Copying Objects
Writing Complete Postconditions

EECS3311 A & E: Software Design

YO R K ' Fall 2020

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Learning Objectives o

Upon completing this lecture, you are expected to understand:

1. 3 Levels of Copying Objects:
Reference vs. Shallow vs. Deep

2. Use of the o1d keyword in Postconditions

3. Writing Complete Postconditions using logical quantifications:
Universal (V) vs. Existential (3)

Part 1 :AssoNDE
Copying Objects
Copying Objects assonoe

Say variables c1 and c¢2 are both declared of type C. [c1, c2: ¢]
e There is only one attribute a declared in class C.
e cl.aand c2.a are references to objects.

C
S =
cl

C
S =
c2

LASSONDE

ooooooooooooooooo

Copying Objects: Reference Copy

Reference Copy cl i= c2
o Copy the address stored in variable c2 and store itin c1.

= Both c1 and c2 point to the same object.

= Updates performed via c1 also visible to c2.

—

[aliasing]

k

cl

g

c2
Copying Objects: Shallow Copy VT
Shallow COpy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a

o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

C
a

ANATAS

Copying Objects: Deep Copy LASSONDE
Deep Copy [c1 := c2.deep twin]
o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c3 as follows:
Base Case: a is primitive (e.g., INTEGER). = c3.a := c2.a.
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin

o Make a reference copy of c3: cl := ¢3
= c1 and c2 are not pointing to the same object.
= cl.a and c2.a are not pointing to the same object.
= No aliasing occurs at any levels.

cj

<]
[= 1]
c2
_

Copying Objects

@ 1

= Initial situation: name | “Almaviva”
landlord —:l

|
oved_one i, _1 03

02

“Figaro” “Susanna”
= Result of:
bi=a]
o4 ‘Almaviva”
c := a.twin ©
d := a.deep_twin @ name | “Almaviva” :l 05
landlord i
loved_one _1 o7
06 P " » -
Figaro Susanna

8 of 41

Example: Collection Objects (1)

LASSONDE

ooooooooooooooooo

o In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):

At runtime, that variable stores the address of an object of that type

(as opposed to storing the object in its entirety).
o Assume the following variables of the same type:

local
imp : ARRAY [STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Ton", 3)

e Before we undergo a change on imp, we “ copy " itto old_imp.
o After the change is completed, we compare imp vs. old_imp.
e Can a change always be visible between “old” and “new” imp?

Example: Collection Objects (2)

LASSONDE

ooooooooooooooooo

¢ Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]
imp
imp[1] imp[2] imp[3]
STRING STRING STRING
22
old imp

Reference Copy of Collection Object LASSONDE
T 1
1 ‘ old-imp := imp
2 |Result := old _imp = imp -- Result = true
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old _imp [7]
7 end Re [t = true
Before Executing L3 After Executing L3
(]
old_imp
ola_inp Lo [[-] i
STRING STRING STRING
m NAEL m “Mark” m “Tom”
imp
STRING STRING STRING
[vatue [RAEA [value R [vaive [RETE [vatue [BIIA
Shallow Copy of Collection Object (1) LASSONDE
T 1
1 ‘ old-imp := imp.twin
2 |Result := old imp = imp -- Result = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [j]
7 end Result = false

Before Executing L3

After Executing L3

ARRAY[STRING] ARRAY[\STRING] STRING
P / N
imp imp // %X% \\\\\\\\
STRING STRING STRING STRING STRING STRING
m “Alan” m “Mark” m “Tom” m “Alan” value a value
old_imp ‘ ‘ old_imp ‘ ‘
ARRAY[STRING] ARRAY[STRING]

Shallow Copy of Collection Object (2)

LASSONDE

ooooooooooooooooo

T

1 ‘ old-imp := imp.twin ‘
2 |Result := old imp = imp -- Result = false
3 | imp[2].append ("xx*")
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [7j]
7 end Result = true
Before Executing L3 After Executing L3
[ARRAY[STRING] | ARRAY[STRING]
nnm Pgvae
imp / \ \
STRING STRING STRING STRING STRING STRING
“Alan” “Mark” “Tom” value |[RVAE] valu m “Tom”
‘Mark***
old mp / old imp /‘ /
ARRAY[STRING] \ ARRAY[STRING]
Deep Copy of Collection Object (1) LASSONDE
T 1
1 ‘ old-imp := imp.deep-twin ‘
2 |Result := old imp = imp -- Result = false
3 | imp[2] := "Jim"
4 |Result :
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [j] end —- Result = false

