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Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:

1. 3 Levels of Copying Objects:
Reference vs. Shallow vs. Deep

2. Use of the o1d keyword in Postconditions

3. Writing Complete Postconditions using logical quantifications:
Universal (V) vs. Existential (3)
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Part 1 i\gsonos

Copying Objects




Copying Objects

Say variables c1 and c2 are both declared of type C. [ c1, c2: ¢]
e There is only one attribute a declared in class C.
e cl.aandc2.a are references to objects.

_—

cl

—

c2




Copying Objects: Reference Copy

Reference Copy cl := c2

o Copy the address stored in variable c2 and store it in c1.
= Both c1 and c2 point to the same object.
= Updates performed via c1 also visible to c2. [ aliasing ]
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Copying Objects: Shallow Copy LASSONDE

Shallow Copy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)
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Copying Objects: Deep Copy LASSONDE

Deep Copy [c1 := c2.deep twin]
o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c3 as follows:

Base Case: a is primitive (e.g., INTEGER). = c3.a := c2.a.
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin
o Make a reference copy of c3: cl := c3

= c1 and c2 are not pointing to the same object.
= cl.a and c2.a are not pointing to the same object.
= No aliasing occurs at any levels.
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Copying Objects

a
® [
= Initial situation: name | ‘Almaviva”
landlord —:l
loved_one _l 03
02 “Figaro” “Susanna”
= Result of:
bi=a ]
04 Almaviva”
Cc := a.twin ®

d := a.deep_twin ©) name |__“Almaviva” :|05

landlord

|

oved_one . _l o7
06 r=m— 7 .

Figaro Susanna

i
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Example: Collection Objects (1)

o In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).

o Assume the following variables of the same type:

local
imp : ARRAY[STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force ("Tom", 3)

e Before we undergo a change on imp, we “ copy " itto old_imp.
o After the change is completed, we compare imp vs. old_imp.
¢ Can a change always be visible between “old” and “new” imp?



Example: Collection Objects (2)

e Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

h ARRAY[STRING]
[y |

imp
imp[1] imp[2] M

STRING STRING STRING
value value value

22
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Reference Copy of Collection Object

NOoO O WN =

T
‘ old.imp :=

imp
Result := old _imp = imp
imp[2] := "Jim"
Result :=
across 1 |..]|

all imp [7]
end —- Rest

N PR
SuLt =

true

imp.count is j
~ old_imp [7]

Before Executing L3

After Executing L3

(\

ARRAY[STRING]

STRING

m “Alan”

STRING

m “Mark”

STRING

Lo Ip [ =]

old_imp

imp
STRING STRING STRING

STRING
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Shallow Copy of Collection Object (1)

T

1 ‘ old.imp := imp.twin ‘
2 |Result := old _imp = imp Result false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 | all imp [j] ~ old_imp [j]
7 end - Result = false
Before Executing L3 After Executing L3
ARRAY[STRING] ARRAY[STRING] STRING ’
/ ‘ ‘ / ‘ ‘ value
inp / \\ \ imp / X \
STRING STRING STRING STRING STRING STRING
m m value value value value
old_im / / / old_im / / /
N A — ’ /T
ARRAY[STRING] ARRAY[STRING]



Shallow Copy of Collection Object (2)

LASSONDE

T

1 ‘ old.imp := imp.twin

2 |Result := old_imp = imp —— Resul
3 | imp[2] .append ("*xx")

4 |Result :=

5 across 1 |..| imp.count is j

6 all imp [j] ~ old_imp [j]

7 end —— Result = true

t = false

Before Executing L3

ARRAY[STRING]

e

old_imp

‘ -

ARRAY[STRING]

After Executing L3

ARRAY[STRING]

[N\~

STRING STRING
value value

STRING
value

old_imp

/ ‘Mark*

ARRAY[STRING]

IS



Deep Copy of Collection Object (1)

oo ON =

T

‘ old.imp := imp.deep-twin
Result := old_imp = imp —— Res
imp[2] := "Jim"
Result :=

across 1 |..| imp.count is j

all imp [7]

~ old_imp [j] end —-- Res

= false

Before Executing L3

After Executing L3

ARRAV[STRING]

nnn
STR!NG STRING STR!NG
“Alan” “Mark”

