Case Study: Abstraction of a Birthday Book

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. Asserting Set Equality in Postconditions (Exercise)
2. The basics of discrete math (Self-Guided Study)
FUN is a REL, but not vice versa.
3. Creating a mathematical abstraction for a birthday book
4. Using commands and queries from two mathmodels classes:
REL and FUN

Math Review: Set Definitions and Members

e A set is a collection of objects.
o Objects in a set are called its elements or members.
o Order in which elements are arranged does not matter.
o An element can appear at most once in the set.
We may define a set using:
o Set Enumeration: Explicitly list all members in a set.
e.g., {1,3,5,7,9}
o Set Comprehension: Implicitly specify the condition that all

members satisfy.
eg., {x|1<x<10Ax is an odd number}

An empty set (denoted as {} or @) has no members.

We may check if an element is a member of a set:
e.g.,5¢{1,3,5,7,9} [true]
eg.,4¢{x|x<1<10,x is an odd number} [true]

The number of elements in a set is called its cardinality.

e.g.,19/=0,{x|x<1<10,x is an odd number}|=5

I

Math Review: Set Relations

Given two sets Sy and S:
e S;is a subset of S, if every member of S; is a member of S,.

5:1cS — (VXOX€S1:>X€SQ)

e Sy and S, are equal iff they are the subset of each other.

S51=5 «— 5,cS5HAScS

e S is a proper subset of S, if it is a strictly smaller subset.
S1cS — S1cSA|81]<|852|

I

Math Review: Set Operations

Given two sets Sy and S,:
e Union of S; and S; is a set whose members are in either.

S1U82={X‘XES1\/XESQ}

e Intersection of Sy and S, is a set whose members are in both.

SinSo={x|xeSirxeS}

o Difference of S; and S, is a set whose members are in Sy but
not So.

S1\Sg={X|X€S1/\X¢82}

I

Math Review: Power Sets LASSONDE

The power set of aset Sis a set of all S’ subsets.

P(S)={s|sc S}

The power set contains subsets of cardinalities 0, 1, 2, ..., |S].

e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

<,
{1}, {2}, {3},
{1.2}, {2,3}, {3,1},
{1,2,3}

I

Math Review: Set of Tuples

Given nsets Sy, Sy, ..., Sp, a cross product of theses sets is
a set of n-tuples.

Each n-tuple (eq, ez, ..., en) contains n elements, each of
which a member of the corresponding set.

SixSyx---x8Sy={(ey,6,...,en) | €eSinl1<i<n}

e.g., {a, b} x{2,4} x {$,&} is a set of triples:

{a,b} x{2,4} x {§,&}
{(e1,e2,e3) | e1e{a,bfrneec{2,4} ne3e{$,&} }
{(a’27$)7(a727&)7(a747$)7(a747&)7
(b,2,%),(b,2,&),(b,4,$),(b,4,&)}

Lot o2

I

Math Models: Relations (1)

e A relation is a collection of mappings, each being an ordered
pair that maps a member of set S to a member of set T.
e.g.,Say S={1,2,3} and T = {a, b}

o ¢ is an empty relation.

o Sx T is arelation (say r1) that maps from each member of S to
each memberin T: {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

o {(x,y):SxT]|x=+1}is arelation (say r.) that maps only some
members in S to every member in T: {(2,a),(2,b),(3,a),(3,b)}.

» Given a relation r:

o Domain of r is the set of S members that r maps from.

dom(r)={s:S|(3te(s,t)er)}
e.g., dom(ry) ={1,2,3}, dom(rz) = {2,3}
o Range of ris the set of T members that r maps to.
ran(r)={t: T|(3se (s, t)er)}

e.g., ran(ry) = {a, b} =ran(rp)

I

Math Models: Relations (2)

* We use the power set operator to express the set of all possible
relations on S and T:
P(SxT)

e To declare a relation variable r, we use the colon (:) symbol to

mean set membership:

r:P(SxT)

e Or alternatively, we write:
r:S< T

where the set S < T is synonymous to the set P(Sx T)

I

Math Models: Relations (3.1)

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}

« [r.domain|: set of first-elements from r
o rdomain={d|(d,r)er}
o e.g., r.domain = {a, b,c,d,e,f}

. : set of second-elements from r

orrange={r|(d,r)er}
o e.g., rrange = {1,2,3,4,5,6}

o [rinverse|: a relation like r except elements are in reverse order
o rinverse={ (r,d)|(d,r)er}

o e.g., r.inverse = {(1,a),(2,b), (3,¢), (4,a), (5,b), (6,¢),(1,d),(2,e),(3,1)}

1 ot o2

R
Math Models: Relations (3.2)

