Drawing a Design Diagram
using the Business Object Notation (BON)

EECS3311 A & E: Software Design

YO R |IT< ' Fall 2020

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Objectives LASSONDE

Purpose of a Design Diagram: an Abstraction of Your Design
Architectural Relation: Client-Supplier vs. Inheritance
Presenting a class: Compact vs. Detailed

Denoting a Class or Feature: Deferred vs. Effective

I

Why a Design Diagram? LASSONDE

e SOURCE CODE is not an appropriate form for communication.

e Use a DESIGN DIAGRAM showing selective sets of important:
o clusters (i.e., packages)
o classes

[deferred vs. effective]
[generic vs. non-generic]
o architectural relations
[client-supplier vs. inheritance]
o routines (queries and commands)
[deferred vs. effective vs. redefined]
o contracts
[precondition vs. postcondition vs. class invariant]

* Your design diagram is called an abstraction of your system:

o Being selective on what to show, filtering out irrelevant details
o Presenting contractual specification in a mathematical form
(e.g., ¥ instead of across ... all ... end).

Classes: "ééé

Detailed View vs. Compact View (1)

¢ | Detailed view | shows a selection of:

o features (queries and/or commands)

o contracts (class invariant and feature pre-post-conditions)

o Use the detailed view if readers of your design diagram should
know such details of a class.
e.g., Classes critical to your design or implementation

e |Compact view ‘ shows only the class name.
o Use the compact view if readers should not be bothered with

such details of a class.
e.g., Minor “helper” classes of your design or implementation
e.g., Library classes (e.g., ARRAY, LINKED_LIST, HASH TABLE)

_

Classes:

Detailed View vs. Compact View (2)

Detailed View I Compact View

()
FOO

feature - { A,B,C }

-- features exported to classes A, B, and C
feature -- { NONE }

-- private features
invariant

inv_1: 0 <balance < 1,000,000

I

Contracts: Mathematical vs. Programming |.assonoe
o When presenting the detailed view of a class, you should include

contracts of features which you judge as important.
o Consider an array-based linear container:

Vs

ARRAYED CONTAINER+
feature -- Queries
count+: INTEGER

-- Number of items stored in the container

feature -- Commands

assign_at+ (i: INTEGER; s: STRING)

-- Change the value at position 'i' to 's'.
require

valid_index: 1 <i < count
ensure

size_unchanged: imp.count = (old imp.twin).count
item_assigned: impl[i] ~ s
others_unchanged: /i : 1 <j < imp.count : j # i =impl[j] ~ (old imp.twin) [j]
feature — { NONE }
imp+: ARRAY[STRING]
-- Implementation of an arrayed-container

invariant

__ consistency: imp.count = count

J
¢ A tag should be included for each contract.

e Use mathematical symbols (e.g., V, 3, <) instead of programming
symbols (e.g., across all

.. ...,across ... some ..., <=).

Classes: Generic vs. Non-Generic

e Aclassis generic if it declares at least one type parameters.

o Collection classes are generic: ARRAY [G], HASH_TABLE[G, H], elc.
o Type parameter(s) of a class may or may not be instantiated:

HASH_TABLE[G, H] MY_TABLE_I[STRING, INTEGER] MY_TABLE_2[PERSON, INTEGER]

o If necessary, present a generic class in the detailed form:

(DATABASE[G]+) f MY_DB_I[STRING]+\ f MY_DB_2[PERSON]+\

feature

-- some public features here
feature - { NONE }

- imp: ARRAY[PERSON]
invariant
-- some class invariant here

feature

feature
-- some public features here
feature - { NONE }

- some public features here
feature -- { NONE }

- imp: ARRAY[STRING]
invariant
- some class invariant here

- imp: ARRAY[G]
invariant
-- some class invariant here

e Aclassis non-generic if it declares no type parameters.

