
The Visitor Design Pattern

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

Learning Objectives

1. Motivating Problem: Processing Recursive Systems
2. First Design Attempt: Cohesion & Single-Choice Principle?
3. Open-Closed Principle
4. Second Design Attempt: Visitor Design Pattern

5. Implementing and Testing the Visitor Design Pattern

2 of 15

Motivating Problem (1)

Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions
(e.g., 341, 2, 341 + 2).

EXPERSSION*

 value: INTEGER

CONSTANT+ ADDITION+

COMPOSITE*

left, right: EXPRESSION

3 of 15

Motivating Problem (2)

Extend the composite pattern to support operations such as
evaluate, pretty printing (print prefix, print postfix),
and type check.

EXPERSSION*

value: INTEGER
evaluate*
print_prefix*
print_postfix*
type_check*

CONSTANT+

evaluate+
print_prefix+
print_postfix+
type_check+

ADDITION+

evaluate+
print_prefix+
print_postfix+
type_check+

COMPOSITE*

left, right: EXPRESSION

4 of 15

Problems of Extended Composite Pattern

● Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :

To add/delete/modify an operation⇒ Change of all descendants of EXPRESSION
● Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.⇒ Confusing to mix codes for evaluation, pretty printing, and type
checking.⇒We want to avoid “polluting” the classes with these various
unrelated operations.

5 of 15

Open/Closed Principle

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

⇒When extending the behaviour of a system, we:
○ May add/modify the open (unstable) part of system.○ May not add/modify the closed (stable) part of system.
e.g., In designing the application of an expression language:○ ALTERNATIVE 1:

Syntactic constructs of the language may be open, whereas
operations on the language may be closed .○ ALTERNATIVE 2:
Syntactic constructs of the language may be closed , whereas
operations on the language may be open.

6 of 15

Visitor Pattern

● Separation of concerns :
○ Set of language constructs○ Set of operations

⇒ Classes from these two sets are decoupled and organized
into two separate clusters.

● Open-Closed Principle (OCP) : [ALTERNATIVE 2]
○ Closed , staple part of system: set of language constructs○ Open, unstable part of system: set of operations

⇒ OCP helps us determine if Visitor Pattern is applicable .
⇒ If it was decided that language constructs are open and
operations are closed , then do not use Visitor Pattern.

7 of 15

Visitor Pattern: Architecture

expression_operationsexpression_language

EXPERSSION*

CONSTANT+

 accept(v: VISITOR)+

ADDITION+

COMPOSITE*

left, right: EXPRESSION

EVALUATOR+
 visit_constant(c: CONSTANT)+
 visit_addition(a: ADDITION)+

PRETTY_PRINTER+
 visit_constant(c: CONSTANT)+
 visit_addition(a: ADDITION)+

TYPE_CHECKER+
 visit_constant(c: CONSTANT)+
 visit_addition(a: ADDITION)+

VISITOR*
 visit_constant(c: CONSTANT)*
 visit_addition(a: ADDITION)*

accept

accept(v: VISITOR)*

 accept(v: VISITOR)+

8 of 15

Visitor Pattern Implementation: Structures

Cluster expression language○ Declare deferred feature accept(v: VISITOR) in EXPRSSION.○ Implement accept feature in each of the descendant classes.
class CONSTANT inherit EXPRESSION

. . .
accept(v: VISITOR)
do

v.visit_ constant (Current)
end

end

class ADDITION

inherit EXPRESSION COMPOSITE

. . .
accept(v: VISITOR)
do

v.visit_ addition (Current)
end

end

9 of 15

Visitor Pattern Implementation: Operations

Cluster expression operations○ For each descendant class C of EXPRESSION, declare a deferred

feature visit_c (e: C) in the deferred class VISITOR.

deferred class VISITOR

visit_constant(c: CONSTANT) deferred end

visit_addition(a: ADDITION) deferred end

end

○ Each descendant of VISITOR denotes a kind of operation.
class EVALUATOR inherit VISITOR

value : INTEGER

visit_constant(c: CONSTANT) do value := c.value end

visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR

do a.left.accept(eval_left)
a.right.accept(eval_right)

value := eval_left.value + eval_right.value
end

end
10 of 15

Testing the Visitor Pattern

1 test_expression_evaluation: BOOLEAN

2 local add, c1, c2: EXPRESSION ; v: VISITOR

3 do

4 create {CONSTANT} c1.make (1) ; create {CONSTANT} c2.make (2)
5 create {ADDITION} add.make (c1, c2)
6 create {EVALUATOR} v.make
7 add.accept(v)

8 check attached {EVALUATOR} v as eval then

9 Result := eval.value = 3
10 end

11 end

Double Dispatch in Line 7:

1. DT of add is ADDITION⇒ Call accept in ADDITION

v.visit addition (add)

2. DT of v is EVALUATOR⇒ Call visit addition in EVALUATOR

visiting result of add.left + visiting result of add.right
11 of 15

To Use or Not to Use the Visitor Pattern

● In the architecture of visitor pattern, what kind of extensions is
easy and hard? Language structure? Language Operation?○ Adding a new kind of operation element is easy.

To introduce a new operation for generating C code, we only need to
introduce a new descendant class C CODE GENERATOR of VISITOR,
then implement how to handle each language element in that class.
⇒ Single Choice Principle is obeyed .○ Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSION,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new visit multiplication operation.

⇒ Single Choice Principle is violated .● The applicability of the visitor pattern depends on to what
extent the structure will change.⇒ Use visitor if operations applied to structure change often.⇒ Do not use visitor if the structure changes often.

12 of 15

Beyond this Lecture. . .

● Learn about implementing the Composite and Visitor Patterns,
from scratch, in this tutorial series:
https://www.youtube.com/playlist?list=PL5dxAmCmjv_
4z5eXGW-ZBgsS2WZTyBHY2

● The Visitor Pattern can be used to facilitate the development of
a language compiler:
https://www.youtube.com/playlist?list=PL5dxAmCmjv_
4FGYtGzcvBeoS-BobRTJLq

13 of 15

Index (1)

Learning Objectives

Motivating Problem (1)

Motivating Problem (2)

Problems of Extended Composite Pattern

Open/Closed Principle

Visitor Pattern

Visitor Pattern: Architecture

Visitor Pattern Implementation: Structures

Visitor Pattern Implementation: Operations

Testing the Visitor Pattern

To Use or Not to Use the Visitor Pattern

14 of 15

Index (2)

Beyond this Lecture. . .

15 of 15

