Generics

EECS3311 A & E: Software Design

YO R K ' Fall 2020

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Learning Objectives hssonpe

Upon completing this lecture, you are expected to understand:
1. A general collection ARRAY [ANY] : storage vs. retrieval

2. A generic collection ARRAY [G] : storage vs. retrieval

3. Generics vs. Inheritance

2 of 18

Motivating Example: A Book of Any Objects .issono:

ooooooooooooooooo

class BOOK
names: ARRAY [STRING]
records: ARRAY [ANY]
—— Create an empty book
make do . end
Add a name-reco

add (name: STRING; record: ANY) do

rd pair to the book

—— Return the recorad associated witn a

get (name: STRING): ANY do ... end
end

Question: Which line has a type error?

birthday: DATE; phone_number: STRING

b: BOOK; is_wednesday: BOOLEAN

create {BOOK} b.make

phone_number := "416-677-1010"

b.add ("SuYeon", phone_number)

create {DATE} birthday.make (1975, 4, 10)

b.add ("Yuna", birthday)

is_wednesday := b.get ("Yuna").get_day_of_week = 4

ONO O WN =

3 of 1

(s3]

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (1)

¢ |n the BOOK class:
o In the attribute declaration

’ records: ARRAY [ANY] ‘

e ANY is the most general type of records.
e Each book instance may store any object whose static type is a
descendant class of ANY.

o Accordingly, from the return type of the get feature, we only know
that the returned record has the static type ANY, but not certain
about its dynamic type (e.g., DATE, STRING, efc.).

.. a record retrieved from the book, e.g., b.get ("Yuna"), may
only be called upon features defined in its static type (i.e,. ANY).
¢ In the tester code of the BOOK class:

o In Line 1, the static types of variables birthday (i.e., DATE) and
phone_number (i.e., STRING) are descendant classes of ANY.

.. Line 5 and Line 7 compile.

Motivating Example: Observations (2) LASSONDE

Due to polymorphism , in a collection, the dynamic types of

stored objects (e.g., phone_number and birthday) need not

be the same.

o Features specific to the dynamic types (e.g., get_day_of_week
of class Date) may be new features that are not inherited from
ANY.

o This is why Line 8 would fail to compile, and may be fixed using an
explicit cast :

check attached {DATE} b.get("Yuna") as yuna bday then
is_wednesday := yuna_bday.get_day_of _week = 4
end

o

But what if the dynamic type of the returned object is not a DATE?

check attached {DATE} b.get ("SuYeon") as suyeon_bday then
is_wednesday := suyeon_bday.get_day_of week = 4
end

= An assertion violation at runtime!
5 of 18|

Motivating Example: Observations (2.1) LASSONDE

ooooooooooooooooo

e |t seems that a combination of attached check (similar to an
instanceof check in Java) and type cast can work.

e Can you see any potential problem(s)?
¢ Hints:
o Extensibility and Maintainability
o What happens when you have a large number of records of
distinct dynamic types stored in the book
(e.g., DATE, STRING, PERSON, ACCOUNT, ARRAY _CONTATINER,
DICTIONARY, etfc.)? [all classes are descendants of ANY]

6 of 18

Motivating Example: Observations (2.2) LASSONDE

Say a client stores 100 distinct record objects into the book.

recl: C1

... —— declarations of rec2 to rec99
recl00: C100
create {Cl} recl.make(...) ; b.add(..., recl)

additions of recz to rec99

create {C100} recl00.make(...) ; b.add(..., recl00

where static types C1to C100 are descendant classes of ANY.
o Every time you retrieve a record from the book, you need to check
“exhaustively” on its dynamic type before calling some feature(s).

e e

ri specitic to C1l, Iz sSpecliric to Cz

ed {Cl} b.get("Jim") as cl then

D
o

... —— cases for C2 to C99

elseif attached {C100} b.get("Jim") as cl00 then
cl00. 100

end

o Writing out this list multiple times is tedious and error-prone!
7 of 18]

Motivating Example: Observations (3) LASSONDE

We need a solution that:

¢ Eliminates runtime assertion violations due to wrong casts

e Saves us from explicit at tached checks and type casts

As a sketch, this is how the solution looks like:

¢ When the user declares a BOOK object b, they must commit to
the kind of record that b stores at runtime.
e.g., b stores either DATE objects (and its descendants) only
or string objects (and its descendants) only, but not a mix .

¢ When attempting to store a new record object rec into b, if

rec’s static type is not a descendant class of the type of book
that the user previously commits to, then:
o ltis considered as a compilation error
o Rather than triggering a runtime assertion violation

* When attempting to retrieve a record object from b, there is no
longer a need to check and cast.

-+ Static types of all records in b are guaranteed to be the same.