_

I

Deferred vs. Effective LASSONDE

means unimplemented (~ abstract in Java)
Effective | means implemented

N

Classes: Deferred vs. Effective LASSONDE

e A deferred class has at least one feature unimplemented.

o A deferred class may only be used as a static type (for

declaration), but cannot be used as a dynamic type.
o e.g., Bydeclaring 1ist: LIST[INTEGER] (where LISTis a

deferred class), it is invalid to write:
e create list.make
e create {LIST[INTEGER]} list.make
e An effective class has all features implemented.

o An effective class may be used as both static and dynamic types.
o e.g., Bydeclaring 1ist: LIST[INTEGER],itis valid to write:

e create {LINKED LIST[INTEGER]} list.make
e create {ARRAYED_ LIST[INTEGER]} list.make

where LINKED_LIST and ARRAYED_LIST are both effective
descendants of LIST.

_

I

Features: Deferred, Effective, Redefined (1) |isson:

A deferred feature is declared with its header only
(i.e., name, parameters, return type).

o The word “deferred” means a descendant class would later
implement this feature.
o The resident class of the deferred feature must also be deferred.

deferred class

DATABASE[G]
feature Queries
search (g: G): BOOLEAN
—— Does item ‘g' exist in database?
deferred end

end

i oron

I

Features: Deferred, Effective, Redefined (2) |issono:

e An effective feature implements some inherited deferred
feature.

class

DATABASE_VI1|[G]
inherit

DATABASE[G]
feature - Queries

search (g: G): BOOLEAN

—— Perform a linear search on the database.
do end

end

* A descendant class may still later re-implement this feature.

1 oron

I

Features: Deferred, Effective, Redefined (3) |issono:

e A redefined feature re-implements some inherited effective
feature.

class
DATABASE_V2[G]
inherit
DATABASE_VI1|[G]
redefine search end

feature - Queries
search (g: G): BOOLEAN
—-— Perform a binary search on the database.
do end

* A descendant class may still later re-implement this feature.

17 oro8

Classes: Deferred vs. Effective (2.1)

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

o Deferred or effective classes may be in the compact form:

ARRAYED LIST[G]+

LIST[LIST[PERSON]]* ARRAYED_LIST[G]+

DATABASE[G]* DATABASE_V1[Gl]+ DATABASE_V2[Gl+

130178

Classes: Deferred vs. Effective (2.2) L

LASSONDE

I

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

o Deferred or effective classes may be in the detailed form:

(DATABASE[G]*

~

()

DATABASE_VI[G]+

([DATABASE V2[G}+

feature {NONE} - Implementation
data: ARRAY[G]

feature -- Commands
add_item* (g: G)

- Add new item "g' into database.

require
non_existing_item: — exists (g)

ensure
size_incremented: count = old count + 1
item_added: exists (g)

feature - Queries
count+: INTEGER
-- Number of items stored in database
ensure
correct_result: Result = data.count

exists* (g: G): BOOLEAN
-- Does item g’ exist in database?
ensure
correct_result: Result = (3i : 1 <i < count : data[i] ~ g)

feature {NONE} - Implementation
data: ARRAY([G]

feature -- Commands
add_item+ (g: G)
-~ Append new item "g’ into end of *data’

feature -- Queries
count+: INTEGER

-- Number of items stored in database

exists+ (g: G): BOOLEAN

k -- Perform a linear search on "data’ array. J

feature {NONE} - Implementation
data: ARRAY[G]

feature -- Commands
add_item++ (g: G)
-- Insert new item "g’ into the right slot of "data’.

feature - Queries
count+: INTEGER
-- Number of items stored in database

exists++ (g: G): BOOLEAN
~- Perform a binary search on data’ array.

invariant
sorted_data: Vi : 1 <1< count : data[i] < datafi + 1]

Class Relations: Inheritance (1)

* An inheritance hierarchy is formed using red arrows.
o Arrow’s origin indicates the child/descendant class.
o Arrow’s destination indicates the parent/ancestor class.
¢ You may choose to present each class in an inheritance
hierarchy in either the detailed form or the compact form:

A

(MY_LIST_INTERFACE[G]*)

feature
-- some public features here
feature -- { NONE }
-- some implementation features here
invariant
-- some class invariant here

15 0178

I

Class Relations: Inheritance (2)

More examples (emphasizing different aspects of DATABASE):
Inheritance Hierarchy || Features being (Re-)implemented

BASE[G]*
DATABASE[G]*
DATABASE_VI1[G]+

DATABASE V2[G]+

I

Class Relations: Client-Supplier (1)

e A ’ client-supplier (CS) relation ‘ exists between two classes:

one (the client) uses the service of another (the supplier).

e Programmatically, there is CS relation if in class CLIENT there
is a variable declaration [s1: SUPPLIER].
o A variable may be an attribute, a parameter, or a local variable.

e A green arrow is drawn between the two classes.
o Arrow’s origin indicates the client class.
o Arrow’s destination indicates the supplier class.
o Above the arrow there should be a /abel indicating the supplier
name (i.e., variable name).
o In the case where supplier is a routine, indicate after the label
name if it is deferred (%), effective (+), or redefined (++).

10178

Class Relations: Client-Supplier (2.1)

I

LASSONDE

class DATABASE

data:
feature - Cor
add_name (nn:

require ...

name_exists (n:
require ...
local

u: UTILITIES
do ..

invariant

end

feature {NONE} —- implemer
ARRAY[STRING]

STRING)

do ...

. ensure ...

STRING) :

end

ensure ...
BOOLEAN

end

class UTILITIES
feature u

search (a: ARRAY[STRING], n
require ... do ...
end

ensure ...

: STRING) :

end

BOOLEAN

o Query]data: ARRAY [STRING] |indicates two suppliers:

STRING and ARRAY.

o Parameters nn and n may have an arrow with label ,

pointing to the STRING class.
o Local variable u may have an arrow with label , pointing to the
UTILITIES class.

18 o1 o8

Class Relations: Client-Supplier (2.2.1)

19 o1 o8

If STRING is to be emphasized, label is] data: ARRAY[...]

’

where ... denotes the supplier class STRING being pointed to.

DATABASE+

datat: ARRAY]...]

feature
add_name+ (nn: STRING)
-- Add name “nn" into database.
require

ensure
name_exists+ (n: STRING): BOOLEAN
-- Does name "n" exist?
require

ensure

invariant

n, nn

__ J

(UTILITIES+)

feature
search+ (a: ARRAY[STRING]; n: STRING): BOOLEAN
- Does name 'n" exist in array ‘a"?
require

ensure

I

Class Relations: Client-Supplier (2.2.2)

If ARRAY is to be emphasized, label is [data |
The supplier's name should be complete: ARRAY [STRING]

DATABASE+

feature
add_name+ (nn: STRING) data+

S +
-- Add name “nn’ into dc

ARRAY[STRING]

require

ensure

require

ensure u

n, nn
name_exists+ (n: STRING): BOOLEAN
-- Does name 'n" exist?

invariant

_ Y,

ot o8

I

Class Relations: Client-Supplier (3.1) LASSONDE

Known: The deferred class LIST has two effective
descendants ARRAY LIST and LINKED _LIST).
e DESIGN ONE:

class DATABASE V1

feature {NONE} —— nplementation
imp: ARRAYED LIST[PERSON]

— mo bre features and contracts

end

e DESIGN TwoO:

class DATABASE_ V2
feature {NONE} - implementation
imp: LIST[PERSON]

. —— more features and contracts

end

Question: Which design is better? [DESIGN TwO]
Rationale: Program to the interface, not the implementation.

o1 ot o8

Class Relations: Client-Supplier (3.2.1) LASSONDE

I

We may focus on the PERSON supplier class, which may not
help judge which design is better.