Before Executing L3

After Executing L3

/
VAN

P
STRING STRING STRING

STRING

STRING STRING
- A ver QY rom”

ARRAY[STRING]

ARRAY m STRING
/ “Jim”
imp

STRING STRING STRING

ARRAY[STRING]

Deep Copy of Collection Object (2)

T
1 ‘ old-imp := imp.deep_twin ‘
2 |Result := old _imp = imp Result = false
3 | imp[2] .append ("x*x")
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [j] end Result = false

Before Executing L3 After Executing L3

ARRAY[STRING]

/
ARRAY[STRING]

/! ! ~ STRING STRING STRING
“Alan” “izrk”
STRING STRING STRING
“Mark*

STRING STRING STRING STRING STRING

STRING

Experiment: Copying Objects

¢ Download the Eiffel project archive (a zip file) here:

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/
EECS3311/codes/copying_objects.zip

e Unzip and compile the project in Eiffel Studio.
¢ Reproduce the illustrations explained in lectures.

Part 2 LASSONDE When are contracts complete? LASSONDE

oooooooooooooooooooooooooooooooooo

In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
o Eiffel supports this purpose using the old keyword.

This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.

e.g., INTEGER, BOOLEAN are simple-structured.
Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

Writing Complete Postconditions

The second contract is much harder to specify:
o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across |

How are contracts checked at runtime? LASSONDE Account LASSONDE
o All contracts are specified as Boolean expressions.
o Right before a feature call (e.g., acc.withdraw (10)): class
. i ACCOUNT
e The current state of acc is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries. inherit deposit (a: INTEGER)
e Cache values, via[: =], of old expressions in the post-condition . ANY do
— . - redefine is_equal end balance := balance + a
e.g.,| old accounts|i].id [old_accounts_i_id := accountsi].id]
ensure
e.g.,| (old accountsfi]).id [old_accounts._i := accounts|i]] create balance = old balance + a
e.g.,| (old accounts]i].twin).id [old_accounts_i_twin := accounts|i].twin] make end
e.g.,| (old accounts)[i].id [old_accounts := accounts] feature - Attributes is_equal (other: ACCOUNT) : BOOLEAN
e.g.,’ (old accounts.twin)[i].id ‘ [old_accounts_twin := accounts.twin] owner: STRING do
balance: INTEGER Result :=
e.g.,| (old Current).accounts[i].id ‘ [old_current := Current] owner ~ other.owner
e.g.,| (old Current.!win).accounts[i].id‘ [old_current_twin := Current.twin] feature - ¢ 1ds and balance = other.balance
. make (n: STRING end
o Right after the feature call: do () end
e The current state of acc is called its posi-state. owner := n
e Evaluate post-condition using both current values and “cached” balance := 0
values of attributes and queries. end
o Evaluate invariant using current values of attributes and queries.

Bank

class BANK
create make
feature
accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require the input name exists

g\

LSSoNDE

existing: across accounts is acc some acc.owner ~ n end

-— not (across accounts 1s acc all acc.owner /~ n end)

do ... ensure Result.owner ~ n end

add (n: STRING)
require - the does not exist

non_existing: across accounts is acc all acc.owner /~ n end

not (a 0ss account

~ n end)

acc some acc.c

local new_account: ACCOUNT
do
create new_account.make (n)
accounts. force (new_account, accounts.upper + 1)

Roadmap of lllustrations o

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

L\

Object Structure for lllustration LASSONDE

We will test each version by starting with the same runtime object

structure:
BANK 0 1
b.accounts
<///’4'#' accounts
b

ACCOUNT ACCOUNT

“Bill” “Steve”

balance

E

Version 1: [ssoms
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_v1l (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i:=1+1
end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n) .balance + a

|
—

\wy

Test of Version 1

g

SSOND

E

HOOL OF ENGINEERING.