STRING STRING

STRING

ARRAY[STRING]

ARRAY| m STRING
/ m “Jim”
imp

STRING STRING STRING
STRING STRING STRING

old_imp

N 171
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Deep Copy of Collection Object (2)

et ae o

T

1

1 ‘ old-imp := imp.deep_-twin

2 |Result := old imp = imp —— Re = false

3 | imp[2] .append ("xxx")

4 |Result :=

5 across 1 |..| imp.count is j

6 all imp [j] ~ old imp [j] end = false

Before Executing L3 After Executing L3

ARRAV[STRING]

ARRAV[STRING]

/ PERNEN

STRING STRING STRING
“Alan” “Mark”

STRING STRING

ARRAY[STRING]

STRING

nnn
STRING STRING STRING
“Alan” Sizrk”

“Mark***"

STRING STRING STRING
old_imp

15 ot



Experiment: Copying Objects

* Download the Eiffel project archive (a zip file) here:

nttps://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

LECS3311/codes/copying objects.zip
¢ Unzip and compile the project in Eiffel Studio.
¢ Reproduce the illustrations explained in lectures.

b ot


https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/copying_objects.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/copying_objects.zip
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Part 2 IfA%SONDE

Writing Complete Postconditions

L ora]
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How are contracts checked at runtime?
o All contracts are specified as Boolean expressions.
o Right before a feature call (e.g., acc.withdraw (10)):
o The current state of acc is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.
e Cache values, via E], of old expressions in the post-condition .

eg. [ old-accounts.i_id = accounts[il.id ]
e.g., [ old_accounts._i := accounts]i]]
e.g., ’ (old accounts|i].twin) .id ‘ [ old_accounts_i_twin := accounts|i].twin ]
eg., [ old-accounts := accounts ]
e.g.,| (old accounts.twin)[i].id ‘ [ old_accounts_twin := accounts.twin ]
e.g.,| (old Current).accounts[i].id ‘ [ old_current := Current]
e.g.,’ (old Current.twin).accounts[i].id ‘ [ old_current_twin := Current.twin |

o Right after the feature call:
o The current state of acc is called its post-state.

o Evaluate post-condition using both current values and “cached”

values of attributes and queries.
o Evaluate invariant using current values of attributes and queries.
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When are contracts complete?

In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.

o Eiffel supports this purpose using the old keyword.

This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:

1. The intended change is present; and

2. The rest of the structure is unchanged .

The second contract is much harder to specify:

o Reference aliasing [ ref copy vs. shallow copy vs. deep copy ]
o lterable structure [ use across |

19 ot 47
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Accou nt LASSONDE

\n,

class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
create balance = old balance + a
make end
feature - Att te is_equal (other: ACCOUNT): BOOLEAN
owner: STRING do
balance: INTEGER Result :=
owner ~ other.owner
feature —— Comn Is and balance = other.balance
make (n: STRING) end
do end
owner := n
balance := 0
end
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\n,

Bank LASSONDE

class BANK

create make

feature
accounts: ARRAY [ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT

require - the input
existing: across accounts is acc some acc.owner ~ n end
-1 (across accounts is all acc >r /~ n
do ... ensure Result owner ~ n end
add (n: STRING)
require —- the not exist

u am oes
non_existing: across accounts is acc all acc.owner /~ n end

/ s )
accounts 18

(across
local new_account: ACCOUNT
do
create new_account.make (n)
accounts. force (new_account, accounts.upper + 1)
end
end
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Roadmap of lllustrations

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes



Object Structure for lllustration

We will test each version by starting with the same runtime object

structure:

b.accounts

accounts

ACCOUNT

owner

balance

v3ioral

“Bill”

ACCOUNT
owner “Steve”

balance




Version 1:

class BANK
deposit_on_vl

LASSONDE
Incomplete Contracts, Correct Implementation

(n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end
local i: INTEGER

do

from 1 accounts. lower
until i > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i:=1+1
end
ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:

Current.account_of(n) .balance

end

old Current.account_of(n) .balance + a
end

rZiwe Wi
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\n,

Test of Version 1 LASSONDE

class TEST_ BANK
test_bank_deposit_correct_imp_incomplete_ contract: BOOLEAN

local
b: BANK
do

comment ("tl: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars K
b.deposit_on.vl ("Steve"”, 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

o ot




Test of Version 1: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

PASSED (1 out of 1)

