Use of Generics

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. How to write a generic class (as a supplier)
2. How to use a generic class (as a client)

Generic Collection Class: Motivation (1)

class STRING _STACK

feature {NONE} - I entation
imp: ARRAY[STRING] ; 1: INTEGER
feature - Queries
count : INTEGER do Result := i end
er f 1 stack.
top: imp [i] end
—-— Ret
feature s
push (v: STRING) do imp[i] := v; i := 1 + 1 end
-— Add v’ to top of stack.
pop do 1 - 1 end
end

o Does how we implement string stack operations (e.g., top, push,
pop) depends on features specific to element type STRING (e.g.,
at, append)? [NO!]

o How would you implement another class ACCOUNT_STACK?

Generic Collection Class: Motivation (2)

class ACCOUNT _STACK
feature {NONE} - Imj m
imp: ARRAY[ACCOUNT] ;

feature - Queries

count: INTEGER do Result := i end

top: [i] end

1CK .

feature - C s

push (v: ACCOUNT) do imp[i] := v; 1 := 1 + 1 end

Add ’'v’ to top of stack.
pop do 1
—— Remove

end

o Does how we implement account stack operations (e.g., top,
push, pop) depends on features specific to element type
ACCOUNT (e.g., deposit, withdraw)? [NO!]

o A collection (e.g., table, tree, graph) is meant for the storage and
retrieval of elements, not how those elements are manipulated.

Generic Collection Class: Supplier

I

LASSONDE

e Your design “smells” if you have to create an almost identical

new class (hence code duplicates) for every stack element
type you need (e.g., INTEGER, CHARACTER, PERSON, etc.).

¢ Instead, as supplier, use G to parameterize element type:

class STACK [G]
feature {NONE} - Implementation
imp: ARRAY [G] ; i: INTEGER

feature - Querie
count: INTEGER do Result :

to top of stac

I

Generic Collection Class: Client (1.1)

As client, declaring ss: STACK[STRING] instantiates every
occurrence of G as STRING.

T 1
class STACK [f STRING]
feature {NONE }

imp: ARRAY|[ﬁ STRING] ; i: INTEGER

feature Queries
count: INTEGER do Result := i end
Number of items on stack.
to ﬁ STRING do Result := imp [i] end
Re t of stack.
feature ——

push (v: % STRING) do imp[i] := v; 1 := 1 + 1 end

AAA T Fo o)
—-— Add v to top of stack

pop do i := i - 1 end
—— Remove top of stack.

end

oty

I

Generic Collection Class: Client (1.2)

As client, declaring ss: STACK[ACCOUNT] instantiates every
occurrence of G as ACCOUNT.

T 1
class STACK [f ACCOUNT]
feature {NONE }

imp: ARRAY|[ﬁ ACCOUNT] ; 1i: INTEGER

feature Queries
count: INTEGER do Result := i end
Number of items on stack.
to ﬁ ACCOUNT do Result := imp [i] end
Re t of stack.
feature ——

push (v: ﬁ ACCOUNT) do imp[i] := v; 1 := 1 + 1 end

‘v oto ~ st ack
—— Add v o top of stack.

pop do i :=1i - 1 end
Remove top of stack.

end

Generic Collection Class: Client (2)

I

As client, instantiate the type of G to be the one needed.

test_stacks: BOOLEAN
local
ss: STACK[STRING] ; sa: STACK[ACCOUNT]
s: STRING ; a: ACCOUNT
do
ss.push ("A")
ss.push(create {ACCOUNT}.make ("Mark", 200))
s := ss.top
a := ss.top
10 sa.push (create {ACCOUNT}.make ("Alan", 100))
11 sa.push("B")
12 a := sa.top
13 s := sa.top
14 end

O©CoO~NOOAWN =

e L3 commits that ss stores STRING objects only.
o L8 and L10 valid; L9 and L11 invalid.

e L4 commits that sa stores ACCOUNT objects only.
o L12 and L14 valid; L13 and L15 invalid.

Index (1)
[Cearning Objectives|

eneric Collection Class: hNotivation

eneric Collection Class: Notivation

eneric Collection Class: supplie

eneric Lollection Class: Clien

eneric Lollection Class: Clien

eneric Collection Class: Clien

	Learning Objectives
	Generic Collection Class: Motivation (1)
	Generic Collection Class: Motivation (2)
	Generic Collection Class: Supplier
	Generic Collection Class: Client (1.1)
	Generic Collection Class: Client (1.2)
	Generic Collection Class: Client (2)

