Inheritance
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A & E: Software Design
' Fall 2020

YORK

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Learning Objectives hssonpe

Upon completing this lecture, you are expected to understand:
Design Attempts without Inheritance (w.r.t. Cohesion, SCP)
Using Inheritance for Code Reuse

Static Type & Polymorphism

Dynamic Type & Dynamic Binding

Type Casting

Polymorphism & Dynamic Binding:

Routine Arguments, Routine Return Values, Collections

o0k wbd

Aspects of Inheritance LASSONDE

ooooooooooooooooo

e

e Code Reuse

¢ Substitutability
o Polymorphism and Dynamic Binding
[compile-time type checks]
o Sub-contracting
[runtime behaviour checks]

Why Inheritance: A Motivating Example LASSONDE

ooooooooooooooooo

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.

The cOURSE Class

\wy

LASSONDE

STHOOL OF ENGINEERING.

No Inheritance: NON_RESIDENT_STUDENT Cla

SCHOOL OF ENGINEERING.

class NON_RESIDENT_STUDENT

r end

base + c.item.fee end

class create make
COURSE feature s
name: STRING
create - £ can be used as - courses: LINKED_LIST[COURSE]
make discount_rate: REAL
feature - Co or
feature - Attr make (n: STRING)
title: STRING do name := n ; create courses.make end
fee: REAL feature —— C Is
set.dr (r: REAL) do discount_rate :=
feature —- ommands register (c: COURSE) do courses.extend (c) end
make (t: STRING; f: REAL) feature —— ¢ ries
L ize a course w e’ e 17 tuition: REAL
do local base: REAL
title := t do base := 0.0
fee := f across courses as ¢ loop base :=
end Result := base # discount_rate
end end
end

No Inheritance: RESIDENT STUDENT Class |.ssonoe No Inheritance: Testing Student Classes |.issono:
1 -
class test_students: BOOLEAN
create make
feature Attributes local
. STRING hees cl, c2: COURSE
: . LINKED LIST[COURSE] jim: RESIDENT_STUDENT
courses: — jeremy: NON_RESIDENT_STUDENT
premium_-rate: REAL do
feature - ruc create cl.make ("EECS2030", 500.0)
make (n: STRING) create c2.make ("EECS3311", 500.0)
do name n ; create courses.make end create jim.make ("J. Davis")
feature - ds jim.set_pr (1.25)
set_pr (r: REAL) do premium.rate := r end jim.register (cl)
register (c: COURSE) do courses.extend (c) end jim.register (c2)
feature —- Queries Result := jim.tuition = 1250
tuition: REAL check Result end
local base: REAL create jeremy.make ("J. Gibbons")
do base := 0.0 jeremy.set_dr (0.75)
across courses as c loop base := base + c.item.fee end jeremy.register (cl)
| Result := base # premium.rate | Jjeremy.register (c2)
end Result := jeremy.tuition = 750
d
end en
—f6or60l 8 of 60

No Inheritance: LASSONDE
Issues with the Student Classes

¢ Implementations for the two student classes seem to work. But
can you see any potential problems with it?

¢ The code of the two student classes share a lot in common.

e Duplicates of code make it hard to maintain your software!

e This means that when there is a change of policy on the
common part, we need modify more than one places.
= This violates the Single Choice Principle :
when a change is needed, there should be a single place (or

a minimal number of places) where you need to make that
change.

9 of 60

No Inheritance: Maintainability of Code (1) |.assono:

ooooooooooooooooo

What if a new way for course registration is to be implemented?
e.g.,

register (Course c)
do
if courses.count >= MAX_CAPACITY then

Error: maximu y reached.
else
courses.extend (c)
end
end

We need to change the register commands in both student
classes!

= Violation of the Single Choice Principle

10 of 60

\wy

No Inheritance: Maintainability of Code (2)

—

ASSONDE

ooooooooooooooooo

What if a new way for base tuition calculation is to be
implemented?

e.g.,

tuition: REAL
local base: REAL
do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base x inflation.rate x ...
end

We need to change the tuition query in both student
classes.