Violation

Boolean 1 1
[ALL Cases

TEST_BANK

‘PASSED ‘ NONE |t1: test deposit_on with correct imp and incomplete contract

b ot dd



Version 2: e sous
Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

[ms

ny of version 1, followed by a deposit into 1lst accoun
accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n) .balance + a
end
end

Current postconditions lack a check that accounts other than n
are unchanged.
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Test of Version 2 LASSONDE

\n,

class TEST_ BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

local
b: BANK
do

comment ("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")
deposit 100 dol

b.deposit_on.v2 ("Steve"”, 100)

7 s to Steve’s
1 s to Steve’s

acc

Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end

end




Test of Version 2: Result

\n,

LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (1 failed & 1 passed out of 2)

\Violation ] ]

Boolean 1 2
A1l Cases 1 2

Testl
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract




LASSONDE

Version 3:
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end

local i: INTEGER

llowed by a

r].deposit (a)

i/

accounts[accounts.lowe
= old accounts.count

ensure
num_of_accounts_unchanged: accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a

others_unchanged :
across old accounts is acc

all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

end

end
end
e
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\n,

Test of Version 3 LASSONDE

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN

local
b: BANK
do

comment ("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars K
b.deposit_on.v3 ("Steve"”, 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

Came i
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Test of Version 3: Result

LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (2 failed & 1 passed out of 3)

Cose Type] _____Passed | Total

Violation 0 4
Boolean 1 3
All Cases 1

3
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated.

t3: test deposit_on with wrong imp, complete contract with reference copy




LASSONDE

Version 4:
Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end

local i: INTEGER

do ...

lowed by a der

r].deposit (a)

NF trerainn 1
of version 1,

accounts[accounts.lowe

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a

others_unchanged :

across old accounts.twin is acc

all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

end

end
end
e
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Test of Version 4 LASSONDE

\n,

class TEST_ BANK JN
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE
local
b: BANK
do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars to
b.deposit_on.v4 ("Steve"”", 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

34 ot 4



Test of Version 4: Result

LASS

ONDE

APPLICATION

Note:

* indicates a violation test case

FAILED (3 failed & 1 passed out of 4)

Total
Violation ] 0

Boolean 1 4
A1l Cases 1

PASSED

Contract Viola

4
TEST_BANK

NONE t1l: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with

wrong imp, complete contract with shallow object copy




LASSONDE

Version 5:
Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end

local i: INTEGER

llowed by a

r].deposit (a)

i/

accounts[accounts.lowe
= old accounts.count

ensure
num_of_accounts_unchanged: accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a

others_unchanged :
across old accounts.deep_-twin is acc

all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

end

end
end
e
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\n,

Test of Version 5 LASSONDE

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local
b: BANK
do

comment ("t5: wrong imp and complete contract with deep copy")
create b.make

b.add ("Bill")

b.add ("Steve")

dep
b.depos
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

30140




Test of Version 5: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)
Total
Violation 0 0
‘ Boolean 1 5
\All Cases 1

5
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. |[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
‘FAILED Check assertion violated. [t4: test deposit_on with wrong imp, complete contract with shallow object copy
‘FAILED Postcondition violuted) t5: test deposit_on with wrong imp, complete contract with deep object copy




Experiment: Complete Postconditions

* Download the Eiffel project archive (a zip file) here:

nttps://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

LhCS53311/codes/array math contract.zip
e Unzip and compile the project in Eiffel Studio.
¢ Reproduce the illustrations explained in lectures.

39 or 4%
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Beyond this lecture

e Consider the query account_of (n: STRING) of BANK.

e How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o

o

° ’accounts old accounts ‘ [ x]
° ’accounts old accounts .twin‘ [ x]
° ’ accounts old accounts .deep,twin‘ [ %]
accounts old accounts ‘ [ x]
accounts old accounts .twin‘ [ %]
S ’accounts old accounts .deep,twin‘ [vV]

¢ Which equality of the above is appropriate for the

postcondition?

e Why is each one of the other equalities not appropriate?

afl ot A%
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