Copying Objects
Writing Complete Postconditions

EECS3311 A & E: Software Design

YORK u e

UNIVERSITE CHEN-WFI WANG
UNIVERSITY

http://www.eecs.yorku.ca/~jackie

I

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:

1. 3 Levels of Copying Objects:
Reference vs. Shallow vs. Deep

2. Use of the o1d keyword in Postconditions

3. Writing Complete Postconditions using logical quantifications:
Universal (V) vs. Existential (3)

I

Part 1 i\gsonos

Copying Objects

Copying Objects

Say variables c1 and c2 are both declared of type C. [c1, c2: ¢]
e There is only one attribute a declared in class C.
e cl.aandc2.a are references to objects.

_—

cl

—

c2

Copying Objects: Reference Copy

Reference Copy cl := c2

o Copy the address stored in variable c2 and store it in c1.
= Both c1 and c2 point to the same object.
= Updates performed via c1 also visible to c2. [aliasing]

-
.
G

Cc

Copying Objects: Shallow Copy LASSONDE

Shallow Copy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

C
cl

c3

i

o

S — (-]

c2

I

Copying Objects: Deep Copy LASSONDE

Deep Copy [c1 := c2.deep twin]
o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c3 as follows:

Base Case: a is primitive (e.g., INTEGER). = c3.a := c2.a.
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin
o Make a reference copy of c3: cl := c3

= c1 and c2 are not pointing to the same object.
= cl.a and c2.a are not pointing to the same object.
= No aliasing occurs at any levels.

-
—

° w

-
—

et ae o

Copying Objects

a
® [
= Initial situation: name | ‘Almaviva”
landlord —:l
loved_one _l 03
02 “Figaro” “Susanna”
= Result of:
bi=a]
04 Almaviva”
Cc := a.twin ®

d := a.deep_twin ©) name |__“Almaviva” :|05

landlord

|

oved_one . _l o7
06 r=m— 7 .

Figaro Susanna

i

I

Example: Collection Objects (1)

o In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).

o Assume the following variables of the same type:

local
imp : ARRAY[STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force ("Tom", 3)

e Before we undergo a change on imp, we “ copy " itto old_imp.
o After the change is completed, we compare imp vs. old_imp.
¢ Can a change always be visible between “old” and “new” imp?

Example: Collection Objects (2)

e Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

h ARRAY[STRING]
[y |

imp
imp[1] imp[2] M

STRING STRING STRING
value value value

22

old imp

i or A

Reference Copy of Collection Object

NOoO O WN =

T
‘ old.imp :=

imp
Result := old _imp = imp
imp[2] := "Jim"
Result :=
across 1 |..]|

all imp [7]
end —- Rest

N PR
SuLt =

true

imp.count is j
~ old_imp [7]

Before Executing L3

After Executing L3

(\

ARRAY[STRING]

STRING

m “Alan”

STRING

m “Mark”

STRING

Lo Ip [=]

old_imp

imp
STRING STRING STRING

STRING

I

Shallow Copy of Collection Object (1)

T

1 ‘ old.imp := imp.twin ‘
2 |Result := old _imp = imp Result false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 | all imp [j] ~ old_imp [j]
7 end - Result = false
Before Executing L3 After Executing L3
ARRAY[STRING] ARRAY[STRING] STRING ’
/ ‘ ‘ / ‘ ‘ value
inp / \\ \ imp / X \
STRING STRING STRING STRING STRING STRING
m m value value value value
old_im / / / old_im / / /
N A — ’ /T
ARRAY[STRING] ARRAY[STRING]

Shallow Copy of Collection Object (2)

LASSONDE

T

1 ‘ old.imp := imp.twin

2 |Result := old_imp = imp —— Resul
3 | imp[2] .append ("*xx")

4 |Result :=

5 across 1 |..| imp.count is j

6 all imp [j] ~ old_imp [j]

