Subcontracting
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A & E: Software Design

YO R K ' Fall 2020

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Aspects of Inheritance LASSONDE

e Code Reuse

¢ Substitutability

o Polymorphism and Dynamic Binding
[compile-time type checks]

o Sub-contracting
[runtime behaviour checks]

2 of 18

Learning Objectives LASSONDE

ooooooooooooooooo

. Preconditions: require less vs. require more
. Postconditions: ensure less vs. ensure more
. Inheritance and Contracts: Static Analysis

. Inheritance and Contracts: Runtime Checks

H W N =

3 of 18

Background of Logic (1) LASSONDE

ooooooooooooooooo

Given preconditions P; and P», we say that

’ P> requires less than P; ‘if
P> is less strict on (thus allowing more) inputs than Py does.

{x[P10 }e{x|Pa(x) }

More concisely:
P1 = P2

e.g., Forcommand withdraw (amount: amount),
| P> : amount > 0| requires less than | Py : amount > 0|

What is the precondition that requires the least? [true]

LASSONDE

ooooooooooooooooo

Background of Logic (2)

Given postconditions or invariants Qq and Q», we say that

’ Q> ensures more than Qq ‘if
Q» is stricter on (thus allowing less) outputs than Qy does.

{x[Q(x) pe{x[Qi(x)}

More concisely:
Qz = Q1

e.g., Forquery g (i: INTEGER): BOOLEAN,
’ Qo :Result = (i>0)A(imod2=0) ‘ ensures more than

|Qy:Result =(i>0)v(imod2=0)]
What is the postcondition that ensures the mosit?

[false]
5 of 18]

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (1)
e The fact that we allow polymorphism :

local my_phone: SMART PHONE
i_phone: IPHONE_11_PRO
samsung_phone: GALAXY S10_PLUS
huawei_phone: HUAWEI_P30_PRO
do my_phone := 1i_phone
my_phone samsung_phone
my_phone := huawei_phone

suggests that these instances may substitute for each other.
e Intuitively, when expecting SMART _PHONE, we can substitute it
by instances of any of its descendant classes.
-~ Descendants accumulate code from its ancestors and can thus
meet expectations on their ancestors.

e Such substitutability can be reflected on contracts, where a

substitutable instance will:
o Not require more from clients for using the services.

o Not ensure less to clients for using the services.
6 of 18

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.1)

N [SMART PHONE)

my_phone
get_reminders: LIST[EVENT]
require ??
ensure ??
w,

[PHONE USER

tnyj)hone: SMART_PHONE

IPHONE_11_PRO

get_reminders: LIST[EVENT]
require else ??
ensure then ??

7 of 18

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.2)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today
end

class IPHONE_11_PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery level > 0.15 —— 15%
ensure then
0: Ve:Result | e happens today or tomorrow
end

Contracts in descendant class rrrone_11_pro are not suitable.
(battery _level > 0.1 = battery_level > 0.15) is not a tautology.
e.g., A client able to get reminders on a smart_pHone, when battery
. e
mIevel is 12%, will fail to do so on an rpHonE_11_PRO.

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.3)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_11_PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.15 —— 15%
ensure then
0: Ve:Result | e happens today or tomorrow

end

Contracts in descendant class rrrone_11_pro are not suitable.
(e happens ty. or tw.)= (e happens ty.) nottautology.
e.g., A client receiving today’s reminders from smarT_prHoONE are

mshocked by tomorrow-only reminders from rpzonz_11_PRo.

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.4)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_11_PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.05 —- 5%
ensure then
0: Ve:Result | e happens today between 9am and 5pm

end

Contracts in descendant class rrrone_11_pro are suitable.
o Require the same or less o=
Clients satisfying the precondition for smarr_pronE are not shocked
y not being to use the same feature for rpronE_11_PRO.
of 18|

Inheritance and Contracts (2.5)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_11_PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.05 —- 5%
ensure then
0: Ve:Result | e happens today between 9am and 5pm
end

Contracts in descendant class rrrone_11_pro are suitable.
o Ensure the same or more o=p
Clients benefiting from smarr_pHONE are not shocked by failing to

ain at least those benefits from same feature in rprONE_11_PRO.

Contract Redeclaration Rule (1)

¢ |In the context of some feature in a descendant class:

o Use to redeclare its precondition.
o Use to redeclare its postcondition.

e The resulting runtime assertions checks are:

o ’original_pre or else new_pre‘

= Clients able to satisfy original _pre will not be shocked.
.- true v new _pre = true
A precondition violation will not occur as long as clients are able
to satisfy what is required from the ancestor classes.
o ’original_post and then new_post‘
= Failing to gain original_post will be reported as an issue.
-+ false A new _post = false
A postcondition violation occurs (as expected) if clients do not
receive at least those benefits promised from the ancestor classes.

12 of 18]

Contract Redeclaration Rule (2.1) LASSONDE
1 FOO class BAR
¢ ;ss inherit FOO redefine f end
do f require else new_pre
end do ...
end end
end

e Unspecified original_pre is as if declaring

-+ true v new_pre = true

class BAR
class FOO inherit FOO redefine f end
£ £
do ... do ...
end ensure then new_post
end end
end

* Unspecified original_post is as if declaring

-+ true n new_post = new_post

Contract Redeclaration Rule (2.2) LASSONDE
class FOO class BAR
f require inherit FOO redefine f end
original pre f
do ... do ...
end end
end end

* Unspecified new_pre is as if declaring [require eise false|
-+ original_pre v false = original_pre

1
€ ;ss Foo class BAR
do inherit FOO redefine f end
. £
ensure
original_post do
- end
end end
end

* Unspecified new_post is as if declaring [ensure then true|
-+ original_post A true = original_post
[14 of 18]

Invariant Accumulation IAesoNb:

ooooooooooooooooo

e Every class inherits invariants from all its ancestor classes.
¢ Since invariants are like postconditions of all features, they are
“conjoined” to be checked at runtime.

class POLYGON
vertices: ARRAY[POINT]
invariant
vertices.count > 3
end

class RECTANGLE
inherit POLYGON
invariant

vertices.count = 4
end

e What is checked on a RECTANGLE instance at runtime:
(vertices.count > 3) A (vertices.count = 4) = (vertices.count = 4)
e Can PENTAGON be a descendant class of RECTANGLE?

(vertices.count = 5) A (vertices.count = 4) = false

Inheritance and Contracts (3) LASSONDE
class BAR
c{?ss FOO inherit FOO redefine f end
. f
require i
original pre re?i;::r:lse
ensu?e. ensure then
original post new_post
end .
ond end
end

(Static) Design Time :

(o]

original_pre = new,pre‘ should be proved as a tautology

o

new_posi = original,post‘ should be proved as a tautology

(Dynamic) Runtime :
original_pre v new,pre‘ is checked

o

o

original_post A new,post‘ is checked

16 of 18]

Index (1)

LSSoNDE

|Aspects of Inheritance|

|[Learning Objectives|

|Background of Logic (1)|

|Background of Logic (2)|

[Inheritance and Contracts (1)|

[Inheritance and Contracts (2.1)|

[Inheritance and Contracts (2.2)|

[Inheritance and Contracts (2.3)|

[Inheritance and Contracts (2.4)|

[Inheritance and Contracts (2.5)|

[Contract Redeclaration Rule (1)|

Index (2)

LSSoNDE

|Contract Redeclaration Rule (2.1)|

|Contract Redeclaration Rule (2.2)|

Invariant A mulation

[Inheritance and Contracts (3)|

18 of 18]

