
Eiffel Testing Framework (ETF):
Automated Regression & Acceptance Testing

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. User Interface: Concrete vs. Abstract

2. Use Case: Interleaving Model, Events & (Abstract) States

3. Acceptance Tests vs. Unit Tests
4. Regression Tests

2 of 21

Required Tutorial

All technical details of ETF are discussed in this tutorial series:

https://www.youtube.com/playlist?list=PL5dxAmCmjv_

5unIgLB9XiLwBey105y3kI

3 of 21

Take-Home Message

● Your remaining assignments are related to ETF: Lab3 & Project.
● You are no longer just given partially implemented classes:○ Design decisions have already been made for you.○ You are just to fill in the blanks (to-do’s).
● ETF is in Eiffel, but try to see beyond what it allows you do:

1. Design your own classes and routines.
2. Practice design principles:

e.g., DbC, modularity, information hiding, single-choice, cohesion.
3. Practice design patterns:

e.g., iterator, singleton.
4. Practice acceptance testing and regression testing.

4 of 21

Bank ATM: Concrete User Interfaces
An ATM app has many concrete (implemented, functioning) UIs.

PHYSICAL INTERFACE MOBILE INTERFACE

5 of 21

UI, Model, TDD

● Separation of Concerns○ The (Concrete) User Interface
Users typically interact with your application via some GUI.
e.g., web app, mobile app, or desktop app○ The Model (Business Logic)
Develop an application via classes and features.
e.g., a bank storing, processing, retrieving accounts & transactions

● Test Driven Development (TDD) In practice:○ The model should be independent of the UI or View.○ Do not wait to test the model when the concrete UI is built.

⇒ Test your software as if it was a real app
way before dedicating to the design of an actual GUI.

⇒ Use an abstract UI (e.g., a cmd-line UI) for this purpose.

6 of 21

Prototyping System with Abstract UI
● For you to quickly prototype a working system, you do not

need to spend time on developing a elaborate, full-fledged GUI.● The Eiffel Testing Framework (ETF) allows you to:○ Generate a starter project from the specification of an abstract UI .○ Focus on developing the business model .○ Test your business model as if it were a real app.● Q. What is an abstract UI?
Events abstracting observable interactions with the concrete
GUI (e.g., button clicks, text entering).● Q. Events vs. Features (attributes & routines)?

Events Features
interactions computations

external internal
observable hidden

acceptance tests unit tests
users, customers programmers, developers

7 of 21

Bank ATM: Abstract UI

Abstract UI is the list of events abstracting observable interactions
with the concrete GUI (e.g., button clicks, text entering).

system bank

new(id: STRING)

-- create a new bank account for "id"

deposit(id: STRING; amount: INTEGER)

-- deposit "amount" into the account of "id"

withdraw(id: STRING; amount: INTEGER)

-- withdraw "amount" from the account of "id"

transfer(id1: STRING; id2: STRING; amount: INTEGER)

-- transfer "amount" from "id1" to "id2"

8 of 21

Bank ATM: Abstract States
Abstract State is a representation of the system:○ Including relevant details of functionalities under testing○ Excluding other irrelevant details

e.g., An abstract state may show each account’s owner:

{alan, mark, tom}

e.g., An abstract state may also show each account’s balance:

{alan: 200, mark: 300, tom: 700}

e.g., An abstract state may show account’s transactions:

Account Owner: alan

List of transactions:

+ deposit (Oct 15): $100

- withdraw (Oct 18): $50

Account Owner: mark

List of transactions:

9 of 21

Bank ATM: Inputs of Acceptance Tests

An acceptance test is a use case of the system under test,
characterized by sequential occurrences of abstract events.
For example:

new("alan")

new("mark")

deposit("alan", 200)

deposit("mark", 100)

transfer("alan", "mark", 50)

10 of 21

Bank ATM: Outputs of Acceptance Tests (1)

Output from running an acceptance test is a sequence
interleaving abstract states and abstract events:

S0->e1->S1->e2->S2-> . . .

where:○ S0 is the initial state.○ Si is the pre-state of event ei+1 [i ≥ 0]
e.g., S0 is the pre-state of e1, S1 is the pre-state of e2○ Si is the post-state of event ei [i ≥ 1]
e.g., S1 is the post-state of e1, S2 is the post-state of e2