7 end —— Result = true

t = false

Before Executing L3

ARRAY[STRING]

e

old_imp

‘ -

ARRAY[STRING]

After Executing L3

ARRAY[STRING]

[N\~

STRING STRING
value value

STRING
value

old_imp

/ ‘Mark*

ARRAY[STRING]

IS

Deep Copy of Collection Object (1)

oo ON =

T

‘ old.imp := imp.deep-twin
Result := old_imp = imp —— Res
imp[2] := "Jim"
Result :=

across 1 |..| imp.count is j

all imp [7]

~ old_imp [j] end —-- Res

= false

Before Executing L3

After Executing L3

ARRAV[STRING]

nnn
STR!NG STRING STR!NG
“Alan” “Mark”

STRING STRING

STRING

ARRAY[STRING]

ARRAY| m STRING
/ m “Jim”
imp

STRING STRING STRING
STRING STRING STRING

old_imp

N 171

14 ot A

Deep Copy of Collection Object (2)

et ae o

T

1

1 ‘ old-imp := imp.deep_-twin

2 |Result := old imp = imp —— Re = false

3 | imp[2] .append ("xxx")

4 |Result :=

5 across 1 |..| imp.count is j

6 all imp [j] ~ old imp [j] end = false

Before Executing L3 After Executing L3

ARRAV[STRING]

ARRAV[STRING]

/ PERNEN

STRING STRING STRING
“Alan” “Mark”

STRING STRING

ARRAY[STRING]

STRING

nnn
STRING STRING STRING
“Alan” Sizrk”

“Mark***"

STRING STRING STRING
old_imp

15 ot

Experiment: Copying Objects

* Download the Eiffel project archive (a zip file) here:

nttps://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

LECS3311/codes/copying objects.zip
¢ Unzip and compile the project in Eiffel Studio.
¢ Reproduce the illustrations explained in lectures.

b ot

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/copying_objects.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/copying_objects.zip

I

Part 2 IfA%SONDE

Writing Complete Postconditions

L ora]

I

How are contracts checked at runtime?
o All contracts are specified as Boolean expressions.
o Right before a feature call (e.g., acc.withdraw (10)):
o The current state of acc is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.
e Cache values, via E], of old expressions in the post-condition .

eg. [old-accounts.i_id = accounts[il.id]
e.g., [old_accounts._i := accounts]i]]
e.g., ’ (old accounts|i].twin) .id ‘ [old_accounts_i_twin := accounts|i].twin]
eg., [old-accounts := accounts]
e.g.,| (old accounts.twin)[i].id ‘ [old_accounts_twin := accounts.twin]
e.g.,| (old Current).accounts[i].id ‘ [old_current := Current]
e.g.,’ (old Current.twin).accounts[i].id ‘ [old_current_twin := Current.twin |

o Right after the feature call:
o The current state of acc is called its post-state.

o Evaluate post-condition using both current values and “cached”

values of attributes and queries.
o Evaluate invariant using current values of attributes and queries.

I

When are contracts complete?

In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.

o Eiffel supports this purpose using the old keyword.

This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:

1. The intended change is present; and

2. The rest of the structure is unchanged .

The second contract is much harder to specify:

o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across |

19 ot 47

I

Accou nt LASSONDE

\n,

class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
create balance = old balance + a
make end
feature - Att te is_equal (other: ACCOUNT): BOOLEAN
owner: STRING do
balance: INTEGER Result :=
owner ~ other.owner
feature —— Comn Is and balance = other.balance
make (n: STRING) end
do end
owner := n
balance := 0
end

I

\n,

Bank LASSONDE

class BANK

create make

feature
accounts: ARRAY [ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT

require - the input
existing: across accounts is acc some acc.owner ~ n end
-1 (across accounts is all acc >r /~ n
do ... ensure Result owner ~ n end
add (n: STRING)
require —- the not exist

u am oes
non_existing: across accounts is acc all acc.owner /~ n end

/ s)
accounts 18

(across
local new_account: ACCOUNT
do
create new_account.make (n)
accounts. force (new_account, accounts.upper + 1)
end
end

