Modularity
Abstract Data Types (ADTs)

EECS3311 A & E: Software Design

YO R K ' Fall 2020

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Learning Objectives hssonpe

Upon completing this lecture, you are expected to understand:
1. Criterion of Modularity , Modular Design

2. Abstract Data Types (ADTs)

2 of 16

Modularity (1): Childhood Activity LASSONDE

ooooooooooooooooo

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.orglandhttps://www.wish.com

3 of 16

MOdUIarity (2): Dally Construction LASSONDE

ooooooooooooooooo

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Source: https://usermanual .wiki/

Modularity (3): Computer Architecture LASSONDE

ooooooooooooooooo

Motherboards are built from functioning units (e.g., CPUSs).

SuperlO
Rear Fan DIMM DDR2 Chip 24-pin ATX

Power Connector

Connector

Y Connector . Memory Slots (x2)
CPUFan CPU Socket N Floppy Connector
@—» Clock_In Connector (LGAT75) \ IDE Connector (x1)
el B 4-pin . Chasis Fan
= }&:" B ATX Connector, « N
L ress Bus - SATA
Switch_} € 2 \ B3, Connectors (x4)
ResetWDT \ | S
2 Reset_In 4
Control d > : X
Addr_15| 897 Panel Header
Data_0| g USB Headers
NS
.

Southbridge
(without heatsink)

/O Panel
8-Bit Connectors

Data Bus)
Northbridge Chipset
CMOS Battery
55 PCI Slots (x2)
Front Audio
Header
Integrated HD-Audio
codec chip

Serial {—» Recy Data_7|

Integrated Ethernet
Port |<e—|xmit Read chi

PCI Express x16
Write| Control Slot ,
ChipSelect 0—» [Lines PCI Express x1
iy Gnd ChipSelect_1—» Slot

Power Supply —|Pwr

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: |www . embeddedlinux.org.cnandhttps://en.wikipedia.or
= = = -

Modularity (4): System Development LASSONDE

ooooooooooooooooo

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.

(% DECLARATION)
Fommmmmmo + (+ Function block body in FBD language)
| nIMITS_ | HIGH_ALARM
| ALARM | Gt
| HYSTERESIS
REAL-- |H QH| --BOOL Rem oo XINL Q= mbmm e -
REAL--|X o|--BooL. || s wel | |
REAL--|L QL | --BOOL Hrmoomeeees ::} ”””” }XI’“ }
REAL-- | EPS | [— | |
[POS— | |EPS [[——
[| B S S S | >=1 |
FUNCTION_BLOCK LIMITS_ALARM EPS --| / |--| | |--@
VAR_INPUT 2.0 -] | | LOW_ALARM - |
H REAL; (+ High limit) " /e e 1 E [R [—
vy H(EPS2)- / NC(No change) | +mmmt W3 | HYSTERESIS |
; HEPS SH-OFASLE) L mmmmmmmmmmooeee |+ |---m- |xTNL Q-m#mmmmmmmmee oL
I
e / Q=oAL T"\V”\‘ | x1N2
Lepszl | NCNochange) | || L TTTTT |EPS
e e I O
QL=1(TRUE)
END_FUNCTION_BLOCK ™E

Sources: https://plcopen.org/iec-61131-3

Modularity (5): Software Design

Software systems are composed of well-specified classes.

ITERATION_CURSOR [G]*

SORTED_ADT [K, V]*

feature - model
model: SEQ [KV_PAIRIK.V]]

Design Principle: Modularity

e Modularity refers to a sound quality of your design:
1. Divide a given complex problem into inter-related sub-problems
via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.
2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.
e The UNIX principle: Each command does one thing and does it well.
o In objected-oriented design (OOD), each class serves as a module.
Conquer original problem by assembling sub-solutions.
¢ In OOD, classes are assembled via client-supplier relations
(aggregations or compositions) or inheritance relations.
A modular design satisfies the criterion of modularity and is:
o Maintainable: fix issues by changing the relevant modules only.
o Extensible: introduce new functionalities by adding new modules.
o Reusable: a module may be used in different compositions

o Orposite of modularity: A superman module doing everything.

