Drawing a Design Diagram
using the Business Object Notation (BON)

EECS3311 A & E: Software Design
' Fall 2020

YORK

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Learning Objectives hssonpe

Purpose of a Design Diagram: an Abstraction of Your Design
Architectural Relation: Client-Supplier vs. Inheritance
Presenting a class: Compact vs. Detailed

Denoting a Class or Feature: Deferred vs. Effective

Why a Design Diagram? s

ooooooooooooooooo

e SOURCE CODE is not an appropriate form for communication.

e Use a DESIGN DIAGRAM showing selective sets of important:

o clusters (i.e., packages)
o classes

[deferred vs. effective]

[generic vs. non-generic |
o architectural relations

[client-supplier vs. inheritance]
o routines (queries and commands)

[deferred vs. effective vs. redefined]
o contracts

[precondition vs. postcondition vs. class invariant]
¢ Your design diagram is called an abstraction of your system:
o Being selective on what to show, filtering out irrelevant details

o Presenting contractual specification in a mathematical form
(e.g., Vinstead of across ... all ... end).

Classes: [Assoms
Detailed View vs. Compact View (1)

e | Detailed view | shows a selection of:

o features (queries and/or commands)

o contracts (class invariant and feature pre-post-conditions)

o Use the detailed view if readers of your design diagram should
know such details of a class.
e.g., Classes critical to your design or implementation

e | Compact view | shows only the class name.

o Use the compact view if readers should not be bothered with
such details of a class.
e.g., Minor “helper” classes of your design or implementation
e.g., Library classes (e.g., ARRAY, LINKED_LIST, HASH_TABLE)

I —
—

Classes: o Classes: Generic vs. Non-Generic o
Detailed View vs. Compact View (2)
e Aclassis generic if it declares at least one type parameters.

o Collection classes are generic: ARRAY [G], HASH_TABLE[G, H], efc.
o Type parameter(s) of a class may or may not be instantiated:

- ~ HASH_TABLE[G, H] MY _TABLE_I[STRING, INTEGER] MY _TABLE_2[PERSON, INTEGER]

FOO o If necessary, present a generic class in the detailed form:

Detailed View Compact View

feature -- { A,B,C }
- features exported to classes A, B, and C (DATABASE[G]+ | (MY DB ISTRING}+) (_ MY_DB 2[PERSONJ+)

feature -- { NONE }
-- private features

feature feature

-- some public features here
feature -- { NONE }

- imp: ARRAY[STRING]
invariant
-- some class invariant here

feature
-- some public features here
feature -- { NONE }
-- imp: ARRAY[G]
invariant
-- some class invariant here

-- some public features here
feature -- { NONE }

- imp: ARRAY[PERSON]
invariant
-- some class invariant here

invariant
inv_I: 0 <balance < 1,000,000

e Aclass is non-generic if it declares no type parameters.

\. J

Contracts: Mathematical vs. Programming |iasoxc: Deferred vs. Effective e

o When presenting the detailed view of a class, you should include

contracts of features which you judge as important.
o Consider an array-based linear container:

ARRAYED_CONTAINER+

feature -- Querics
count+: INTEGER

-- Number of items stored in the container
Deferred | means unimplemented (~ abstract in Java)

feature -- Commands

assign_at+ (i: INTEGER; s: STRING)
-- Change the value at position 'i' to 's’. N .
require Effective | means implemented

valid_index: 1 <i < count
ensure

size_unchanged: imp.count = (old imp.twin).count

item_assigned: imp[i] ~ s

others_unchanged: ¥/j : 1 <j < imp.count : j # i =implj] ~ (old imp.twin) [j]

feature -- { NONE }
imp+: ARRAY[STRING]
- Implementation of an arrayed-container

invariant
L consistency: imp.count = count J

e A fag should be included for each contract.
o Use mathematical symbols (e.g., V, 3, <) instead of programming

symbols (e.g., across all , across some , <=) TP

LASSONDE

ooooooooooooooooo

Classes: Deferred vs. Effective

e A deferred class has at least one feature unimplemented.

