The Visitor Design Pattern

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Objectives LASSONDE

LU e

Motivating Problem: Processing Recursive Systems

First Design Attempt: Cohesion & Single-Choice Principle?
Open-Closed Principle

Second Design Attempt: Visitor Design Pattern
Implementing and Testing the Visitor Design Pattern

Motivating Problem (1) LASSONDE

Based on the composite pattern you learned, design classes

to model structures of arithmetic expressions
(e.g., 341, 2, 341 + 2).

(EXPERSSION*] (composiTe*)
value INTEGER [leﬂ right: EXPRESSION

=~

(consTanT+

il

ADDITION+

1)

Motivating Problem (2)

Extend the composite pattern to support operations such as

evaluate, pretty printing (print prefix, print _postfix),
and type_check.

(EXPERSSION* } (COMPOSITE* }
value: INTEGER left, right: EXPRESSION
evaluate*

print_prefix*
print_postfix*
type_check*

(constant+) (ApDITION®

evaluate+
print_prefix+
iprint_postfix+
type_check+

evaluate+
|print_prefix+
print_postfix+
type_check+

%
J

Problems of Extended Composite Pattern |sono:

e Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :
To add/delete/modify an operation
= Change of all descendants of EXPRESSTON
e Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.
= Confusing to mix codes for evaluation, pretty printing, and type
checking.

= We want to avoid “polluting” the classes with these various
unrelated operations.

I

Open/Closed Principle LASSONDE

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

= When extending the behaviour of a system, we:

o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.
e.g., In designing the application of an expression language:
o ALTERNATIVE 1:
Syntactic constructs of the language may be open, whereas
operations on the language may be closed.
o ALTERNATIVE 2:
Syntactic constructs of the language may be closed, whereas
operations on the language may be open.

_

I

Visitor Pattern LASSONDE

e Separation of concerns :

o Set of language constructs
o Set of operations

= Classes from these two sets are decoupled and organized
into two separate clusters.

e QOpen-Closed Principle (OCP) : [ALTERNATIVE 2]

o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations

= OCP helps us determine if Visitor Pattern is applicable .

= If it was decided that language constructs are open and
operations are closed, then do not use Visitor Pattern.

Visitor Pattern: Architecture

I

\n,

LASSONDE

CpEion oBgUIRE Lo eeeeeeecececeecacanan-

VISITOR*

. EXPERSSION*
accept(v: VISITOR)*
COMPOSITE*

' lefi,right: EXPRESSION

visit_constant(c: CONSTANT)*
visit_addition(a: ADDITION)

(owmts) (aoomow) (evatoaions

(e) [oeecmeckere)

Lv/srLconstanf(c coNsTANT)j

accept(v: VISITOR)+ visit_addition(a: ADDITION)+

visit_constant(c: CONSTANT)+| | visit_constant(c: CONSTANT)+
visit_addition(a: ADDITION)+ visit_addition(a: ADDITION)+

1 | accept(v: VISITOR)+

I

Visitor Pattern Implementation: Structures |.assono:

Cluster expression_language
o Declare deferred feature] accept (v: VISITOR) \in EXPRSSION.

o Implement accept feature in each of the descendant classes.

class CONSTANT inherit EXPRESSION

accept (v: VISITOR)
do
v.visit_ constant (Current)
end
end

class ADDITION
inherit EXPRESSION COMPOSITE

accept (v: VISITOR)
do
v.visit_ addition (Current)
end
end

_

Visitor Pattern Implementation: Operations

I

Cluster expression_operations

o For each descendant class C of EXPRESSION, declare a deferred

feature] visit_c (e: C) \in the deferred class VISITOR.

deferred class VISITOR
visit_constant (c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end
end

o Each descendant of vISITOR denotes a kind of operation.

’class EVALUATOR inherit VISITOR

| [value]: INTEGER

visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)
a.right.accept (eval_right)

:= eval_left.value + eval_right.value

end
end

visit_constant (c: CONSTANT) do := c.value end

e ———

I

Testing the Visitor Pattern LASSONDE

1 test_expression_evaluation: BOOLEAN

2 local add, cl, c2: EXPRESSION ; v: VISITOR
3 do

4 create {CONSTANT} cl.make (1) ; create {CONSTANT} c2.make (2)
5 create {ADDITION} add.make (cl, c2)

6 create {EVALUATOR} v.make

7 \ add.accept (v)

8 check attached {EVALUATOR} v as eval then
9 Result := eval.value = 3
10 end
11 end

Double Dispatch in Line 7:

1. DT of add is apprrronw = Call accept in apprrron

v.visit_ addition (add)

2. DT of vis evarvaror = Call visit_addition in EvarvaTor
’visiting result of add.left ‘ + ’ visiting result of add. right ‘

L oris

I

To Use or Not to Use the Visitor Pattern

e In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?

o Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | C_CODE_GENERATOR \ of VISITOR,
then implement how to handle each language element in that class.
= Single Choice Principle is obeyed.

o Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSION,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new| visit multiplication |operation.

= Single Choice Principle is violated.
e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations applied to structure change often.

= Do not use visitor if the structure changes often.

Beyond this Lecture. ..

et ae o

e Learn about implementing the Composite and Visitor Patterns,

from scratch, in this tutorial series:

https://www.youtube.com/playlist?li1st=PLodxAmCmIv

4Z0eXGW—24BgsSZWZ4 yBHY Z

e The Visitor Pattern can be used to facilitate the development of

a language compiler:

https://www.youtube.com/playlist?li1st=PL5dxAmCmiv

4'GYtGzcvBeosS—BobRTJLg

13015

https://www.youtube.com/playlist?list=PL5dxAmCmjv_4z5eXGW-ZBgsS2WZTyBHY2
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4z5eXGW-ZBgsS2WZTyBHY2
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4FGYtGzcvBeoS-BobRTJLq
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4FGYtGzcvBeoS-BobRTJLq

Index (1)

[Cearning Objectives
[Motivating Problem (1)
[Motivating Problem (2)

robiems or exiende omposite Fatter

pen oseée rincip
[Visitor Pattern Implementation: Structures|
[Visitor Pattern Implementation: Operations
[Testing the Visitor Patterr

o Use or Not 10 Use the Visitor Pattern

1V W) B

I

Index (2) ngsgm{gﬂs
Beyond this Lecture.._]

1B S

	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Problems of Extended Composite Pattern
	Open/Closed Principle
	Visitor Pattern
	Visitor Pattern: Architecture
	Visitor Pattern Implementation: Structures
	Visitor Pattern Implementation: Operations
	Testing the Visitor Pattern
	To Use or Not to Use the Visitor Pattern
	Beyond this Lecture…