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract:
local
b: BANK
do
comment ("t1:
create b.make

BOOLEAN

correct imp and incomplete contract")

b.add ("Bill")
b.add ("Steve")
— deposit 100 c s to Steve’s account
b.deposit_on-vl ("Steve", 100)
Result :=

b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance =
check Result end
end

end

e

\wy

SS

Test of Version 1: Result

g

HOOL OF ENGINEERING.

E

APPLICATION

Note: * indicates a violation test case

PASSED (1 out of 1)
CoseTypl Passed | Toa
[} 0

Violation
Boolean
All Cases

1 1
“State[contract Violation] Testhame

TEST_BANK
PASSED NONE tl: test deposit_on with correct imp and incomplete contract

1 1

|
—

SSONDE

HOOL OF ENGINEERING.

Version 2:

\wy

g

Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

do ...

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n _increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a
end
end

Current postconditions lack a check that accounts other than n

are unchanged.
27 of 41]

|
—

\wy

g

Test of Version 2

SSOND

HOOL OF ENGINEERING.

E

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract:
local
b: BANK
do
comment ("t2:
create b.make

BOOLEAN

wrong imp and incomplete contract")

b.add ("Bill")
b.add ("Steve")
—— deposit 100 c ~s to Steve’s account
b.deposit_on.v2 ("Steve", 100)
Result :=
b.account_of ("Bill") .balance = 0

and b.account_of("Steve") .balance = 100

check Result end
end
end

28 of 41

Test of Version 2: Result LASSONDE Test of Version 3 o

(00L OF ENGINEERING

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref_ copy: BOOLEAN

APPLICATION local
b: BANK
Note: * indicates a violation test case do
- comment ("t3: wrong imp and complete contract with ref copy")
[FAILED (1 failed & 1 passed out of 20 | create b.make
b.add ("Bill")
Violation [) e b.add ("Steve")
Boolean 1 2
All Cases 1 2 -—d 100 ars c
Siote b.deposit-on.v3 ("Steve
Result :=
PASSED NONE [t1: test deposit_on with correct imp and incomplete contract| b.account_of ("Bill") .balance = 0
FAILED [Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract and b.account_of ("Steve") .balance = 100
check Result end
end

end

1 of 41

Version 3: VAT Test of Version 3: Result o
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)

(00L OF ENGINEERING

require across accounts is acc some acc.owner ~ n end APPLICATION
local i: INTEGER Note: * indicates a violation test case
do ...
versi ed b : 1 |
accounts[accounts.lower] .deposit (a) FAILED (2 failed & 1 passed out of 3)
' :
ensure violationl @ ¢ | @
num_of_accounts_unchanged: accounts.count = old accounts.count Boolean 1 3
balance_of_n_increased: All Cases 1 3
Current.account_of (n) .balance =
old Current.account_of(n).balance + a
others_unchanged : ‘ PASSED NqNE : tl: test depos?t_on ww:Lth corr‘ec? imp unrl;i incomplete contract
FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract
across old accounts is acc FAILED |Check assertion violated.[t3: test deposit_on with wrong imp, complete contract with reference copy
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end
{30t 41t

Version 4: LASSO

NDE

100L OF ENGINEERING

Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end

local i: INTEGER
do
of
of 1, f
accounts[accounts.lower].deposit (a)
ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n) .balance + a

others_unchanged :

across old accounts.twin is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end

Test of Version 4

LASSONDE

STHOOL OF ENGINEERING.

b.deposit_on-v4

class TEST_BANK JN
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE
local
b: BANK
do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make
b.add ("Bill")
b.add ("Steve")

Result :=
b.account_of("Bill") .balance = 0
and b.account_of("Steve") .balance = 100
check Result end
end
end

Test of Version 4: Result LASSONDE

(00L OF ENGINEERING

APPLICATION

Note: * indicates a violation test case

FAILED (3 failed & 1 passed out of 4)
pe]

Total

Violation))