o A deferred class may only be used as a static type (for
declaration), but cannot be used as a dynamic type.

o e.g., By declaring 1ist: LIST[INTEGER] (where LIST is a
deferred class), it is invalid to write:
e create list.make
e create {LIST[INTEGER]} list.make

¢ An effective class has all features implemented.

o An effective class may be used as both static and dynamic types.
o e.g., By declaring 1ist: LIST[INTEGER],itis valid to write:

e create {LINKED_LIST[INTEGER]} list.make
e create {ARRAYED LIST[INTEGER]} list.make

where LINKED_LIST and ARRAYED_LIST are both effective
descendants of LIST.

e

Features: Deferred, Effective, Redefined (1) |.assonoe

ooooooooooooooooo

A deferred feature is declared with its header only
(i.e., name, parameters, return type).

o The word “deferred” means a descendant class would later
implement this feature.
o The resident class of the deferred feature must also be deferred.

deferred class
DATABASE[G]
feature - Queries
search (g: G): BOOLEAN
Does item ‘g' exist in database?
deferred end
end

10 of 26/

Features: Deferred, Effective, Redefined (2) |.assonoe

ooooooooooooooooo

e An effective feature implements some inherited deferred
feature.

class
DATABASE_V1[G]

inherit
DATABASE[G]

feature - Queries
search (g: G): BOOLEAN

—— Perform cearch on fhe datrab

a lilnear searcn on the dAadatabase.

¢ A descendant class may still later re-implement this feature.

[11 of 26

Features: Deferred, Effective, Redefined (3) |.ssonoe

ooooooooooooooooo

e A redefined feature re-implements some inherited effective
feature.

class
DATABASE_V2[G]
inherit
DATABASE_VI1[G]
redefine search end
feature —— Queries
search (g: G): BOOLEAN

errorm a pinary searcn

do end
end

¢ A descendant class may still later re-implement this feature.

12 of 26

Classes: Deferred vs. Effective (2.1)

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

e Deferred or effective classes may be in the compact form:

ARRAYED_LIST[G]+

ARRAYED LIST[G]+

LASSONDE

ooooooooooooooooo

DATABASE[G]* DATABASE_VI[G]+ DATABASE_V2[G]+
13 of 26
Classes: Deferred vs. Effective (2.2) e

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

e Deferred or effective classes may be in the detailed form:

DATABASE[G]*) (DaTaBASE Vi[G]+ | [DATABASE V2[GJ+
feature {NONE} -- Implementation feature {NONE;} - Implementation
data: ARRAY[G]

feature {NONE} -- Implementation
data: ARRAY[G] data: ARRAY[G]

~

J

feature -- Commands feature -- Commands
add_item* (g: G)

feature -- Commands
add_item+ (g: G)

add_item++ (g: G)
-~ Add new item "¢’ into database

-~ Append new item g’ into end of "data’.
require
non_existing_item: exists (2) feature - Queries
ensure count+: INTEGER
-- Number of items stored in database

- Insert new item "g’ into the right slot of *data’.

feature - Queries
count+: INTEGER
-- Number of items stored in database

size_incremented: count = old count + 1
item_added: exists (g)

exists+ (g: G): BOOLEAN exists++ (g: G): BOOLEAN
feature - Queries __ - Perform a linar scarch on ‘data’ array.) -- Perform a binary search on “data’ array.
count+: INTEGER

- Number of items stored in database

ensure
correct_result: Result = data.count

invariant

sorted_data: Vi:1<i < count : data[i] < datali + 1]

J
exists* (g: G): BOOLEAN
-- Does item g’ exist in database?