(DATABASE V1+

feature

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

imp+: ARRAYED_LIST]...]

(DATABASE v+

feature

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

J

v oron

imp+: LIST[...] -

Class Relations: Client-Supplier (3.2.2) LASSONDE

I

Alternatively, we may focus on the LIST supplier class, which in
this case helps us judge which design is better.

(DATABASE Vi+

feature
- some public features here
feature - { NONE }

invariant
-- some class invariant here

-- some implementation features here

imp+ +
ARRAYED_LIST[PERSON]

(DATABASE vo+

feature
-- some public features here
feature -- { NONE }

invariant
-- some class invariant here

imp+

-- some implementation features here

N
LINKED_LIST[PERSON]

+
ARRAYED_LIST[PERSON]

v3ioron

\n,

Clusters: Grouping Classes

Use clusters to group classes into logical units.

model

DATABASE[G]+

ature -- Commands
tem++ (g: G)
sert new item g’ into the right slot of *data’.

imp

base-library

*

feature - Queries
count+: INTEGER
-~ Number of items stored in database

exisist (g: G): BOOLEAN
—- Perform a binary search on "data’ array.

invariant

_ sorted_dara: Vi1 << count : daafi] < datal + 11}

LIST[G]

I

Beyond this lecture

e Your Lab0 introductory tutorial series contains the following
classes:

BIRTHDAY

BIRTHDAY_BOOK

TEST_BIRTHDAY

TEST_BIRTHDAY_BOOK

TEST_LIBRARY

BAD BIRTHDAY VIOLATING.DAY_SET

BIRTHDAY_BOOK_VIOLATING_NAME_ADDED_TO_END

Draw a design diagram showing the architectural relations
among the above classes.

0O O O O O O o

ZIW) W15

Index (1)

[Cearning Objecfives

[Why a Design Diagram?|

[Classes:]
etalle Iew vs. Compac ew

[Classes:]

etaile Iew vs. Compact view

onfracts: Mathematical vs. Programmin
[Classes: Generic vs. Non-Generid
Deferred vs. Effective

[Classes: Deferred vs. Effecfivel

eatures: veierred, ective, hedefine

b ot o8

Index (2)
eatures.: vererred, ective, nheaerine
eatures. vererred, ective, neaerine

asses: beilerred vs. eclive (<.

asses: veilerred vs. eclive (<.
[Class Relations: Tnheritance (1)
Dlass Relations: Tnheritance iZI

ass helations: Client-oupplier

ass helations: Client-oupplier (2.

ass helations: Client-oupplier (£.-.

ass helations: Client-osupplier (£.<.

ass Relations: Client-Supplier (3.

Index (3) LASSONDE
ass neilations: Client-osupplier (J5.<.

-
—

ass helations: Client-oupplier (J.-.

usters: Grouping Classe

Beyond this Tecturel

e o1 o8

	Learning Objectives
	Why a Design Diagram?
	Classes: Detailed View vs. Compact View (1)
	Classes: Detailed View vs. Compact View (2)
	Contracts: Mathematical vs. Programming
	Classes: Generic vs. Non-Generic
	Deferred vs. Effective
	Classes: Deferred vs. Effective
	Features: Deferred, Effective, Redefined (1)
	Features: Deferred, Effective, Redefined (2)
	Features: Deferred, Effective, Redefined (3)
	Classes: Deferred vs. Effective (2.1)
	Classes: Deferred vs. Effective (2.2)
	Class Relations: Inheritance (1)
	Class Relations: Inheritance (2)
	Class Relations: Client-Supplier (1)
	Class Relations: Client-Supplier (2.1)
	Class Relations: Client-Supplier (2.2.1)
	Class Relations: Client-Supplier (2.2.2)
	Class Relations: Client-Supplier (3.1)
	Class Relations: Client-Supplier (3.2.1)
	Class Relations: Client-Supplier (3.2.2)
	Clusters: Grouping Classes
	Beyond this lecture

