSONDE

ooooooooooooooooo

¢ Download the project archive (a zip file) here:
http://www.eecs.yorku.ca/~jackie/teaching/
lectures/2020/W/EECS3311/codes/DbCIntro.zip

¢ Follow this tutorial to learn how to import an project archive
into your workspace in Eclipse:
https://youtu.be/h-rgdQ7Zg2qY

e Follow this tutorial to learn how to enable assertions in Eclipse:
https://youtu.be/OEgRV4a5Dzg

Version 1: An Account Class LASSONDE

1 |public class AccountVl {

2 private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

5 public int getBalance() { return balance; }

6 public AccountVI (String owner, int balance) {

7 this.owner = owner; this.balance = balance;

8 }

9 public void withdraw(int amount) {

10 this.balance = this.balance - amount;
11 }
12 public String toString() ({
13 return owner + "’s current balance is: " + balance;
14 }
15 |}

* Is this a good design? Recall : Each account is
associated with ... an integer balance that is always positive .

e This requirement is not reflected in the above Java code.

Version 1: Why Not a Good Design? (1) :Aiégsésoms

ooooooooooooooooo

ipublic class BankAppV1 {

‘ public static void main(String[] args) { ‘
System.out.println("Create an account for Alan with balance -10:V)

‘ AccountV1l alan = new AccountVl ("Alan", -10) ;

‘ System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:
Alan’s current balance is: -10

e Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). = Violation of | REQ1 |

¢ Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of

AccountV1 does not require that! = A lack of defined contract

Version 1: Why Not a Good Design? (2) :Aiégsésoms

ooooooooooooooooo

T 1

‘public class BankAppV1 { ‘

public static void main(String[] args) {

‘ System.out.println("Create an account for Mark with balance lOO:L);
AccountV1l mark = new AccountVI1 ("Mark", 100);
System.out.println(mark);

System.out.println("Withdraw -1000000 from Mark’s account:");

| mark. withdraw(-1000000) ; |

‘ System.out.println(mark) ;

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Mark’s current balance is: 1000100

¢ Mark’s account state is always valid (i.e., 100 and 1000100).
e Withdraw amount is never negative! = Violation of

e Again a lack of contract between Bank2AppVv1 and AccountVi.

Version 1: Why Not a Good Design? (3) EZ;%E

ooooooooooooooooo

public class BankAppV1 {

System.out.println("Create an account for Tom with balance 100:");
AccountV1l tom = new AccountVl("Tom", 100);
System.out.println(tom);

System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw(150) ;

T
‘ public static void main(String[] args) {
‘ System.out.println(tom);

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Tom’s current balance is: -50

¢ Withdrawal was done via an “appropriate” reduction, but the
resulting balance of Tom is invalid. = Violation of | REQ1 |

e Again a lack of contract between BankAppVv1 and AccountVi.

Version 1: How Should We Improve it? (1) |assonoe

ooooooooooooooooo

Preconditions of a method specify the precise circumstances
under which that method can be executed.

o Precond. of divide (int x, int y)? [y '= 0]
o Precond. of binSearch (int x, int[] xs)? [xsissorted]
o Precond. of topoSort (Graph g)? [gisa DAG]

Version 1: How Should We Improve it? (2) |assonoe

ooooooooooooooooo

e The best we can do in Java is to encode the logical negations
of preconditions as exceptions:
o divide (int x, int vy)
throws DivisionByZeroException wheny ==
o binSearch (int x, int[] xs)
throws ArrayNotSortedException when xs is not sorted.
o topoSort (Graph qg)
throws NotDAGException when g is not directed and acyclic.
¢ Design your method by specifying the preconditions (i.e.,
service conditions for valid inputs) it requires, not the
exceptions (i.e., error conditions for invalid inputs) for it to fail.

 Create by adding exceptional conditions (an

approximation of preconditions) to the constructor and
withdraw method of the Account class.