LASSONDE

ooooooooooooooooo

Parameters

¢ In mathematics:

o The same function is applied with different argument values.
eg.,2 + 3,1 + 1,10 + 101, etc.

o We generalize these instance applications into a definition.
e.g., +: (Z xZ) - Z is a function that takes two integer

parameters and returns an integer.
¢ In object-oriented programming:

o We want to call a feature, with different argument values, to
achieve a similar goal.

e.g., acc.deposit (100), acc.deposit (23), efc.

o We generalize these possible feature calls into a definition.
e.g., In class ACCOUNT, a feature deposit (amount: REAL)
takes a real-valued parameter .

¢ When you design a mathematical function or a class feature,
always consider the list of parameters , each of which
resenting a set of possible argument values.

LASSONDE

ooooooooooooooooo

Generics: Design of a Generic Book

class BOOK|[G]
names: ARRAY [STRING]
records: ARRAY[G]

—-— Create an empty book

make do ... end
/* Add a name-record pair to the book x/
add (name: STRING; record: G) do ... end
/* Return the record associated with a given name x/
get (name: STRING): G do ... end
end

Question: Which line has a type error?

birthday: DATE; phone_number: STRING

b: BOOK[DATE] ; is_wednesday: BOOLEAN

create BOOK[DATE] b.make

phone_number = "416-67-1010"

b.add ("SuYeon", phone_number)

create {DATE} birthday.make (1975, 4, 10)

b.add ("Yuna", birthday)

is_wednesday := b.get("Yuna") .get_day_of week == 4

ONOOTA W N =

10 of 18]

LASSONDE

ooooooooooooooooo

Generics: Observations

¢ |n class BOOK:
o Atthe class level, we parameterize the type of records :

’class BOOK[G] ‘

o Every occurrence of ANY is replaced by E.

As far as a client of BOOK is concerned, they must instantiate G.
= This particular instance of book must consistently store items of
that instantiating type.

¢ As soon as E instantiated to some known type (e.g., DATE,

STRING), every occurrence of E will be replaced by that type.

For example, in the tester code of BOOK:

In Line 2, we commit that the book b will store DATE objects only.

Line 5 fails to compile. [.- STRING not descendant of DATE]

Line 7 still compiles. [-- DATE is descendant of itself]

Line 8 does not need any attached check and type cast, and

does not cause any runtime assertion violation.

- All attempts to store non-DATE objects are caught at compile time.

e}

o O O

[11 of 18]

LASSONDE

ooooooooooooooooo

Bad Example of using Generics

Has the following client made an appropriate choice?

book: BOOK[ANY]

o It allows all kinds of objects to be stored.
-+ All classes are descendants of ANY.

o We can expect very little from an object retrieved from this book.
- The static type of book’s items are ANY, root of the class
hierarchy, has the minimum amount of features available for use.
-~ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

12 of 18]

LASSONDE

ooooooooooooooooo

Instantiating Generic Parameters
e Say the supplier provides a generic DICTIONARY class:

class DICTIONARY[V, K] -- V type of values; K type of keys
add_entry (v: V; k: K) do ... end
remove_entry (k: K) do ... end

end

¢ Clients use prcrronary with different degrees of instantiations:

class DATABASE_TABLE[K, V]
imp: DICTIONARY[V, K]
end

e.g., DeC|ariﬂg’DATABSE_TABLE[INTEGER, STRING] |instantiates

’ DICTIONARY[STRING, INTEGER] |

class STUDENT_BOOK[V]
imp: DICTIONARY[V, STRING]
end

e.g., Declaring [stupenT_Book [arRaY [coursE]] | instantiates
DICTIONARY [ARRAY [COURSE], STRING] ‘

13 of 18]

LASSONDE

ooooooooooooooooo

Generics vs. Inheritance (1)

Abstraction

SET_OF_
BOOKS

Type parameterization Type parameterization

LIST OF LIST OF LIST OF
PEOPLE BOOKS JOURNAL

LINKED_LIS
OF BOOKS

Specialization

14 of 18]

LASSONDE

ooooooooooooooooo

Generics vs. Inheritance (2)

Inheritance and

4 T Generalization genericity
CHAIN [TAXI] D{-------- L

Genericity

(type parameterization)

Inheritance

LINKED LIS
[T4XT)

A ‘Specialization

15 of 18]

LASSONDE

ooooooooooooooooo

Beyond this lecture ...

e Study the “Generic Parameters and the lterator Pattern” Tutorial
Videos.

16 of 18]

Index (1)

LSSoNDE

|[Learning Objectives|

[Motivating Example:

A Book of Any Objects|

[Motivating Example:

Observations (1))

[Motivating Example:

Observations (2)|

[Motivating Example:

Observations (2.1)|

[Motivating Example:

Observations (2.2)|

[Motivating Example:

Observations (3)|

Parameters

|Generics: Design of a Generic Book

[Generics: Observations|

[Bad Example of using Generics|

17 of 18]

Index (2)

LSSoNDE

[Instantiating Generic Parameters|

|Generics vs. Inheritance (1)|

|Generics vs. Inheritance (2)|

(Beyond this lecture .

18 of 18]