= Violation of the Single Choice Principle

11 of 60

No Inheritance: LASSONDE

A Collection of Various Kinds of Students

How do you define a class StudentManagement System that
contains a list of resident and non-resident students?

class STUDENT_MANAGEMENT _SYSETM
rs : LINKED_LIST[RESIDENT_STUDENT]
nrs : LINKED_LIST[NON_RESIDENT_STUDENT]

add_rs (rs: RESIDENT_STUDENT) do ... end
add_nrs (nrs: NON_RESIDENT_STUDENT) do ... end
register_all (Course c) —- Register a common course ’c’

do
across rs as c loop c.item.register (c) end
across nrs as c¢ loop c.item.register (c) end
end
end

But what if we later on introduce more kinds of students?

Inconvenient to handle each list of students, in pretty much the

same manner, separately!
[12 of 60]

Inheritance Architecture

LSSoNDE

STUDENT

inherit
inherit

RESIDENT_STUDENT NON_RESIDENT_STUDENT

13 of 60

Inheritance: The STUDENT Parent Class

LSSoNDE

O©CoOoNOO~WN =

class STUDENT
create make
feature - Attr
name: STRING
courses: LINKED_ LIST|[COURSE]
feature Cc
make (n: STRING) do name
feature —— Cc
register (c: COURSE) do courses.extend (c) end
feature ot
tuition: REAL
local base: REAL

s that ce be used as co

; create courses.make end

n

1ds

rie

do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base
end
end
[14 of 60]

ELg

Inheritance:

The RESIDENT STUDENT Child Class

class
RESIDENT_STUDENT
inherit
STUDENT
redefine tuition end
create make
feature —— A

0 NoO O WN =

| premium.rate
9 | feature c
10 set_pr (r: REAL) do premium rate := r end
11 | feature —— O ies

12 tuition: REAL

13 local base: REAL
14 ‘ do base := Precursor ; Result := base * premium.rate end

15 ’end

e L3: RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command
[i5orsd * L14: Precursor returns the value from query tuition in STUDENT.

Inheritance:

LSSoNDE

The NON RESIDENT STUDENT Child Class

class
NON_RESIDENT_STUDENT
inherit
STUDENT
redefine tuition end
create make

© oo NOORWN =

feature —— Attril =3
discount_rate : REAL
feature - C Is

10 set_dr (r: REAL) do discount_rate := r end
11 | feature —— 0]
12 tuition: REAL

13 local base: REAL
14 do base := Precursor ; Result := base * discount_rate end
15 |end

e L3: NON_RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command

e L14: Precursor returns the value from query tuition in STUDENT.
[16 of 60]

Inheritance Architecture Revisited LASSONDE
STUDENT
inherit
inherit

RESIDENT_STUDENT NON_RESIDENT_STUDENT

e The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

e Each “specialized” class is called a child , sub, or

descendent class.
[17 of 60

Using Inheritance for Code Reuse LASSONDE

ooooooooooooooooo

Inheritance in Eiffel (or any OOP language) allows you to:
o Factor out common features (attributes, commands, queries) in a
separate class.
e.g., the STUDENT class
o Define an “specialized” version of the class which:
e inherits definitions of all attributes, commands, and queries
e.g., attributes name, courses
e.g., command register
e.g., query on base amount in tuition
This means code reuse and elimination of code duplicates!
e defines new features if necessary
e.g., set _pr for RESIDENT_STUDENT
e.g., set _dr for NON_RESIDENT_STUDENT
o redefines features if necessary
e.g., compounded tuition for RESIDENT_STUDENT
e.g., discounted tuition for NON_RESIDENT_STUDENT

18 of 60

Testing the Two Student Sub-Classes LASSONDE

ooooooooooooooooo

test_students: BOOLEAN
local
cl, c2: COURSE
jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_STUDENT

do

create cl.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")

jim.set_pr (1.25) ; jim.register (cl); jim.register (c2)

Result := jim.tuition = 1250

check Result end
create jeremy.make ("J. Gibbons")

jeremy.set_dr (0.75); jeremy.register (cl); jeremy.register (c2)
Result := jeremy.tuition = 750
end

¢ The software can be used in exactly the same way as before
(because we did not modify feature signatures).
¢ But now the internal structure of code has been made

maintainable using inheritance .
[19 of 60]

Static Type vs. Dynamic Type LASSONDE

e In object orientation , an entity has two kinds of types:
o static type is declared at compile time [unchangeable]
An entity’s ST determines what features may be called upon it.
o dynamic type is changeable at runtime
e |n Java:

Student s = new Student ("Alan");
Student rs = new ResidentStudent ("Mark");