[15 of 61]

Version 2: Added Exceptions LASSONDE
to Approximate Method Preconditions

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if (balance < 0) { /* negated precondition x/

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }
8 }

9 public void withdraw(int amount) throws

10 WlthdrawAmountNegatlVeException, WithdrawAmountTooLargeExcepticn {
11 if (amount < 0) { /* negated ond

12 throw new WithdrawAmountNegativeException();
13 else if (balance < amount) { /* ne or
14 throw new WlthdrawAmountTooLargeExceptlon() }
15 else { this.balance = this.balance - amount; }
16 }

[16 of 61]

Version 2: Why Better than Version 1? (1)

O W o N OO =

—_

public class BankAppV2 {
public static void main(String[] args) {
System.out.println("Create an account for Alan with balance
try {
AccountV2 alan = new AccountV2("Alan", -10) ;
System.out.println(alan);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");

}

Create an account for Alan with balance -10:
Illegal negative account balance.

L6: When attempting to call the constructor Accountv2 with a
negative balance -10, a BalanceNegativeException (i.e.,
precondition violation) occurs, preventing further operations upon

this invalid object.

Version 2: Why Better than Version 1? (2.1)

0 N O h~hWN =

T
‘public class BankAppV2 {
public static void main(String[] args) {
System.out.println("Create an account for Mark with balance 100:
try
AccountV2 mark = new AccountV2("Mark",
System.out.println(mark);
System.out.println("Withdraw -1000000 from Mark’s account:");
mark. withdraw (-1000000) ;
System.out.println(mark);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}
| catch
System.out.println("Illegal negative withdraw amount.");
}
catch (WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

100);

(WithdrawAmountNegativeException wane) {

[18 of 61]

Version 2: Why Better than Version 1? (2.2)

Console Output:

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Illegal negative withdraw amount.

¢ L8: When attempting to call method withdraw with a negative
amount -1000000, a WithdrawAmountNegativeException
(i.e., precondition violation) occurs, preventing the withdrawal
from proceeding.

¢ We should observe that adding preconditions to the supplier
BankV2’s code forces the client BankAppVv2’s code to get
complicated by the t ry-catch statements.

¢ Adding clear contract (preconditions in this case) to the design

should not be at the cost of complicating the client’s code!!

Version 2: Why Better than Version 1? (3.1)

0 N O A~hWN =

T
‘public class BankAppV2 {
public static void main(String[] args) {
System.out.println("Create an account for Tom with balance 100:"
try
AccountV2 tom = new AccountV2("Tom",
System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw (150) ;
System.out.println(tom);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}
catch (WithdrawAmountNegativeException wane) {
System.out.println("Illegal negative withdraw amount.");

}

catch

100);

(WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

Version 2: Why Better than Version 1? (3.2) |ussonoe

ooooooooooooooooo

Console Output:

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Illegal too large withdraw amount.

¢ L8: When attempting to call method withdraw with a positive
but too large amount 150, a
WithdrawAmount TooLargeException (i.e., precondition
violation) occurs, preventing the withdrawal from proceeding.

¢ We should observe that due to the added preconditions to the
supplier BankVv2’s code, the client BankAppVv2’s code is forced
to repeat the long list of the t ry-catch statements.

¢ Indeed, adding clear contract (preconditions in this case)

should not be at the cost of complicating the client’s code!!
[21 of 61]

Version 2: Why Still Not a Good DeSign? (1) LASSONDE

ooooooooooooooooo

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { /% negated precondition =/

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 withdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
11 if (amount < 0) { /* negated precondition =/

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated prec 11 on - *
14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

¢ Are all the exception conditions (-~ preconditions) appropriate?

e What if amount == balance when calling withdraw?

Version 2: Why Still Not a Good Design? (2.

T

1 ‘public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jim with balance 100:"};
4 try {

5 AccountV2 jim = new AccountV2("Jim", 100);

6 System.out.println(jim);

7 System.out.println("Withdraw 100 from Jim’s account:");

8 jim. withdraw(100) ;

9 System.out.println(jim);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");
13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");
16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");
19 }

Version 2: Why Still Not a Good Design? (2.