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
J ’ r.domain_restricted(ds) ‘ sub-relation of r with domain ds.
o r.domain_restricted(ds) = { (d,r) | (d,r)erndeds}
o e.g., rdomain_restricted({a, b}) = {(a,1),(b,2),(a,4),(b,5)}
r.domain_subtracted(ds) ‘: sub-relation of r with domain not ds.
o r.domain_subtracted(ds) = { (d,r) | (d,r)ernd¢ds}
o e.g., rdomain_subtracted({a, b}) =
{(c,3),(c.6),(d, 1), (e,2),(f,3)}
J ’ r.range_restricted(rs) ‘ sub-relation of r with range rs.
o r.range_restricted(rs) = { (d.r) | (d, r) ErAnrers}
o e.g., rrange. restrlcted({1 2}) ={(a,1),(b,2),(d,1),(e,2)}
r.range_subtracted(ds) ‘ sub-relation of r with range not ds.
o rrange_subtracted(rs) = { (d,r) | (d,r)ernré¢rs}
o e.g., r.range_subtracted({1, 2}) =

{{(¢,3).(a,4),(b,5),(c,6),(f,3)}}

L oro2

S
Math Models: Relations (3.3)

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
r.overridden(t) ‘: a relation which agrees on r outside domain of
t.domain, and agrees on t within domain of t.domain

o r.overridden(t) = t u r.domain_subtracted(t.domain)
(o}

r.overridden({(a,3),(c,4)})

{(a,3),(c,4)}u {(07«5)7 (b,5),(d,1),(e;2),(f,3)}

t r.domain_subtracted (f.domain)
—_—
{a,c}

{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)}

2 o122

I

Math Review: Functions (1) LASSONDE

A function fon sets Sand T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T.

Vs:S;t1: T bb:Te(s,ty)efa(s,b)ef=t =0

e.g., Say S={1,2,3} and T = {a, b}, which of the following
relations are also functions?

o SxT [No]
o (SxT)-{(x,y) | (x,¥y)eSxTarx=1} [No]
° {(1,a).(2,b),(3,a)} [Yes]
o {(1,a),(2,b)} [Yes]

130122

I

Math Review: Functions (2) LASSONDE

o We use set comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

{r:S<T|
(Vs:S;ty: T, to:Te(s,) ern(s,b)er=t==t)}

e This set (of possible functions) is a subset of the set (of
possible relations): P(Sx T)and S« T.

¢ We abbreviate this set of possible functions as S — T and use it
to declare a function variable f:

f:S—>T

14 o122

I

Math Review: Functions (3.1) LASSONDE

Given a function f: S— T
e fis injective (or an injection) if f does not map two members of
S to the same member of T.
f is injective «<—
(VS1:S;8::S;t: Te(sy,t)ern(se,t)er=5=5)

e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

e fis surjective (or a surjection) if f maps to all members of T.

f is surjective <= ran(f)=T

e fis bijective (or a bijection) if f is both injective and surjective.

Math Review: Functions (3.2)

et ae o

<

X Y X

O @ U)<

Math Models: Command-Query Separation |ssono:

I

Command

I

Query

domain_restrict
domain_restrict by

domain_subtract
domain_subtract_ by

domain_restricted
domain_restricted by

domain_subtracted
domain_subtracted by

range_restrict
range_restrict_by

range_subtract
range_subtract_by

range_restricted
range_restricted._by

range_subtracted
range_subtracted._by

override
override_by

overridden
overridden_by

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}

e Commands modify the context relation objects.
’ r.domain restrict ({a}) ‘ ChangeS r to {(a, 1), (3,4)}

* Queries return new relations without modifying context objects.
| r.domain restricted ({a}) |returns {(a,1),(a,4)} with r untouched

| I

I

\n,

Math Models: Example Test

LASSONDE

test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]
do
create r.make from tuple_array (
<<[nan, l], ["b", 2]’ ["C", 3],
["a", 41, ["b", 51, ["c", 6],
["d", 11, ["en, 2], [ufu, 3]>>)
create ds.make_from _array (<<"a">>)

t

ged by the ery ao

t := r.domain,suétracted (ds)
Result :=

t /~ r and not t.domain.has ("a")

and r.domain.has ("a")
check Result end

r is

r is a d by t

r.domain_subtract (ds)
Result

t ~ r and not t.domain.has ("a")

and not r.domain.has ("a")
end

18 ot o2

N
Case Study: A Birthday Book

A birthday book stores a collection of entries, where each entry
is a pair of a person’s name and their birthday.

No two entries stored in the book are allowed to have the same
name.

Each birthday is characterized by a month and a day.

A birthday book is first created to contain an empty collection of
entires.