¢ |n Eiffel:

local s: STUDENT
rs: STUDENT
do create {STUDENT} s.make ("Alan")
create {RESIDENT _STUDENT} rs.make ("Mark")

o In Eiffel, the dynamic type can be omitted if it is meant to be the
same as the static type:

local s: STUDENT
do create s.make ("Alan")
20 of 60

Inheritance Architecture Revisited LASSONDE Polymorphism: Intuition (2)
register (c: COURSE)+ name: STRING . . .
tuition: REAL+ STUDENT courses: LINKED_LIST[COURSE] 1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 |do create {STUDENT} s.make ("Stella")
) . 3 create {RESIDENT STUDENT} rs.make ("Rachael")
/* new features ¥/ /* new features */
premium_rate: REAL di _rate: REAL 4 rs.set_pr (1.25)
set_pr (r: REAL)+ set_dr (r: REAL)+ 5 s := rs /» Is this valid? =/
/% redefined features */ | RESIDENT_STUDENT NON_RESIDENT_STUDENT | / sedefined features */ 6 o ; e
tuition: REAL++ tuition: REAL++ rs := s /x Is this valid? «/
s1,s2,s3: STUDENT ; rs: RESIDENT STUDENT ; nrs : NON.RESIDENT. STUDENT e rs := s (L6) should be invalid:
create {STUDENT} sl.make ("S1") : STUDENT
create {RESIDENT_STUDENT} sZ2.make ("S2") : [name JNECTD
create {NON RESIDENT_STUDENT} s3.make ("S3")
create {RESIDENT_STUDENT} rs.make ("RS") rs:RESIDENT®
create {NON RESIDENT STUDENT} nrs.make ("NRS") RESIDENT_STUDENT

l H name l courses l reg l tuition l pr H set_pr | dr H set_dr

premium_ra

s1. 7 i e rs declared of type RESIDENT_STUDEN

s2. v x s.calling rs.set pr(1.50) can be expected.
s3. v x e rsis now pointing to a STUDENT object.

rs. v v < e Then, what would happen to rs.set pr (1.50)7
nrs. v X v

CRASH s rs.premium_rate is undefined!l
31 of60

Polymorphism: Intuition (1) LASSONDE Polymorphism: Intuition (3)
1 local s: STUDENT ; rs: RESIDENT STUDENT
1 |local 2 |do create {STUDENT} s.make ("Stella")
2 s: STUDENT 3 create {RESIDENT_STUDENT} rs.make ("Rachael")
3 rs: RESIDENT_ STUDENT 4 rs.set_pr (1.25)
4 |do 5 s := rs /» Is this valid? =/
5 create s.make ("Stella") 6 rs := s /x Is this valid? =/
6 create rs.make ("Rachael") .
7 | rs.set_pr (1.25) e s :=rs (L5) should be valid:
8 s := rs /+ Is this valid? x/ s : STUDENT [s]
9 rs := s /x Is this valid? x/
« Which one of L8 and L9 is valid? Which one is invalid? s :RESTDENT STODENT N\
o L8: What kind of address can s store? [STUDENT] e
.. The context object s is expected to be used as: _ _ :
e s.register (eecs3311) and s.tuition e Since s is declared of type STUDENT, a subsequent call
o L9: What kind of address can rs store? [RESIDENT_STUDENT] s.set pr(1.50) is never expected.

.. The context object rs is expected to be used as: * sis now pointing to a RESIDENT_STUDENT object.

e rs.register(eecs3311) and rs.tuition e Then, what would happento s. tuition?

* rs.setpr (1.50) [increase premium rate] OK - s.premium_rate is just never used!!

24 of 60

g\

Dynamic Binding: Intuition (1) LASSONDE

1 local ¢ COURSE ; s STUDENT

2 rs : RESIDENT STUDENT ; nrs NON_RESIDENT STUDENT
3 |do create c.make ("EECS3311", 100.0)

4 create {RESIDENT_STUDENT} rs.make("Rachael")

5 create {NON_RESIDENT_STUDENT} nrs.make("Nancy")

6 rs.set_pr(l.25); rs.register(c)

7 nrs.set_dr(0.75); nrs.register(c)

8 s := rs; ; check s .tuition = 125.0 end

9 s := nrs; ; check s .tuition = 75.0 end

After s := rs (L7), s points t0 @ RESTDENT_STUDENT object.
= Calling s .tuition applies the premium rate.
rs:RESIDENT STUDENT

courses
premium_rate

s:STUDENT

RESIDENT_STUDENT

[_course]
[title [RESE000
[fee LN

nrs:NON_RESIDENT STUDENT | NON_RESIDENT_STUDENT
name
courses
discount_rate

Dynamic Binding: Intuition (2)

