The Composite Design Pattern

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Objectives LASSONDE

U e

Motivating Problem: Recursive Systems

Two Design Attempts

Multiple Inheritance

Third Design Attempt: Composite Design Pattern
Implementing and Testing the Composite Design Pattern

I

Motivating Problem (1) LASSONDE

e Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
¢ Individual pieces of equipment (hard drives, cd-rom drives)
Each equipment has properties : e.g., power consumption and cost.
o Composites such as cabinets, busses, and chassis
Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

* Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

_

Motivating Problem (2) LASSONDE

Design for tree structures with whole-part hierarchies.

CABINET

N
-1 m

POWER SUPPLY

v \' 9

CARD HARD_DRIVE DVD-CDROM

CHASSIS

Challenge : There are base and recursive modelling artifacts.

Design Attempt 1: Architecture

equipment

EQUIPMENT* children+: LISTY..])

feature

e
.
'
|
p . price: REAL*
\ feature
. add_child(e: EQUIPMENT)+

ensure children[children.count] = e

7

*

-
—

Design Attempt 1: Flaw? LASSONDE

Q: Any flaw of this first design?
A: Two “composite” features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]
o add(child: EQUIPMENT)

= Inherited to all base equipments (e.g., HARD _DRIVE) that do
not apply to such features.

Design Attempt 2: Architecture

equipment
// -
! (EQUIPMENT*)
ot ' Teat children+: LIST[..]
L eature <
@ ' price: REAL*
' - J
(COMPOSITE*)
feature
add_child(c: EQUIPMENT)+
ensure children[children.count] = ¢

-
—

Design Attempt 2: Flaw? LASSONDE

Q: Any flaw of this second design?

A: Two “composite” features defined at the COMPOSTITE level:
o children: LIST[EQUIPMENT]

o add(child: EQUIPMENT)

= Multiple instantiations of the composite architecture (e.g.,
equipments, furnitures) require duplicates of the COMPOSITE

class.

Multiple Inheritance: ‘%

Combining Abstractions (1)

A class may have two more parent classes.

COMPARABLE

MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window
Liixnas |

MI: Combining Abstractions (2.2) ¥

A: Separating Graphical features and Hierarchical features

class RECTANGLE
feature Ot =5
1 TREE [G
width, height: REAL| | S 258 ter
Xpos os: REAL feature Queries
poS, Ypos: descendants: ITERABLE [G]
feature - Cc é S feature .
make (w, h: REAL) ’
, add (c: G)
change_width o Add & child ‘e
5 . Add a il c’.
change_height end
move
end
test_window: BOOLEAN
local wl, w2, w3, w4: WINDOW
class WINDOW do
inherit
lnREe(i‘r;ANGLE create wl.make(8, 6) ; create w2.make(4, 3)
TREE [WINDOW] create w3.make(l, 1) ; create w4.make(l, 1)
end w2.add(w4) ; wl.add(w2) ; wl.add(w3)
Result := wl.descendants.count = 2
end

1 o) A

MI: Name Clashes

foo @ oo

In class c, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.

1WA A

MI: Resolving Name Clashes
foo
foo
rename foo as fog rename foo as zoo
class C o.foo | o.fog | o.zo0
inherit
A rename foo as fog end o: A v . i
B rename foo as zoo end O: B \/ X X
o C X e v

1K) A

The Composite Pattern: Architecture

(COMPOSITE[T]*)

feature
children: LIST[T]+
add_child(c: T)+
ensure children[children.count] = ¢

equipment

EQUIPMENT*

children+: LIST[..]

feature ¢
price: REAL*
\

*

1V W) VA

I

Implementing the Composite Pattern (1)

deferred class

EQUIPMENT
feature

name: STRING

price: REAL deferred end - u
end

class
CARD
inherit
EQUIPMENT
feature {NONE }
unit_price: REAL

feature
make (n: STRING; p: REAL)
do name := n ; unit_price := p end
price
do Result := unit_price end
end

1WA

I

Implementing the Composite Pattern (2.1) |.assonoe

deferred class
COMPOSITE[T]

feature
children: LINKED_ LIST[T]

add (c: T)
do
children.extend (c) —- Polymorphism
end
end

Exercise: Make the COMPOSITE class iterable.

b or

I

Implementing the Composite Pattern (2.2) | assonoe

deferred class
COMPOSITE _EQUIPMENT
inherit
EQUIPMENT
COMPOSITE [EQUIPMENT]
feature
make (n: STRING)
classes will declare this c

cn class

across
children is c¢
loop
Result := Result + c.price -- dynamic binding
end
end

end

1WA A

I

Testing the Composite Pattern

\n,

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET —-—- h
chassis: CHASSIS —-
bus: BUS —— ! ds
do
create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make ("PC Cabinet")

bus.add(card)

chassis.add(bus)

chassis.add(drive)

cabinet.add(chassis)

Result := cabinet.price = 700
end

15 ot o]

I

Summay: The Composite Pattern

. : Categorize into base artifacts or recursive artifacts.

Programming ‘:

Build a tree structure representing the whole-part hierarchy .
ts to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

= | Polymorphism |: leafs and nodes are “substitutable”.

= | Dynamic Binding |: Different versions of the same

operation is applied on individual objects and composites.
e.g., Given |e: EQUIPMENT |:

° may return the unit price of a DIsK DRIVE.

o |e.price|may sum prices of a cHasIs’ containing equipments.

19 o1 J

Index (1)

[earnlng UB]ecllve§
IVIohvahng Problem i |I
IVIohvaIlng Problem i!l

esign empt 1: Arcnitectur
Design Attempt 1: Flaw?

esign empt <: Arcnitectur

esign Attempt 2: Flaw?

[Mufltiple Tnheritance: |

EomBmmg Abstractions i |I
W“ Com5|n|ng Abstractions 12 |I
W“ Com5|n|ng Abstractions i::l

211 Mo

Index (2)

[MI: Resolving Name Clashes|

[The Composite Pattern: Architecture|
[mplementing the Composite Pattern (1)
Implementing the Composite Pattern (2.1)
Implementing the Composite Pattern (2.2)
[Testing the Composite Patterr]
Summary: The Composite Pattern|

21 ot

	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Design Attempt 1: Architecture
	Design Attempt 1: Flaw?
	Design Attempt 2: Architecture
	Design Attempt 2: Flaw?
	Multiple Inheritance: Combining Abstractions (1)
	MI: Combining Abstractions (2.1)
	MI: Combining Abstractions (2.2)
	MI: Name Clashes
	MI: Resolving Name Clashes
	The Composite Pattern: Architecture
	Implementing the Composite Pattern (1)
	Implementing the Composite Pattern (2.1)
	Implementing the Composite Pattern (2.2)
	Testing the Composite Pattern
	Summary: The Composite Pattern