Given a birthday book, we may:

o Inquire about the number of entries currently stored in the book

o Add a new entry by supplying its name and the associated birthday
o Remove the entry associated with a particular person

o Find the birthday of a particular person

o Get a reminder list of names of people who share a given birthday

19 ot o2

Birthday Book: Decisions

e Design Decision

o Classes
o Client Supplier vs. Inheritance
o Mathematical Model? [e.g., REL Or FUN]

o Contracts
e Implementation Decision

o Two linear structures (e.g., arrays, lists) [O(n)]
o A balanced search tree (e.g., AVL tree) [O(log-n)]
o A hash table [O(1)]

e Implement an abstraction function that maps implementation
to the math model.

ZiANe) W2

I

\n,

Birthday Book: Design

[BIRTHDAY_BOOK) ' BIRTHDAY .

model: FUN[NAME, BIRTHDAY] . R day: INTEGER
— abstraction function model: FUNINAME. -] month: INTEGER

count: INTEGER
-- number of entries

invariant
1 <month <12
1 <day<31

put(n: NAME; d: BIRTHDAY)
ensure
model_operation: model ~ (old model.deep_twin).overriden_by ([n,d])
- infix symbol for override operator: @<+

remind(d: BIRTHDAY): ARRAY[NAME]

ensure (‘]
nothing_changed: model ~ (old model.deep_twin) NAME

same_counts: Result.count = (model.range_restricted_by(d)).count)
same_contents: ¥ name € (model.range_restricted_by(d)).domain: name € Result remind: ARRAY[..] item: STRING
-- infix symbol for range restriction: model @> (d)

invariant

invariant: item[1] € A..Z
consistent_book_and_model_counts: count = model.count

Birthday Book: Implementation LASSONDE

h BIRTHDAY

f BIRTHDAY BOOK

model: FUN[NAME, BIRTHDAY |
~ abstraction function model: FUNINAME, .1 | month: INTEGER
do >
~ promote hashtable to function o
ensure invariant
same_counts: Result.count = implementation.count 1 <month < 12
1 <day<31

ontents: ¥/ [name, date] € Result: [name, date] € implementation

same_
end

put(n: NAME; d: BIRTHDAY)
do

- implement using hashtable

ensure
model_operation: model ~ (old model.deep_twin) @<+ [n.d]

end
remind(d: BIRTHDAY): ARRAY[NAME]
o

- implement using hashtable
ensure

nothing_changed: model ~ (old model.deep_twin)

same_counts: Result.count = (model @> d).count

same_contents: ¥ name € (model @> d).domain: name € Result

end
count: INTEGER -- number of names
remind: ARRAY]..] o | item: STRING

feature {NONE}
implementation: HASH_TABLE[BIRTHDAY, NAME] >
invariant

item[1] € A.Z

invariant:
consistent_book_and_model_counts: count = model.count

consistent_book_and_imp_counts: count = implementation.count

I

Beyond this lecture . ..

¢ Familiarize yourself with the features of class RET, FUN, and
SET.
» Exercise:
o Consider an alternative implementation using two linear structures
(e.g., here in Java).
o Implement the design of birthday book covered in lectures.
o Create another LINEAR BIRTHDAY _BOOK class and modify the
implementation of abstraction function accordingly.
Do all contracts still pass? What should change? What remain
unchanged?

v3iotrod

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#oop_java

Index (1)
[Cearning Objectives|

[Math Review: Set Definitions and Membershipl

Viath Beview: Set Belations

ath Review: Set Operation
ath Review: Set of Tuple

[Math Models: Relations (1)
[Math Models: Relations (2}
[Math Models: Relations (3.T)|
[Math Models: Relafions (3.2}

a odels: Relafions (3.

Index (2)

a eview: Functions
[iath Review: Functions (2)
[Wiath Review: Functions (3.7}
[Math Review: Functions (3.2}
[Math Models: Command-Query Separation|

a odels: Exampie les

ase Study: A Birthday Boo
[Birthday Book: Decisions|
[Birthday Book: Design|
[Birthday Book: Tmplementation|
[Beyond this Tecture . _]

rioWe) WL

	Learning Objectives
	Math Review: Set Definitions and Membership
	Math Review: Set Relations
	Math Review: Set Operations
	Math Review: Power Sets
	Math Review: Set of Tuples
	Math Models: Relations (1)
	Math Models: Relations (2)
	Math Models: Relations (3.1)
	Math Models: Relations (3.2)
	Math Models: Relations (3.3)
	Math Review: Functions (1)
	Math Review: Functions (2)
	Math Review: Functions (3.1)
	Math Review: Functions (3.2)
	Math Models: Command-Query Separation
	Math Models: Example Test
	Case Study: A Birthday Book
	Birthday Book: Decisions
	Birthday Book: Design
	Birthday Book: Implementation
	Beyond this lecture …