5 An

A M
1 local ¢ COURSE ; s STUDENT
2 rs : RESIDENT STUDENT ; nrs NON_RESIDENT STUDENT
3 |do create c.make ("EECS3311", 100.0)
4 create {RESIDENT_STUDENT} rs.make("Rachael")
5 create {NON_RESIDENT_STUDENT} nrs.make("Nancy")
6 rs.set_pr(l.25); rs.register(c)
7 nrs.set_dr(0.75); nrs.register(c)
8 s := rs; ; check s .tuition = 125.0 end
9 s := nrs; ; check s .tuition = 75.0 end
After s:=nrs (L8), s points to a NON_RESIDENT_STUDENT Object.
= Calling s .tuition applies the discount_rate.
rs:RESIDENT STUDENT RESIDENT_STUDENT
“Rachael”
s:STUDENT
[course]
e Y
[IR
nrs:NON_RESIDENT STUDENT -] NON_RESIDENT_STUDENT
26 Of 60 discount_rate

L\

Multi-Level Inheritance Architecture (1) LASSONDE

DOMESTIC_STUDENT FOREIGN_STUDENT

DOMESTIC_RESIDENT_STUDENT ‘

DOMESTIC_NON_RESIDENT_STUDENT FOREIGN_NON_RESIDENT_STUDENT

‘ FOREIGN_RESIDENT_STUDENT ‘

27 of 60

Multi-Level Inheritance Architecture (2)

SMART_PHONE dial -- basic fsatflrs
surf_web -- basic feature

surf_web -- redefined using firefox
skype -- new feature

quick_take / side_sync

‘ HUAWEI ‘

zoomage /

‘ HUAWEI_P30_PRO ‘

ANDROID

surf_web -- redefined using safari
facetime -- new feature

N
~

IPHONE_XS_MAX

IPHONE_11_PRO

HUAWEI_MATE_20_PRO GALAXY_S10_PLUS

‘ GALAXY_S10 ‘

28 of 60

LASSONDE

ooooooooooooooooo

Inheritance Forms a Type Hierarchy
e A (data) type denotes a set of related runtime values.

o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:

o (Implicit) Root of the hierarchy is ANY.
o Each inherit declaration corresponds to an upward arrow.
o The inherit relationship is transitive: when A inherits B and B
inherits C, we say A indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class 2 are: 2 itself and all classes that
A directly, or indirectly, inherits.
o A inherits all features from its ancestor classes.
.. A’s instances have a wider range of expected usages (i.e.,
attributes, queries, commands) than instances of its ancestor classes.
o The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, inherits A.

¢ Code defined in A is inherited to all its descendant classes.
29 of 60

LASSONDE

ooooooooooooooooo

Inheritance Accumulates Code for Reuse

e The lower a class is in the type hierarchy, the more code it
accumulates from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
e Declare new attributes.
¢ Define new queries or commands.
e Redefine inherited queries or commands.
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).
o When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.
o e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT_STUDENT Or @ NON_RESIDENT_STUDENT object.
o Justification: A descendant class contains at least as many

features as defined in its ancestor classes (but not vice versal).

LASSONDE

ooooooooooooooooo

Substitutions via Assighments

e By declaring |v1:C1|, reference variable v1 will store the
address of an object of class c1 at runtime.

e By declaring [v2:C2 |, reference variable v2 will store the
address of an object of class c2 at runtime.

* Assignment copies the address stored in v2 into v1.
o v1 will instead point to wherever v2 is pointing to. [object alias |

v H

C1i

« In such assignment|v1:=v2 |, we say that we substitute an
object of type C1 with an object of type c2.

e Substitutions are subject to rules!
31 of 60]

Rules of Substitution LASSONDE
Given an inheritance hierarchy:
1. When expecting an object of class 2, it is safe to substitute it

with an object of any descendant class of 2 (including 2).

o e.g., When expecting an 10s phone, you can substitute it with
either an TPHONE _XS_MAX or ITPHONE_11_PRO.

o - Each descendant class of A is guaranteed to contain all code
of (non-private) attributes, commands, and queries defined in A.

o .. All features defined in A are guaranteed to be available in the
new substitute.