Create an account for Jim with balance 100:
Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Jim’s current balance is: 0

L9: When attempting to call method withdraw with an amount

100 (i.e., equal to Jim’s current balance) that would result in a
zero balance (clearly a violation of [REQ1), there should have
been a precondition violation.
Supplier AccountVv2’s exception condition balance < amount
has a missing case :
e Calling withdraw with amount == balance will also result in an

invalid account state (i.e., the resulting account balance is zero).
e .. L13 of AccountV2 should be balance <= amount.

Version 2: How Should We Improve it? LASSONDE Version 3: Why Better than Version 2?
T 1

» Even without fixing this insufficient precondition, we could 1 |public class BankAppV3 {

have avoided the above scenario by checking at the end of 2 | public static void main(String[] args) { o

each method that the resulting account iS va/id. 3 System.out.println("Create an account for Jim with balance 100:");

. . - - 4 try { AccountV3 jim = new AccountV3("Jim", 100);
= We consider the condition this.balance > 0 as invariant 5 System.out.println(jim);
throughout the lifetime of all instances of Account. 6 System.out.println("Withdraw 100 from Jim’s account:");
. . . " . 7 jim. withdraw (100) ;

* Invariants of a class specify the precise conditions which all 8 System.out.printin(jim;

instances/objects of that class must satisfy. 9 Jx o tat s

o Inv. of cSMajoarStudent? [gpa >= 4.5] 10 ! Y

o Inv. OfBinarySeaJ.:chTree.? [m—or@er tre.w. — sorted key'seq.] Cromte an account for Jim with balance 100
e The best we can do in Java is encode invariants as assertions: Jim’s current balance is: 100

o CSMajorStudent: assert this.gpa >= 4.5 glthdr‘?w 100 from Jim’'s account:

. . . . xception in thread "main
© BinarySearchTree: assert this.inOrder() is sorted java.lang.AssertionError: Invariant: positive balance
o Unlike exceptions, assertions are not in the class/method API. =0 —— —
: . . : on completion of jim.withdraw (100), Jim has a zero
e Create | Version 3 | by adding assertions to the end of P PIe . . o S
tructor and withd method of the 2 ¢ class balance', an assertion fange (i.e., /_n\(ar/a/jt violation) oceurs,

construc withdraw ccoun : ersrsgPTeventing further operations on this invalid account object.

27 ot 61

Version 3: Added Assertions LASSONDE Version 3: Why Still Not a Good Design?
to Approximate Class Invariants Let’s recall what we have added to the method withdraw:
o From | Version 2 |: exceptions encoding negated preconditions
1 |public class AccountV3 { -) .]]
2 | public AccountV3(String owner, int balance) throws o From | Version 3 |: assertions encoding the class invariants
3 BalanceNegativeException -
4 (1 |public class AccountV3 {
5 : R 2 public void withdraw(int amount) throws
if (balance < 0) { /# negated preconditior 3 . , . . .
6 throw new BalanceNegativeException();) - WlthdrawAmountNega/tlveExceptlon, Wl“thz?irawAmountTooLargeExceptlon {
7 else { this.owner = owner; this.balance = balance; } 4 if (famount < (,)) t / negated ;:7“'26\@"];7{7??7?;7 '
8 ‘ assert this.getBalance() > 0 : "Invariant: positive balance"; ‘ 5 throw new pithdrawAmountNegativeException(); }
9 } 6 else if (balance < amount) { /* negated pre on #*
10 public void withdraw(int amount) throws ; throw ne.w WlthdrawA_moun.tTooLargeExceptlon (.); }
11 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptign { else { this.palance = this.balance - amount; }
12 if (amount < 0) { /% negated precondition */ 9 ‘ assert this.getBalance() > 0 : "Invariant: positive balance"; ‘}
13 throw new WithdrawAmountNegativeException(); } . : ; ; : T !
14 else if (balance < amount) { /#* negated precondition =%/ HOWGVGI’I, th_ere IS no C(_)ntraCt n w1th§raw WhICh SpeCIfleS'
15 throw new WithdrawAmountTooLargeException(); } o Obligations of supplier (AccountVv3) if preconditions are met.
16 else { this.balance = this.balance - amount; } o Benefits of client (BankAppv3) after meeting preconditions.
17 assert this.getBalance() > 0 : "Invariant: positive balance"; = We illustrate how problematic this can be by creating
18
: Version 4 |, where deliberately mistakenly implement withdraw.