L correct_result: Result = (3i : 1 <i < count : data[i] ~ g)

14 of 26|

Class Relations: Inheritance (1)

LASSONDE

ooooooooooooooooo

e An inheritance hierarchy is formed using red arrows.
o Arrow’s origin indicates the child/descendant class.
o Arrow’s destination indicates the parent/ancestor class.
¢ You may choose to present each class in an inheritance
hierarchy in either the detailed form or the compact form:

A

(MY _LIST INTERFACE[G]* }

feature

-- some public features here
feature - { NONE }

-- some implementation features here
invariant

-- some class invariant here

N V.

15 of 26/

Class Relations: Inheritance (2)

LASSONDE

ooooooooooooooooo

More examples (emphasizing different aspects of DATABASE):

Inheritance Hierarchy || Features being (Re-)implemented

DATABASE[G]*
DATABASE_VI[G]+

TABASE[G]*

DATABASE_V2[G]+

16 of 26/

LASSONDE

ooooooooooooooooo

Class Relations: Client-Supplier (1)

e A ’ client-supplier (CS) relation ‘ exists between two classes:

one (the client) uses the service of another (the supplier).

e Programmatically, there is CS relation if in class CLIENT there
is a variable declaration [s1: SUPPLIER].
o A variable may be an attribute, a parameter, or a local variable.

e A green arrow is drawn between the two classes.
o Arrow’s origin indicates the client class.
o Arrow’s destination indicates the supplier class.
o Above the arrow there should be a /abel indicating the supplier
name (i.e., variable name).
o In the case where supplier is a routine, indicate after the label
name if it is deferred (), effective (+), or redefined (++).

17 of 26|

LASSONDE

ooooooooooooooooo

Class Relations: Client-Supplier (2.1)

class DATABASE

feature {NONE} mplementatio
data: ARRAY [STRING]

feature —- Commands
add_name (nn: STRING)

. class UTILITIES
feature Queries
search (a: ARRAY[STRING]; n: STRING): BOOLEAN

require ... do ... ensure ... end
name_exists (n: STRING): BOOLEAN - . ‘n Y exist ir
. o e cre catabase require ... do ... ensure ... end

require ...
I end

local
u: UTILITIES
do ... ensure ... end
invariant

end

o Query] data: ARRAY[STRING] |indicates two suppliers:
STRING and ARRAY.

o Parameters nn and n may have an arrow with label ,
pointing to the STRING class.

o Local variable u may have an arrow with label , pointing to the

UTILITIES class.

LASSONDE

ooooooooooooooooo

Class Relations: Client-Supplier (2.2.1)

If STRING is to be emphasized, label is |data: ARRAY[...]|
where ... denotes the supplier class STRING being pointed to.

"
DATABASES data+: ARRAY]...]

feature
add_name+ (nn: STRING)
-- Add name “nn’ into database.
require

ensure

name_exists+ (n: STRING): BOOLEAN
-- Does name 'n” exist?
require

ensure (
invariant u feature
search+ (a: ARRAY[STRING]; n: STRING): BOOLEAN

—- Does name "n” exist in array ‘a*?
require

UTILITIES+

L/

L y

ensure

19 of 26/

LASSONDE

ooooooooooooooooo

Class Relations: Client-Supplier (2.2.2)

If ARRAY is to be emphasized, label is[data |
The supplier's name should be complete: ARRAY [STRING]

DATABASE+

feature

add_name+ (nn: STRING) data+

-- Add name “nn’ into datab
require

ensure

name_exists+ (n: STRING): BOOLEAN
-- Does name "n" exist?
require

ensure u

invariant

_ J

Class Relations: Client-Supplier (3.1) LASSONDE Class Relations: Client-Supplier (3.2.2) LASSONDE

oooooooooooooooooooooooooooooooooo

Known: The deferred class LIST has two effective
descendants ARRAY LIST and LINKED_LIST).
e DESIGN ONE:

Alternatively, we may focus on the L.1ST supplier class, which in
this case helps us judge which design is better.