2. When expecting an object of class 2, it is unsafe to substitute

it with an object of any ancestor class of A’s parent .

o e.g., When expecting an 10s phone, you cannot substitute it with
just a SMART _PHONE, because the facetime feature is not
supported in an ANDROID phone.

o --Class A may have defined new features that do not exist in any
of its parent’s ancestor classes .

Reference Variable: Static Type ,:-,é;é
* A reference variable’s static type is what we declare it to be.

o e.g.,| jim:STUDENT |declares jim’s static type as STUDENT.
o e.g.,|my_phone: SMART_PHONE \
declares a variable my_phone of static type SmartPhone.
o The static type of a reference variable never changes.
e For a reference variable v, its static type defines the

expected usages of v as a context object .
» Afeaturecall v.m(...) is compilable if mis defined in .

o e.g., After declaring| jim: STUDENT |, we

e may call register and tuitionon jim
e may not call set_pr (specific to a resident student) or set _dr
(specific to a non-resident student) on jim
o e.g., After declaring | my phone : SMART PHONE |, we
e may call dial and surf_web ONn my_phone
e may noft call facetime (specific to an IOS phone) or skype (specific
to an Android phone) on my phone

Reference Variable: Dynamic Type LASSONDE

ooooooooooooooooo

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.

o The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
o There are two ways to re-assigning a reference variable.

34 of 60

Reference Variable: LASSONDE
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

o Substitution Principle : the new object’s class must be a
descendant class of the reference variable’s static type.

o e.g., Given the declaration | jim: STUDENT |:

. ’ create {RESIDENT_STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jimto RESIDENT_STUDENT.

° ’ create {NON RESIDENT STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jim to NON_RESIDENT_STUDENT.

o e.g., Given an alternative declaration] jim:RESIDENT STUDENT \:

e €4, ’ create {STUDENT} jim.make ("Jim") ‘ is illegal

because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT_STUDENT).

e

Reference Variable: LASSONDE
Changing Dynamic Type (2)
Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):
o Substitution Principle : the static type of other must be a

descendant class of v’s static type.
o e.g.,

jim: STUDENT ; rs: RESIDENT STUDENT; nrs: NON_RESIDENT STUDENT
create {STUDENT} jim.make (...)

create {RESIDENT STUDENT} rs.make (...)

create {NON_ RESIDENT STUDENT} nrs.make (...)

e rs := Jjim X

e nrs := Jjim

e jim := rs v
changes the dynamic type of jim to the dynamic type of rs

e jim := nrs Ve

changes the dynamic type of jim to the dynamic type of nrs
36 of 60|

LSSoNDE

Polymorphism and Dynamic Binding (1)

e Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).
o Consequently, there are multiple possible versions of each feature
that may be called.
e e.g., 3 possibilities of tuition on a STUDENT reference variable:
In STUDENT: base amount
In RESIDENT STUDENT: base amount with premium_rate
In NON_RESIDENT STUDENT: base amount with discount_rate

e Dynamic binding : When a feature m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.

jim: STUDENT; rs: RESIDENT_STUDENT; nrs: NON_STUDENT
create {RESIDENT STUDENT} rs.make (...)
create {NON_RESIDENT_STUDENT} nrs.nrs (...)

jim := rs

jim.tuitoion; /% version in RESIDENT_STUDENT x/

jim := nrs

jim.tuition; /* version in NON_RESIDENT_STUDENT x/
37 of 60

Polymorphism and Dynamic Binding (2.1)

LSSoNDE

1 | test_polymorphism_students

2 local

3 jim: STUDENT

4 rs: RESIDENT_STUDENT

5 nrs: NON_RESIDENT_STUDENT

6 do

7 create {STUDENT} jim.make ("J. Davis")

8 create {RESIDENT STUDENT} rs.make ("J. Davis")
9 create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
10 jim := rs

11 rs := jim x

12 jim := nrs V'

13 rs := jim X

14 end

In (L3, L7), (L4, L8), (L5, L9), ST = DT, so we may abbreviate:

L7: ’create jim.make ("J. Davis")‘

L8: ’create rs.make ("J. Davis™") ‘

L9: ’create nrs.make ("J. Davis") ‘
38 of 60

LSSoNDE

Polymorphism and Dynamic Binding (2.2)

test_dynamic_binding_students: BOOLEAN
local
jim: STUDENT
rs: RESIDENT STUDENT
nrs: NON_RESIDENT STUDENT
c: COURSE
do
create c.make ("EECS3311", 500.0)
create {STUDENT} jim.make ("J. Davis")
create {RESIDENT STUDENT} rs.make ("J. Davis")
rs.register (c)
rs.set_pr (1.5)

jim := rs

Result := jim.tuition = 750.0

check Result end

create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
nrs.register (c)

nrs.set_dr (0.5)

jim := nrs
Result := jim.tuition = 250.0
907 60

LSSoNDE

Reference Type Casting: Motivation

local jim: STUDENT; rs: RESIDENT STUDENT

do create {RESIDENT STUDENT} jim.make ("J. Davis")
rs := jim
rs.setPremiumRate (1.5)

AW =

e Line 2 is legal: resrpent_stupent iS @ descendant class of the
static type of jim (i.e., stupenT).

e Line 3is illegal: jim’s static type (i.e., stupent) is not a
descendant class of rs’s static type (i.€., resrpenT_sTupent).

e Eiffel compiler is unable to infer that jim’s dynamic type in

Line 4 is resrpENT STUDENT. [Undecidable]
¢ Force the Eiffel compiler to believe so, by replacing L3, L4 by a
type cast (which temporarily changes the ST of jim):

check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim
rs.set_pr (1.5)
end
40 of 60)

LASSONDE

ooooooooooooooooo

Reference Type Casting: Syntax

check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim
rs.set_pr (1.5)

end

L1 is an assertion:
o ’attached RESIDENT STUDENT jim‘is a Boolean expression

AW =

that is to be evaluated at runtime .
o If it evaluates to frue, then the expression has the effect

of assigning “the cast version” of jim to a new variable rs_jim.
o [f it evaluates to false, then a runtime assertion violation occurs.

o Dynamic Binding : Line 4 executes the correct version of set_pr.
e |t is approximately the same as following Java code:

if (jim instanceof ResidentStudent) ({
ResidentStudent rs = (ResidentStudent) jim;
rs.set_pr(l.5);

}

else { throw new Exception("Cast Not Done."); }
41 of 60

Notes on Type Cast (1) LASSONDE

ooooooooooooooooo

* |check attached {C} y then end| always compiles

e What if C is not an ancestor of y's DT?
= A runtime assertion violation occurs!
-+ y's DT cannot fulfill the expectation of C.

42 of 60)

Notes on Type Cast (2) LASSONDE

ooooooooooooooooo

e Given v of static type ST, it is violation-free to castvto C, as
long as C is a descendant or ancestor class of ST.
e Why Cast?
o Without cast, we can only call features defined in ST on v.
o By castingvto C,we create an alias of the object pointed by v,
with the new static type C .
= All features that are defined in C can be called.

my_phone: IOS
create {IPHONE 11 PRO} my_phone.make

check attached {SMART_PHONE}

end
check attached {IPHONE_11_PRO} my_phone as ipll_pro then

dial, surf_web, facetime, quick_take v skype, side_syn >, zoomage X

Notes on Type Cast (3) LASSONDE

ooooooooooooooooo

A cast | check attached ic} v as ...|triggers an assertion
violation if C is not along the ancestor path of v’'s DT.

test_smart_phone_type cast_violation
local mine: ANDROID
do create {HUAWEI} mine.make

-— ST of ; DT of mine is HUAWEI

check attached . end
-— ST of sp is 5P 1S [
check attached {HUAWEI} mine as huawel then ... end
-— ST of uawel 1s HI I DT of huawel 1is JAWE 1
check attached {SAMSUNG} mine as samsung then ... end
— S G is >stor of mine’s DT (HUAWETI)
check attached HUAWEI P30 PRO} mine as p30_pro then ... end
—— g estor of mine’s DT
end

LASSONDE

ooooooooooooooooo

Polymorphism: Routine Call Parameters

1 class STUDENT MANAGEMENT SYSTEM {

2 ss : ARRAY|[STUDENT] -- ss[1] has static type Student

3 add_s (s: STUDENT) do ss[0] := s end

4 add_rs (rs: RESIDENT_STUDENT) do ss[0] := rs end

5 add_nrs (nrs: NON_RESIDENT STUDENT) do ss[0] := nrs end

e L4: is valid. -- RHS’s ST RESIDENT STUDENT is
a descendant class of LHS’s ST STUDENT.
e Say we have a STUDENT MANAGEMENT_SYSETM object sms:

o -+ call by value , | sms.add_rs (o) |attempts the following
assignment (i.e., replace parameter rs by a copy of argument o):

rs := O ‘

o Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class c, then we may call feature m by passing objects whose

static types are C’s descendants.
145 of 60|

LASSONDE

ooooooooooooooooo

Polymorphism: Routine Call Arguments

test_polymorphism feature_arguments

local
sl, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT
sms: STUDENT_ MANAGEMENT SYSTEM

do
create sms.make
create {STUDENT} sl.make ("s1")
create {RESIDENT _STUDENT} sZ2.make ("s2")
create {NON_RESIDENT _STUDENT} s3.make ("s3")
create {RESIDENT _STUDENT} rs.make ("rs"
create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
sms.add_s (sl) v sms.add_s (s2) v sms.add_s (s3) Vv
sms.add_s (rs) v sms.add_s (nrs) v
sms.add_rs (sl) x sms.add_rs (s2) x sms.add_rs (s3) x
sms.add _rs (rs) v sms.add_rs (nrs) x
sms.add_nrs (sl) x sms.add _nrs (s2) X sms.add_nrs (s3) x
sms.add_nrs (rs) x sms.add_nrs (nrs) Vv

end

46 of 60)

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class STUDENT MANAGEMENT_SYSETM
that contains a list of resident and non-resident students?

class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST|[STUDENT]
add_student (s: STUDENT)
do
students.extend (s)
end
registerAll (c: COURSE)
do
across
students as s
loop
s.item.register (c)
end

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students

test_sms_polymorphism: BOOLEAN
local

rs: RESIDENT STUDENT

nrs: NON_RESIDENT STUDENT

c: COURSE

sms: STUDENT_MANAGEMENT _SYSTEM
do

create rs.make ("Jim")

rs.set_pr (1.5)

create nrs.make ("Jeremy")

nrs.set_dr (0.5)

create sms.make

sms.add_s (rs)

sms.add s (nrs)

create c.make ("EECS3311", 500)

sms.register_all (c

Result := sms.ss[l].tuition = 750 and sms.ss[2].tuition = 250
end

48 of 60)

Polymorphism: Return Values (1)

class STUDENT_MANAGEMENT_SYSTEM {
ss: LINKED_LIST[STUDENT]
add_s (s: STUDENT)
do
ss.extend (s)
end
get_student (i: INTEGER): STUDENT
require 1 <= i and i <= ss.count
do
10 Result := ss[i]
11 end
12 | end

O©CoOoONOOORWN =

e L2: ST of each stored item (ss[11]) in the list: [STUDENT]
e L3: ST of input parameter s: [STUDENT]
e L7: ST of return value (Result) of get _student: [STUDENT]
e L11: ss[i]’s ST is descendant of Result’ ST.

Question: What can be the dynamic type of s after Line 117

Answer: All descendant classes of Student.
149 of 60

Polymorphism: Return Values (2) LASSONDE

ooooooooooooooooo

test_sms_polymorphism: BOOLEAN
local
rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT
c: COURSE ; sms: STUDENT_MANAGEMENT_SYSTEM
do
create rs.make ("Jim") ; rs.set_pr (1.5)
create nrs.make ("Jeremy") ; nrs.set_dr (0.5)
create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)
create c.make ("EECS3311", 500) ; sms.register_all (c)
10 Result :=
11 sms.get_student (1) .tuition = 7
12 and sms.get_student (2) .tuition = 2
13 |end

©CoOoONOOOThAWN =

50
50

e L11: get_student (1)’s dynamic type?
e L11: Version of tuition? [rRESTDENT_STUDENT]
e L12: get_student (2)’s dynamic type? [won_resipenT sTupenT]

e L12: Version of tuition?
50 of 60)

[rESIDENT_SsTUDENT]

[NON_RESTDENT_STUDENT]

Design Principle: Polymorphism LASSONDE

* When declaring an attribute

= Choose static type | T | which “accumulates” all features that
you predict you will want to call on a.

e.g., Choose if you do not intend to be specific about

which kind of student s might be.
= Let dynamic binding determine at runtime which version of
tuition will be called.

» What if after declaring you find yourself often
needing to cast s to RESIDENT_STUDENT in order to access
premium_rate?

check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(...) end‘

= Your design decision should have been: [s:restpEnT_sTupEnT |
e Same design principle applies to:
o Type of feature parameters: fla: T)

o Type of queries: gl...): T
51 of 60]

Static Type vs. Dynamic Type:
When to consider which?