Version 4: What If the LASSONDE
Implementation of withdraw is Wrong? (1)

public class AccountV4 {
public void withdraw(int amount) throws
WithdrawAmountNegativeException, WithdrawAmountTooLargeException
{ if (amount < 0) { /* negated prec on */
throw new WithdrawAmountNegativeException(); }
else if (balance < amount) { /* negated precondi
throw new WithdrawAmountTooLargeException(); }
else { /+ WRONT IMPI ITATION */

this.balance = this.balance + amount; }
assert this.getBalance() > 0 :
owner + "Invariant: positive balance"; }
o Apparently the implementation at L11 is wrong.
o Adding a positive amount to a valid (positive) account balance
would not result in an invalid (negative) one.
= The class invariant will not catch this flaw.
o When something goes wrong, a good design (with an appropriate
contract) should report it via a contract violation .

O © oONOOAWN =

—_

Version 4: What If the e
Implementation of withdraw is Wrong? (2)

T
‘public class BankAppV4 |

public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 100:"),
try { AccountV4 jeremy = new AccountV4("Jeremy", 100);
System.out.println(jeremy);
System.out.println("Withdraw 50 from Jeremy’s account:");
jeremy. withdraw (50) ;
System.out.println(jeremy); }
as

QLW N~ WN =

—_

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Jeremy’s current balance is: 150

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal
was done via an mistaken increase. = Violation of m

Version 4: How Should We Improve it?

e Postconditions of a method specify the precise conditions
which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

o Postcondition of double divide (int x, int y)?
[Result x y == x]
o Postcondition of boolean binSearch(int x, int[] xs)?
[x e xs < Result]

e The best we can do in Java is, similar to the case of invariants,
encode postconditions as assertions.

But again, unlike exceptions, these assertions will not be part of
the class/method API.

* Create by adding assertions to the end of

withdraw method of the Account class.
Biof6dl

Version 5: Added Assertions
to Approximate Method Postconditions

1 |public class AccountV5 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
4 int oldBalance = this.balance;

5 if (amount < 0) { /* negated precondition */

6 throw new WithdrawAmountNegativeException(); }

7 else if (balance < amount) { /% negated precondition */

8 throw new WithdrawAmountTooLargeException(); }

9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";
11 ‘ assert this.getBalance() == oldBalance - amount :
12 ‘ "Postcondition: balance deducted"; '} ‘

A postcondition typically relates the pre-execution value and
the post-execution value of each relevant attribute
(e.g.,palance in the case of withdraw).

= Extra code (L4) to capture the pre-execution value of balance for

the comparison at L11.

LASSONDE

ooooooooooooooooo

Version 5: Why Better than Version 4?

T
public class BankAppV5 {
public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 100:"),
try { AccountV5 jeremy = new AccountV5("Jeremy", 100);
System.out.println(jeremy) ;
System.out.println("Withdraw 50 from Jeremy’s account:");

jeremy. withdraw (50) ;
System.out.println(jeremy); }

/ *

QWO NOOOTA WN =

—_

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Exception in thread "main"
java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw (50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object.

e

LASSONDE

ooooooooooooooooo

Evolving from Version 1 to Version 5

|| Design Flaws

| Improvements Made
Vi - [[Complete lack of Contract

Added exceptions as Preconditions not strong enough (i.e., with missing
method preconditions cases) may result in an invalid account state.

Added assertions as
V3 . . -
class invariants

Deliberately changed
V4 | withdraw’s implementa-
tion to be incorrect.

Incorrect implementations do not necessarily result in
a state that violates the class invariants.