I

Roadmap of lllustrations

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

Object Structure for lllustration

We will test each version by starting with the same runtime object

structure:

b.accounts

accounts

ACCOUNT

owner

balance

v3ioral

“Bill”

ACCOUNT
owner “Steve”

balance

Version 1:

class BANK
deposit_on_vl

LASSONDE
Incomplete Contracts, Correct Implementation

(n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end
local i: INTEGER

do

from 1 accounts. lower
until i > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i:=1+1
end
ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:

Current.account_of(n) .balance

end

old Current.account_of(n) .balance + a
end

rZiwe Wi

I

\n,

Test of Version 1 LASSONDE

class TEST_ BANK
test_bank_deposit_correct_imp_incomplete_ contract: BOOLEAN

local
b: BANK
do

comment ("tl: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars K
b.deposit_on.vl ("Steve"”, 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

o ot

Test of Version 1: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

PASSED (1 out of 1)

Violation

Boolean 1 1
[ALL Cases

TEST_BANK

‘PASSED ‘ NONE |t1: test deposit_on with correct imp and incomplete contract

b ot dd

Version 2: e sous
Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

[ms

ny of version 1, followed by a deposit into 1lst accoun
accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n) .balance + a
end
end

Current postconditions lack a check that accounts other than n
are unchanged.

I

Test of Version 2 LASSONDE

\n,

class TEST_ BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

local
b: BANK
do

comment ("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")
deposit 100 dol

b.deposit_on.v2 ("Steve"”, 100)

7 s to Steve’s
1 s to Steve’s

acc

Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end

end

Test of Version 2: Result

\n,

LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (1 failed & 1 passed out of 2)

\Violation]]

Boolean 1 2
A1l Cases 1 2

Testl
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract

LASSONDE

Version 3:
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end

local i: INTEGER

llowed by a

r].deposit (a)

i/

accounts[accounts.lowe
= old accounts.count

ensure
num_of_accounts_unchanged: accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a

others_unchanged :
across old accounts is acc

all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

end

end
end
e

I

\n,

Test of Version 3 LASSONDE

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN

local
b: BANK
do

comment ("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars K
b.deposit_on.v3 ("Steve"”, 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

Came i

I

\n,

Test of Version 3: Result

LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (2 failed & 1 passed out of 3)

Cose Type] _____Passed | Total

Violation 0 4
Boolean 1 3
All Cases 1

3
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated.

t3: test deposit_on with wrong imp, complete contract with reference copy

LASSONDE

Version 4:
Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end

local i: INTEGER

do ...

lowed by a der

r].deposit (a)

NF trerainn 1
of version 1,

accounts[accounts.lowe

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a

others_unchanged :

across old accounts.twin is acc

all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

end

end
end
e

I

Test of Version 4 LASSONDE

\n,

class TEST_ BANK JN
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE
local
b: BANK
do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars to
b.deposit_on.v4 ("Steve"”", 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

34 ot 4

Test of Version 4: Result

LASS

ONDE

APPLICATION

Note:

* indicates a violation test case

FAILED (3 failed & 1 passed out of 4)

Total
Violation] 0

Boolean 1 4
A1l Cases 1

PASSED

Contract Viola

4
TEST_BANK

NONE t1l: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with

wrong imp, complete contract with shallow object copy

LASSONDE

Version 5:
Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end

local i: INTEGER

llowed by a

r].deposit (a)

i/

accounts[accounts.lowe
= old accounts.count

ensure
num_of_accounts_unchanged: accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a

others_unchanged :
across old accounts.deep_-twin is acc

all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

end

end
end
e

I

\n,

Test of Version 5 LASSONDE

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local
b: BANK
do

comment ("t5: wrong imp and complete contract with deep copy")
create b.make

b.add ("Bill")

b.add ("Steve")

dep
b.depos
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

30140

Test of Version 5: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)
Total
Violation 0 0
‘ Boolean 1 5
\All Cases 1