Boolean 1 4
ALl Cases 1 4
Test Nane
[PASSED [NONE [t1: test deposit_on with correct imp and incomplete contract |
FAILED Check assertion violated.|[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy

e

Vers

ion 5:

LASSONDE

(00L OF ENGINEERING

Complete Contracts with Deep Object Copy

do

end
end

local i:

class BANK
deposit_on_v5 (n:

accounts/|
ensure

num_of_accounts_unchanged:

balance_of_n_increased:
Current.account_of (n) .balance =

old Current.account_of(n) .balance + a

STRING; a:

require across accounts is acc some acc.owner ~ n end
INTEGER

others_unchanged :

INTEGER)

a d

posit (a)

accounts.count = old accounts.count

across old accounts.deep_-twin is acc
all

end

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

§§OI‘II

Test of Version 5 LASSONDE Experiment: Complete Postconditions

ooooooooooooooooo

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local
b: BANK
do o . . . L i
comment ("t5: wrong imp and complete contract with deep copy") Download the Elffel prOJeCt arChlve (a le flle) here'
create b.make https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/
b.add ("Bill") -
b.add ("Steve") EECS3311/codes/array_math_contract.zip
‘ o e Unzip and compile the project in Eiffel Studio.
— deposit 100 dollars to Steve’s account
b.deposit_onv5 ("Steve”, 100) * Reproduce the illustrations explained in lectures.
Result :=

b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance =
check Result end
end
end

100

37 of 41

"I

Test of Version 5: Result LASSONDE Beyond this lecture

ooooooooooooooooo

e Consider the query account_of (n: STRING) of BANK.

APPLICATION ¢ How do we specify (part of) its postcondition to assert that the

Note: * indicates a violation test case State of the bank rema|ns unchanged
|

FAILED (4 failed & 1 passed out of 5) ° ’ accounts = old accounts ‘ [x]
— .
Viototion o o o |accounts = old accounts .tw:l.n‘ [x]
Boolean 1 5 :

o = X

o - - accounts old accounts.deep_twin ‘ [x]
o [accounts ~ old accounts] [%]
PASSED NONE t1l: test deposit_on with correct imp and incomplete contract o |accounts ~ old accounts.twin ‘ [X]
FAILED Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract
FAILED |Check assertion violated.|t3: test deposit_on with wrong imp, complete contract with reference copy] ’ accounts ~ old accounts. deep,twin ‘ [\/]
FAILED Check assertion violated.|t4: test deposit_on with wrong imp, complete contract with shallow object copy
FAILED Postcondition V"Lolated] t5: test deposit_on with wrong imp, complete contract with deep object copy) Wh|Ch equa“ty of the above |S appropnate for the

postcondition?
¢ Why is each one of the other equalities not appropriate?

Index (1) LassoNpE

|[Learning Objectives|
[Copying Objects|

[Copying Objects: Reference Copy|
|Copying Objects: Shallow Copy|
|Copying Objects: Deep Copy|

[Example: Copying Objects|

|[Example: Collection Objects (1)|

[Example: Collection Objects (2)|

[Reference Copy of Collection Object|

[Shallow Copy of Collection Object (1)|

Index (2) :AssoNDE

[Shallow Copy of Collection Object (2)|
[Deep Copy of Collection Object (1)
[Deep Copy of Collection Object (2)|
[Experiment: Copying Objects|

[How are contracts checked at runtime?|

(When are contracts complete?|

[Roadmap of lllustrations|

|Object Structure for lllustration|

Index (3) LassoNDE

[Version 1: |
[Incomplete Contracts, Correct Implementation|
Test of Version 1

T f Version 1: R I
[Version 2:
[Incomplete Contracts, Wrong Implementation|

Test of Version 2

Test of Version 2: Result

Version 3:
[Complete Contracts with Reference Copy|

Test of Version 3
[Test of Version 3: Result|

Index (4) :AssoNDE

[Version 4: |
[Complete Contracts with Shallow Object Copy|

T f Version 4

[Test of Version 4: Resuli
[Version 5:
|Complete Contracts with Deep Object Copy|

Test of Version 5
[Test of Version 5: Result|
[Experiment: Complete Postconditions|

[Beyond this lecture|