V5 Added assertions as _

method postconditions

® |n Versions 2, 3, 4, 5, preconditions approximated as exceptions.
® These are not preconditions, but their logical negation .

® Client BankApp’s code complicated by repeating the list of t ry-catch statements.
® |n Versions 3, 4, 5, class invariants and postconditions approximated as assertions.

® Unlike exceptions, these assertions will not appear in the API of withdraw.

Potential clients of this method cannot know: 1) what their benefits are; and 2) what

their suppliers’ obligations are.

® For postconditions, exira code needed to capture pre-execution values of attributes.

Version 5:
Contract between Client and Supplier

benefits
balance deduction

obligations
amount non-negative

BankAppV5.main

(CLIENT) positive balance amount not too large
BankV5.withdraw || amount non-negative balance deduction
(SUPPLIER) amount not too large positive balance
benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER precondition postcondition & invariant

DbC in Java
DbC is possible in Java, but not appropriate for your learning:

e Preconditions of a method:
Supplier
e Encode their logical negations as exceptions.
¢ In the beginning of that method, a list of i £-statements for throwing
the appropriate exceptions.
Client
o Alist of t ry-catch-statements for handling exceptions.

e Postconditions of a method:
Supplier
e Encoded as a list of assertions, placed at the end of that method.
Client
o All such assertions do not appear in the API of that method.

e Invariants of a class:
Supplier
e Encoded as a list of assertions, placed at the end of every method.
Client
o All such assertions do not appear in the API of that class.

Why Java Interfaces Unacceptable ADTs (1)|.assonce

HOOL OF ENGINEERING.

‘E - the type of elements in this list'

All Superinterfaces:
Collection<E>, Iterable<E>

All Known Implementing Classes:
AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArraylList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

public interface List<E>
extends Collection<E>

‘An ordered collection (also known as a sequence].’ he user of this interface has precise control over where in the list each element is
nserted. The user can access elements by their integer index (position in the list), and search for elements in the list.

It is useful to have:

e A generic collection class where the homogeneous type of
elements are parameterized as E.

¢ A reasonably intuitive overview of the ADT.

Java 8 List API

Why Java Interfaces Unacceptable ADTS (2)|.assonce

Methods described in a natural language can be ambiguous:

E set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation).)

Parameters:
index - index of the element to replace

element - element to be stored at the specified position

Returns:
the element previously at the specified position

Throws:
UnsupportedOperationException - if the set operation is not supported by this list

ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOfBuundsException - if the index is out of range (index < @ || index >= slze[)))

e

DbC in Eiffel: Supplier LASSONDE
DbC is supported natively in Eiffel for supplier:

class ACCOUNT
create
make
feature Attributes
owner : STRING
balance INTEGER
feature - Constructors
make(nn: STRING; nb: INTEGER)
require Je ondition
positive_balance: nb > 0
do
owner := nn
balance := nb
end
feature Commands
withdraw(amount: INTEGER)
require - precor ion
non_negative_amount: amount > 0
affordable_amount: amount <= balance P € >, 3
do
balance := balance - amount
ensure —— postc ion
balance_deducted: balance = old balance - amount
end
invariant class invariant
positive _balance: balance > 0
end

§§010I

DbC in Eiffel: Contract View of Supplier LASSONDE

CHOOL OF ENGINEERING.

Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):

class ACCOUNT

create
make

feature t
owner : STRING
balance : INTEGER

feature - ucto
make (nn: STRING INTEGER)
require l ondition
positive_balance: nb > 0
end
feature - E s
withdraw(amount: INTEGER)
require preconditic
non_negative_amount: amount > 0
affordable _amount: amount <= balance prok ,
ensure —- postcondition
balance_deducted: balance = old balance - amount
end
invariant class t

positive_balance: balance > 0

end

LSSoNDE

DbC in Eiffel: Anatomy of a Class

class SOME_CLASS
create

—— Explicit
feature

-— De

feature

—— Decl
pecla

feature
Decla

De

>cla
invariant

=

e Use feature clauses to group attributes, commands, queries.
¢ Explicitly declare list of commands under create clause, so
that they can be used as class constructors.
[See the groups panel in Eiffel Studio.]
e The class invariant invariant clause may be omitted:
o There’s no class invariant: any resulting object state is acceptable.