5
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. |[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
‘FAILED Check assertion violated. [t4: test deposit_on with wrong imp, complete contract with shallow object copy
‘FAILED Postcondition violuted) t5: test deposit_on with wrong imp, complete contract with deep object copy

Experiment: Complete Postconditions

* Download the Eiffel project archive (a zip file) here:

nttps://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

LhCS53311/codes/array math contract.zip
e Unzip and compile the project in Eiffel Studio.
¢ Reproduce the illustrations explained in lectures.

39 or 4%

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/array_math_contract.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/array_math_contract.zip

I

Beyond this lecture

e Consider the query account_of (n: STRING) of BANK.

e How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o

o

° ’accounts old accounts ‘ [x]
° ’accounts old accounts .twin‘ [x]
° ’ accounts old accounts .deep,twin‘ [%]
accounts old accounts ‘ [x]
accounts old accounts .twin‘ [%]
S ’accounts old accounts .deep,twin‘ [vV]

¢ Which equality of the above is appropriate for the

postcondition?

e Why is each one of the other equalities not appropriate?

afl ot A%

Index (1) LASSONDE

[earnlng UBIechvea

Part 1

D g Ob 3

opying |ects: hererence Cop

opyin |eCls: allow Cop

opying jects: Deep Cop

Example: Copylng UBIec[§

Xxampie: Coliection |ects

Xampie: Coliection jects

erterence Copy or Collection |eC

allow Copy ot Coliection |eC

Al ot ad

Index (2)

atlow Copy ot Loliection |ecC

eep Copy o1 Loilection jeC

eep Copy or Lollection |eC

[Experiment: Copying Objects|

Parf2

['When are coniracts complete?
Bccouni

Bank

[Roadmap of TMustrations]

ject Structure Tor IMustratio

Index (3)

WETSion T: !
Incomﬁlefe Contracts, Correct Implemenfahoil

[TeSTof Version 1

(TeST of VeFsion T Resi

VerSion Z: -

ncomplete Contracts, WWrong Implementatio

lest of Version 2

Test of Version 2 Resul
Version 3:]
[Complete Coniracts with Reference Copyl

lest of Version J3: Hesull

Index (4
Version Z:

ompiete contracts wi aliow jecC op
[fesfof Version 4 Resull

Nersion 5:]
ompilete Contracts wi eep jec op

Tesf of Version 5

[Testof Version b Hesull

[Experiment: Complete Postconditions|
[Beyond this Tecture]

da ot ad

	Learning Objectives
	Part 1
	Copying Objects
	Copying Objects: Reference Copy
	Copying Objects: Shallow Copy
	Copying Objects: Deep Copy
	Example: Copying Objects
	Example: Collection Objects (1)
	Example: Collection Objects (2)
	Reference Copy of Collection Object
	Shallow Copy of Collection Object (1)
	Shallow Copy of Collection Object (2)
	Deep Copy of Collection Object (1)
	Deep Copy of Collection Object (2)
	Experiment: Copying Objects
	Part 2
	How are contracts checked at runtime?
	When are contracts complete?
	Account
	Bank
	Roadmap of Illustrations
	Object Structure for Illustration
	Version 1: Incomplete Contracts, Correct Implementation
	Test of Version 1
	Test of Version 1: Result
	Version 2: Incomplete Contracts, Wrong Implementation
	Test of Version 2
	Test of Version 2: Result
	Version 3: Complete Contracts with Reference Copy
	Test of Version 3
	Test of Version 3: Result
	Version 4: Complete Contracts with Shallow Object Copy
	Test of Version 4
	Test of Version 4: Result
	Version 5: Complete Contracts with Deep Object Copy
	Test of Version 5
	Test of Version 5: Result
	Experiment: Complete Postconditions
	Beyond this lecture