B

DATABASE_V1+

class DATABASE V1 .
feature {NONE} i i feature imp+ -
eactu —— 1imp tation —- some public features here)]
feature -- { NONE } ARRAYED_LIST[PERSON]

imp: ARRAYED LIST[PERSON] - some implementation features here
-— more features and contracts invariant

-- some class invariant here

end _J

e DESIGN TwO:

class DATABASE V2

feature {NONE} im ion (DATABASE_V2+
imp: LIST [PERSON] _— imp+
... —— more features and contracts '_;tsomep??\lia;e;‘\;reshere w
end _i sl:me;r:\plelnel;mtion features here VAV
-- some class invariant here
Question: Which design is better? [DESIGN TwO] ~
Rationale: Program to the interface, not the implementation. w w
210126

Class Relations: Client-Supplier (3.2.1) LASSONDE Clusters: Grouping Classes LASSONDE

oooooooooooooooooooooooooooooooooo

We may focus on the PERSON supplier class, which may not Use clusters to group classes into logical units.
help judge which design is better.

,
DATABASE _V1+ !
— 1
. 1
featare imp+: ARRAYED LISTI...] R e
-- some public features here : :
feature -- { NONE } 1 DATABASE_TESTS+ '
-- some implementation features here [1
invariant : R
-- some class invariant here '
J 1
1
'
1
: DATABASE[G]+ 1
1
1| reature - commanas 1 base-libr
' e ' R e L e TN .
DATABASE V2+ ' ~Ins em g’ into the right slot of ‘data’ ' imp ! - f
= 1| feature - Queries i i LIST(G) '
. count+: INTEGER 1 '
feature imp+: LIST[] , - Number of items stored in database 1 ' ,
i 1 '
-- some public features here :) BOOLEAN N N :
feature -- { NONE } h a binary search on "data’ array. ' ' h
-- some implementation features here . ' ' ,
invariant ' invariant 1 ' '
- some class invariant here v\ sored_data: Vi1 <i < count: datfi] < datafi + 1] 1 ' '
. 4 N ‘
J N e N e e e e o o o o e e e o2 .

——— e

Beyond this lecture LASSONDE Index (2) LASSONDE

|[Features: Deferred, Effective, Redefined (2)|

e Your Lab0 introductory tutorial series contains the following [Features: Deferred, Effective, Redefined (3)

classes: |Classes: Deferred vs. Effective (2.1)|
o BIRTHDAY

o BIRTHDAY_BOOK
o TEST_BIRTHDAY [Class Relations: Inheritance (1)|
o TEST_BIRTHDAY BOOK
o TEST._LIBRARY

o BAD_BIRTHDAY VIOLATING.DAY SET [Class Relations: Client-Supplier (1)|
o BIRTHDAY_BOOK_VIOLATING_NAME ADDED_TO_END

[Classes: Deferred vs. Effective (2.2)|

[Class Relations: Inheritance (2)|

|Class Relations: Client-Supplier (2.1)|

Draw a design diagram showing the architectural relations

among the above classes. |Class Relations: Client-Supplier (2.2.1)|

[Class Relations: Client-Supplier (2.2.2)|

[Class Relations: Client-Supplier (3.1)|
27 of 26

Index (1) LASSONDE Index (3) fASSONDE
|Class Relations: Client-Supplier (3.2.1)|

[Learning Objectives|

|Class Relations: Client-Supplier (3.2.2)|

(Why a Design Diagram?|
[Classes: |
[Detailed View vs. Compact View (1)|

[Classes: |
|Detailed View vs. Compact View (2)|

[Clusters: Grouping Classes|

[Beyond this lecture|

|Contracts: Mathematical vs. Programming|

| : neric vs. Non-Generi

Deferred vs. Effective
I : Deferred vs. Effectiv
|[Features: Deferred, Effective, Redefined (1)|

28 of 26