1 d

Abstract Data Types (ADTs) A

e Given a problem, decompose its solution into modules .

e Each module implements an abstract data type (ADT) :
o filters out irrelevant details
o contains a list of declared data and well-specified operations

ADT
Interface |_ request
Data add() S
Structure remove() " result
find()

e Supplier’s Obligations:
o Implement all operations
o Choose the “right” data structure (DS)
e Client’s Benefits:
o Correct output
o Efficient performance
¢ The internal details of an implemented ADT should be hidden.
I,
|

Building ADTs for Reusability

e ADTs are reusable software components
e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs

¢ An ADT, once thoroughly tested, can be reused by:
o Suppliers of other ADTs
o Clients of Applications

As a supplier, you are obliged to:

o Implement given ADTs using other ADTs (e.g., arrays, linked lists,
hash tables, etc.)

o Design algorithms that make use of standard ADTs
For each ADT that you build, you ought to be clear about:
o The list of supported operations (i.e., interface)

e The interface of an ADT should be more than method signatures and
natural language descriptions:

e How are clients supposed to use these methods?
o What are the services provided by suppliers?

[preconditions]
[postconditions]

o Time (and sometimes space) complexity of each operation

Why Java Interfaces Unacceptable ADTs (1) LASSONDE

Interface List<E>
‘E - the type of elements in this list'

All Superinterfaces:

Collection<E>, Iterable<E>
All Known Implementing Classes:

AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArraylList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

public interface List<E>
extends Collection<E>

‘An ordered collection (also known as a sequence].’ he user of this interface has precise control over where in the list each element is
nserted. The user can access elements by their integer index (position in the list), and search for elements in the list.

It is useful to have:

e A generic collection class where the homogeneous type of
elements are parameterized as E.
¢ A reasonably intuitive overview of the ADT.

Java 8 List API

Why Java Interfaces Unacceptable ADTs (2) LASSONDE

Methods described in a natural language can be ambiguous:

E set(int index, E element)

Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation).)

Parameters:

index - index of the element to replace

element - element to be stored at the specified position

Returns:

the element previously at the specified position

Throws:

UnsupportedOperationException - if the set operation is not supported by this list
ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOfBuundsException - if the index is out of range (index < @ || index >= slze[)))

12 of 16]

Why Eiffel Contract Views are ADTs (1) LASSONDE

ooooooooooooooooo

class interface ARRAYED CONTAINER
feature C ands
assign_at (i: INTEGER; s: STRING)
—— Change the value at position 71’ to ’s’
require
valid index: 1 <= 1 and 1 <= count
ensure
size_unchanged:
imp.count = (old imp.twin) .count
item _assigned:
imp [i] ~ s
others_unchanged:
across
1 |..| imp.count as j
all
j.item /= i implies imp [j.item] ~ (old imp.twin) [j.item]
end
count: INTEGER
invariant
consistency: imp.count
end —-- class ARRAYED CON

13 of 16]

Why Eiffel Contract Views are ADTs (2)

Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

[ARRAYED_ CONTAINER R

feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position 'i' to 's".

require
validfinde

ensure
size_unchanged: imp.count = (old imp.twin).count
item_assigned: imp[il =5
orhers_mzchanged@j 11 <j<imp.count : j#i=>imp[j] ~ (old imp.twin) [j])

feature -- { NONE }
-- Implementation of an arrayed-container
imp: ARRAY[STRING]

invariant
consistency: imp.count = count

14 of 16/

_

Beyond this lecture... LASSONDE

ooooooooooooooooo

1. Q. Can you think of more real-life examples of leveraging the
power of modularity?

2. Visit the Java API page:
https://docs.oracle.com/javase/8/docs/api
Visit collection classes which you used in EECS2030 (e.qg.,
ArrayList, HashMap) and EECS2011.

Q. Can you identify/justify some example methods which
illustrate that these Java collection classes are not true ADTs
(i.e., ones with well-specified interfaces)?

3. Constrast with the corresponding library classes and features in
EiffelStudio (e.g., ARRAYED LIST, HASH TABLE).

Q. Are these Eiffel features better specified w.r.t.

obligations/benefits of clients/suppliers?

Index (1)

ooooooooooooooooo

|[Learning Objectives|
[Modularity (1): Childhood Activity|
[Modularity (2): Daily Construction|

[Modularity (3): Computer Architecture|

[Modularity (4): System Development|
[Modularity (5): Software Design|
[Design Principle: Modularity|
|[Abstract Data Types (ADTs)|

Building ADTs for Reusability,
|Why Java Interfaces Unacceptable ADTs (1))

[Why Java Interfaces Unacceptable ADTs (2)|

Index (2) LassONDE
Why Eiffel Contract Views are ADTs (1))

|Why Eiffel Contract Views are ADTs (2)|

[Beyond this lecture...|

17 of 16]