11 of 21

Bank ATM: Outputs of Acceptance Tests (2)
Consider an example acceptance test output:

{}
->new("alan")

{alan: 0}
->new("mark")

{alan: 0, mark: 0}
->deposit("alan", 200)

{alan: 200, mark: 0}
->deposit("mark", 100)

{alan: 200, mark: 100}
->transfer("alan", "mark", 50)

{alan: 150, mark: 150}

● Initial State? {}● What role does the state {alan: 200, mark: 0} play?○ Post-State of deposit("alan", 200)○ Pre-State of deposit("mark", 100)

12 of 21

Bank ATM: Acceptance Tests vs. Unit Tests

Q. Difference between an acceptance test and a unit test?

{}
->new("alan")

{alan: 0}
->deposit("alan", 200)

{alan: 200}

test: BOOLEAN

local acc: ACCOUNT

do create acc.make("alan")

acc.add(200)

Result := acc.balance = 200

end

A.○ Writing a unit test requires knowledge about the programming

language and details of implementation.⇒Written and run by developers○ Writing an acceptance test only requires familiarity with the
abstract UI and abstract state.⇒Written and run by customers [for communication]⇒Written and run by developers [for testing]

13 of 21

ETF in a Nutshell

● Eiffel Testing Framework (ETF) facilitates engineers to write
and execute input-output-based acceptance tests.○ Inputs are specified as traces of events (or sequences).○ The abstract UI of the system under development (SUD) is

defined by declaring the list of input events that might occur.○ Outputs are interleaved states and events logged to the terminal,
and their formats may be customized.

● An executable ETF project tailored for the SUD can already be
generated, using these event declarations (specified in a plain
text file), with a default business model .
○ Once the business model is implemented, there is a small

number of steps to follow for developers to connect it to the
generated ETF.○ Once connected, developers may re-run all acceptance tests

and observe if the expected state effects occur.
14 of 21

Workflow: Develop-Connect-Test

ETF

monitored
events

Code
Skeleton

business
model

use
cases

Abstract
State

implement

(re)new

generate

connect to

define

test fix or add

debug

run

derive

redefine

15 of 21

ETF: Abstract UI and Acceptance Test

16 of 21

ETF: Generating a New Project

17 of 21

ETF: Architecture

XVHUBFRPPDQGV

*
E7FBCOMMAND

+
E7FBNE:

+
E7FBDEPOSI7

+
E7FB:I7HDRA:

+
E7FB7RANSFER

+
E7FBMODEL

PRGHO

+
E7FBMODELBACCESS

PPRGHOBDFFHVV

PRGHO

● Classes in the model cluster are hidden from the users.
● All commands reference to the same model (bank) instance.
● When a user’s request is made:○ A command object of the corresponding type is created, which

invokes relevant feature(s) in the model cluster.○ Updates to the model are published to the output handler.

18 of 21

ETF: Implementing an Abstract Command

19 of 21

Beyond this lecture
The singleton pattern is instantiated in the ETF framework:
● ETF MODEL (shared data)
● ETF MODEL ACCESS (exclusive once access)
● ETF COMMAND and its effective descendants:

deferred class

ETF_COMMAND

feature -- Attributes

model: ETF_MODEL

feature {NONE}

make(. . .)
local

ma: ETF_MODEL_ACCESS

do

. . .
model := ma.m

end

end

class

ETF_DEPOSIT

inherit

ETF_DEPOSIT_INTERFACE

-- which inherits ETF_COMMAND

feature -- command

deposit(. . .)
do

. . .
model.some_routine (. . .)
. . .

end

end

20 of 21

Index (1)

Learning Objectives

Required Tutorial

Take-Home Message

Bank ATM: Concrete User Interfaces

UI, Model, TDD

Prototyping System with Abstract UI

Bank ATM: Abstract UI

Bank ATM: Abstract States

Bank ATM: Inputs of Acceptance Tests

Bank ATM: Outputs of Acceptance Tests (1)

Bank ATM: Outputs of Acceptance Tests (2)
21 of 21

Index (2)
Bank ATM: Acceptance Tests vs. Unit Tests

ETF in a Nutshell

Workflow: Develop-Connect-Test

ETF: Abstract UI and Acceptance Test

ETF: Generating a New Project

ETF: Architecture

ETF: Implementing an Abstract Command

Beyond this lecture

22 of 21