mThe class invariant is equivalent to writing] invariant true\

LSSoNDE

DbC in Eiffel: Anatomy of a Feature

some_command

Descr

require

—-— List c tagged boolean expressions Ic preconditions
local
do

Lis

ensure

-— List postconditio
end

e The precondition require clause may be omitted:
o There’s no precondition: any starting state is acceptable.

o The precondition is equivalent to writing

e The postcondition ensure clause may be omitted:
o There’s no postcondition: any resulting state is acceptable.

sy N Posteondition is equivalent to writing

LSSoNDE

Runtime Monitoring of Contracts (1)

In the specific case of ACCOUNT class with creation procedure
make and command withdraw:

postcond_withdraw:
acc.balance = old acc.balance - a and acc.owner ~ old acc.owner

precond_withdraw: execute

balance > 0 acc.withdraw(a) --.0<aanda<balance .-, acc.withdraw(a) el JO
---------- »"———————————»: POl g ST A A

STATE:
balance
owner

S not (account_inv) not (precond_withdraw) . not (postcond_withdraw) .
[y ¥
. Precondition Postcondition
| Violation Violation
A

H t ke) -

not (precond_make) ! not (postcond_ma e):

call . precond_make: execute .
create {ACCOUNT} acc.make(a, n) -~ a>0 - -, create {ACCOUNT} acc.make(a, n) --.
Bl s B T T >

postcond_make:
acc.balance = a and acc.owner = n

LSSoNDE

Runtime Monitoring of Contracts (2)

In general, class C with creation procedure cp and any feature f:

postcond_f:
Qf
) execute .
STATE: af(..) -
attributes of }--c-c P’ el Eeciaceaciacaacaaan >
class A -
bl
not/
; v y
:‘ Precondition diti
: Violation Violation
B A A
not Pm : not gm '
call : precond_make: execute :
create {A} a.make(...) -~. Pm --. create {A} a.make(...) -~
—ep | beeceseeeees L I >
postcond_make:
43 of 61 Qm

Runtime Monitoring of Contracts (3) LASSONDE

ooooooooooooooooo

e All contracts are specified as Boolean expressions.

* Right a feature call (e.g., acc.withdraw(10)):

o The current state of acc is called the pre-state.
o Evaluate feature withdraw's pre-condition using current values

of attributes and queries.
o Cache values (implicitly) of all expressions involving the old

keyword in the post-condition .
e.g., cache the value of old balance via] old_balance = balance
* Right the feature call:

o The current state of acc is called the post-state.

o Evaluate class ACCOUNT’s invariant using current values of
attributes and queries.

o Evaluate feature withdraw's post-condition using both current
and “cached” values of attributes and queries.

e

DbC in Eiffel: Precondition Violation (1.1) |.ssonce

The client need not handle all possible contract violations:

class BANK_APP
inherit
ARGUMENTS
create
make
feature - Initialization
make
— Run {'1}7}1ii:"{'l 10N
local
alan: ACCOUNT
do

+ ation with tag "positive balance"

-—- A precondition violation with tag "positive_balance
create {ACCOUNT} alan.make ("Alan", -10)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag

"positive balance™").
146 of 61]

DbC in Eiffel: Precondition Violation (1.2) |.ssonce

ooooooooooooooooo

Status = Implicit exception pending

[posmve balance: PRECONDITION_VIOLATION rawsed)
F e iz ¢ el 2l & ‘AR

36 i AV A B InFeature |InClass | FromClass | @

Iat view of feature * make' of class ACCOUNT rm et aCCoUNT

make 4 APPLICATION APPLICATION 1

bank ACCOUNT make < % 0%

Feature

make (nn: STRING_8; nb: INTEGER_32)

| require
q positive_balance: nb >= 0
d

o

2 owner := nn
2 balance := nb
B end

DbC in Eiffel: Precondition Violation (2.1) |.ssonce

The client need not handle all possible contract violations:

class BANK _APP
inherit
ARGUMENTS
create
make
feature —— Initialization
make
Run application.
local
mark: ACCOUNT
do
create {ACCOUNT} mark.make ("Mark", 100)
Jition vi atio tag "n