LASSONDE

ooooooooooooooooo

o Whether or not an OOP code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Eiffel code being executed at runtime

e.g., which version of the routine is called
e.g., ifacheck attached {...} as ... then ... end
assertion error will occur

depends on the dynamic types of relevant variables.

= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

Summary: Type Checking Rules

[[Cope [[CONDITION TO BE TYPE CORRECT I

X 1=y v’'s ST a descendant of x’s ST
Feature f defined in x’s ST

x-£y) y's ST a descendant of £'s parameter's ST
Feature f defined in x’s ST
z 1= x.f(y) v’'s ST a descendant of £’s parameter’s ST

ST of m’s return value a descendant of z's ST
check attached {C} y Always compiles
check attached {C} y as temp || C adescendantof x’s ST

then x := temp end
check attached {C} y as temp Feature f defined in x’s ST

then x.f (temp) end C a descendant of £'s parameter’'s ST

Even if’check attached {C} y then ... end‘always compiles,

a runtime assertion error occurs if C is not an ancestor of yv's DT/

e

Beyond this lecture ... LASSONDE

o Written Notes: Static Types, Dynamic Types, Type Casts

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/
EECS3311/notes/EECS3311_F20_Notes_Static_Types_Cast.pdf

e Recommended Exercise 1:

Expand the student inheritance design (here) to reproduce the
various fragments of polymorphism and dynamic binding.

¢ Recommended Exercise 2:

Create a new project (using eiffel-new) to reproduce the various
fragments related to the running example of smart phones.

54 of 60

Index (1) :AssoNDE

|[Learning Objectives|

|Aspects of Inheritance|

(Why Inheritance: A Motivating Example|

[The COURSE Class|

No Inheritance: RESIDENT STUDENT Class

No Inheritance: NON RESIDENT _STUDENT Class

[No Inheritance: Testing Student Classes|

[No Inheritance:
Issues with the Student Classes

[No Inheritance: Maintainability of Code (1)|

[No Inheritance: Maintainability of Code (2)|

Index (2) :AssoNDE

[No Inheritance: I
|A Collection of Various Kinds of Students|

Inheritance Architecture

[Inheritance: The STUDENT Parent Class|

[Inheritance: I
[The RESIDENT_STUDENT Child Class|

[Inheritance: |
[The NON_RESIDENT _STUDENT Child Class|

Inheritance Architecture Revisited

|Using Inheritance for Code Reuse)|
[Testing the Two Student Sub-Classes|
[Static Type vs. Dynamic Type|

56 of 60

Index (3) LassoNpE

Inheritance Architecture Revisited

[Polymorphism: Intuition (1)|

[Polymorphism: Intuition (2)|

[Polymorphism: Intuition (3)|

[Dynamic Binding: Intuition (1)

[Dynamic Binding: Intuition (2)|

[Multi-Level Inheritance Architecture (1))

[Multi-Level Inheritance Architecture (2)|

[Inheritance Forms a Type Hierarchy|

Inheritance Accumulates Code for Reuse
[Substitutions via Assignments|

57 of 60

Index (4) :AssoNDE

Rules of Substitution

[Reference Variable: Static Type|

[Reference Variable: Dynamic Type)|

[Reference Variable: |
[Changing Dynamic Type (1)|

[Reference Variable: |
[Changing Dynamic Type (2)|

|[Polymorphism and Dynamic Binding (1)|

[Polymorphism and Dynamic Binding (2.1)|

[Polymorphism and Dynamic Binding (2.2)|

[Reference Type Casting: Motivation|

[Reference Type Casting: Syntax

58 of 60

Index (5) LassoNDE

[Notes on Type Cast (1)|

[Notes on Type Cast (2)|

[Notes on Type Cast (3)|

[Polymorphism: Routine Call Parameters|

[Polymorphism: Routine Call Arguments|

Why Inheritance: |
A Polymorphic Collection of Students|

Polymorphism and Dynamic Binding: |
A Polymorphic Collection of Students|

[Polymorphism: Return Values (1)|

[Polymorphism: Return Values (2)|

[Design Principle: Polymorphism |
59 of 60

Index (6) Sssonee

Static Type vs. Dynamic Type: |
When to consider which?|

[Summary: Type Checking Rules|

[Beyond this lecture .. .|

60 of 60