—-— A precondition violation
mark.withdraw(-1000000)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag

" 2 "
non_negative_amount").
48 of 61 J)

DbC in Eiffel: Precondition Violation (2.2) isggm

B |0 APPLICATION 3| @ ACCOUNT

Bl il stack |ECEELCEER

Feature

bank ACCOUNT withdraw < » # O 5 St@tus = Implicit exception pending

DbC in Eiffel: Precondition Violation (3.2) LSSONDE

(non_negative_amount: PRECONDITION_VIOLATION raised)

HF(e=eazafy s 2

. In Feature ‘ In Class ‘ From Class ‘ @
Flat view of feature *withdraw' of class ACCOUNT 3

— B withdraw 4« ACCOUNT ACCOUNT 1
make 5 APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)

uire
E‘rﬁinegat\'veiamount: amount >=0)
affordable_amount: amount <= balance
do
2 balance := balance - amount
ensure
balance = old balance - amount

Ve

B end

149 of 61]

DbC in Eiffel: Precondition Violation (3.1) isggm

The client need not handle all possible contract violations:

class BANK_APP

inherit
ARGUMENTS

create
make

feature -
make

R
local
tom: ACCOUNT
do
create {ACCOUNT} tom.make ("Tom", 100)

blation

precon

tom.withdraw(150)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
_"affordable,amount").

I |® APPLICATION 31| @ ACCOUNT =0 call stack EEEESEE
bank ACCOUNT withdraw <5 5 5| Status = Implicit exception pending
\afr‘ordeb\e amount: PRECONDITION_VIOLATION raised
4 SRR R @] InFeature |InClass |FromClass | @
Flat view of feature ~ withdraw' of class ACCOUNT S it e L CCOUNT ST
= make s APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)

require
© non_negative_amount: amount >= 0
© (affordable_amount: amount <= balance)

do
© balance := balance - amount |

ensure
© balance = old balance - amount :
© end =

51 of 61]

DbC in Eiffel: Class Invariant Violation (4.1) isggm

The client need not handle all possible contract violations:

class BANK_APP

inherit
ARGUMENTS

create
make

feature -
make

local
jim: ACCOUNT

do
create {ACCOUNT} tom.make ("Jim", 100)
Jim.withdraw(100)

—— A Class 1nvc

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"pOSLtlve,balance").

DbC in Eiffel: Class Invariant Violation (4.2)

LSSoNDE

(B |O APPL!uﬂoNx‘OAOCOUNT |
ception pendin

Status = it ex

Feature bank ACCOUNT _invariant < # 00 5
positive_balance: INVARIANT_VIOLATION raised

RN RO H¥ A2 Tnfeature [InClass | From Class | ®
Flat view of feature *_invariant' of class ACCOUNT b Iveriant o ACCOUNT IACE
withdraw s ACCOUNT AC(5
make + APPLICATION APPLICATION 2

positive_balance: balance > 0

30 ECEECEERER

DbC in Eiffel: Postcondition Violation (5.1) LSSONDE

The client need not handle all possible contract violations:

class BANK_APP
inherit ARGUMENTS
create make

feature Initialization
make
—-— Run
local
jeremy: ACCOUNT
do

ance := +

create {ACCOUNT} jeremy.make
jeremy.withdraw(150)

("Jeremy", 100)

h tag "bal

By executing the above code, the runtime monitor of Eiffel Studio

will report a contract violation (postcondition violation with tag
"balance_deducted").

DbC in Eiffel: Postcondition Violation (5.2) |,

L\

SSCnDE

HooL

el cail stack Froseva

B |O APPLICATION @ ACCOUNT
p— bank ACCOUNT withdraw < » % O 5 ,Stetus = Implicit exception pendi
balance_deducted: POSTCONDITION_VIOLATION raised
@32 3¢ el # 0

= = HY A B 2 nFeawre |InCass |FromClass | @

Flat view of feature *withdraw’ of class ACCOUNT > withdraw. | 6|AGCOUNT COUN

| affordable_amount: amount <= balance 2l make 4 APPLICATION APPLICATION 2
do

© balance := balance + amount
ensure

& (ba\anceﬁdeducted: balance = old balance - amount)

B end

Beyond this lecture...

e Study this tutorial series on DbC and TDD:

https://www.youtube.com/playlist?list=PL5dxAmCmjv__

6r5VEzCQ5bTznoDDgh__ KS

Index (1) Lassonoe

[Motivation: Catching Defects — When?|
[What This Course Is About]

[Terminology: Contract, Client, Supplier|
[Client, Supplier, Contract in OOP (1)]
[Client, Supplier, Contract in OOP (2)|
|[What is a Good Design?|

|A Simple Problem: Bank Accounts|
[Playing with the Various Versions in Java|
Version 1: An Account Class

[Version 1: Why Not a Good Design? (1))
[Version 1: Why Not a Good Design? (2)|
[Version 1: Why Not a Good Design? (3)|
[Version 1: How Should We Improve it? (1)|
Version 1: How Should We Improve it? (2)|

0101

Index (2) Lassonoe

[Version 2: Added Exceptions |
[to Approximate Method Preconditions]|

[Version 2: Why Better than Version 1? (1)
[Version 2: Why Better than Version 1? (2.1)|
[Version 2: Why Better than Version 1? (2.2)|
[Version 2: Why Better than Version 1? (3.1)|
[Version 2: Why Better than Version 1? (3.2)|
[Version 2: Why Still Not a Good Design? (1)|
[Version 2: Why Still Not a Good Design? (2.1))
[Version 2: Why Still Not a Good Design? (2.2))

Version 2: How Should We Improve it?|
Version 3: Added Assertions
[to Approximate Class Invariants|

Version 3: Why Better than Version 27|

Index (3) Lassonoe

Version 3: Why Still Not a Good Design?|

Version 4: What If the |
Implementation of withdraw is Wrong? (1))

Version 4: What If the I
[Implementation of withdraw is Wrong? (2)|

Version 4: How Should We Improve it?|

Version 5: Added Assertions

[to Approximate Method Postconditions|

[Version 5: Why Better than Version 47?]

Evolving from Version 1 to Version 5|

Version 5:

[Contract between Client and Supplier|

DbC in Java

(Why Java Interfaces Unacceptable ADTs (1)

Wt\EmJava Interfaces Unacceptable ADTs (2)|

Index (4) Lassonoe

[DbC in Eiffel: Supplier|

[DbC in Eiffel: Contract View of Supplier|
[DbC in Eiffel: Anatomy of a Class|

[DbC in Eiffel: Anatomy of a Feature|
|[Runtime Monitoring of Contracts (1)|
[Runtime Monitoring of Contracts (2)|
[Runtime Monitoring of Contracts (3)|
[DbC in Eiffel: Precondition Violation (1.1)|
[DbC in Eiffel: Precondition Violation (1.2)|
[DbC in Eiffel: Precondition Violation (2.1)|
[DbC in Eiffel: Precondition Violation (2.2)|
[DbC in Eiffel: Precondition Violation (3.1)|
[DbC in Eiffel: Precondition Violation (3.2)|
DbC in Eiffel: Class Invariant Violation (4.1)|

Oorol

Index (5) LASsONDE
[DbC in Eiffel: Class Invariant Violation (4.2)|

[DbC in Eiffel: Postcondition Violation (5.1)|

[DbC in Eiffel: Postcondition Violation (5.2)|

[Beyond this lecture...|

61 of 61

