
EECS3311 Fall 2020 Pre-Study

Chen-Wei Wang

Abstract

There is no submission required for this pre-study: it is meant to help you get an early start by
doing something useful but light.

Here is the suggested flow for completing this pre-study:

Step 1. Create an educational Github account account for storing your work for the course (in private

repositories). See Appendix A.

Step 2. If you wish to work on your own machine, see Appendix B for installing Eiffel Studio.

Step 3. Follow through Section 3 to Section 10 to go through some basics of the tool and language.

Step 4. Section 11 lists two possible sources of further reading.

Step 5. During the course, all your lab submissions must be compilable on the department machines. It is

then crucial that if you choose to work on your own machine, you are then responsible for testing your Eiffel
project before submitting it for grading. It is highly recommended that you also attempt this pre-study
using the department’s remote labs (where the Eiffel Studio tool is already installed). See:

https://remotelab.eecs.yorku.ca/

To launch Eiffel Studio in a remote lab session, on a terminal, type the following command to launch the
latest version of Eiffel Studio (19.05):

estudio19.05 &

1

https://remotelab.eecs.yorku.ca/

Contents

1 Acronyms 3

2 (Coming Soon) Tutorial for Introducing You to Design Basics 3

3 Create a Workspace for Your Eiffel Projects 4

4 Creating a Project 4
4.1 Download the Mathmodels library (if you work on your own machine) 5

5 Compiling the Starter Project in Eiffel Studio 6
5.1 Exploring Project Structure from the File System . 8
5.2 Understanding the Critical Directories . 9

6 Launching Tests in EStudio 10

7 Creating a New Class for Counter 13

8 Adding Another Root Class for Console Outputs Only 15
8.1 Adding the APPLICATION Class . 15
8.2 Denoting APPLICATION as the Root . 15
8.3 Change of Root Class ⇒ Change of Behaviour . 16
8.4 Redefining the APPLICATION Class . 18

9 Recompiling from Scratch 19

10 Your Tasks 20

11 Resources 21

A Applying for an Educational Github Account 22

B Installing and Launching EStudio 22
B.1 Windows . 22
B.2 Mac OS X . 22

C Last Resorts: Virtual Box Image or Remote Lab 25

2

1 Acronyms

– EStudio [Eiffel Studio]

– DbC [Design by Contract]

– TDD [Test-Driven Development]

– eclean [Prism-only Command for Cleaning Eiffel Projects]

2 (Coming Soon) Tutorial for Introducing You to Design Basics

Once you have completed the simple exercises for this pre-study (Section 3 to Section 10), you will be ready to go
through a comprehensive tutorial on DbC and TDD. Videos that you are able to find online

https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS

is currently under revision and extension. The refurbished version of tutorial videos will be made available to you
about two weeks before the semester starts: Monday, August 24.

3

https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS

3 Create a Workspace for Your Eiffel Projects

– Launch a terminal (right click on your desktop, then there should be an option for that).

– Type the following command to: 1) change the current director to your desktop; and 2) create an empty
workspace for your all Eiffel projects (for labs, the end-of-semester project, and more importantly, your own
exercises).

cd ∼/Desktop
mkdir eecs3311_workspace

where the symbol ∼ is a shorthand for the path of your home directory (e.g., /eecs/home/jackie). Now, you
have on your desktop an empty directory eecs3311 workspace.

Advice. The best way to learning a new programming language (not just Eiffel!) is by trying out as
many examples as you can. Whenever you find an idea or concept taught in class being puzzling or
fascinating, do not hesitate to create your own Eiffel projects to do your own experiments!

4 Creating a Project

– Using your Passport York (not EECS) credentials, access this website:

https://www.eecs.yorku.ca/˜eiffel/eiffel-new/

– In the Project Name textfield, enter the Eiffel project name for this pre-study: counter (and later, any name
of project which you wish to try out!).

Click on the Submit button, then choose to save the project arhicve file (i.e., counter.zip) into the workspace
you just created: ∼/Desktop/eecs3311 workspace.

– Now on your terminal, go to the workspace and uncompress the project archive file:

cd ∼/Desktop/eecs3311 workspace
unzip counter.zip

– Verify that the starter project for this pre-study has now been in place for compilation, by typing the command:

tree counter

Then you should see the following project structure:

4

https://www.eecs.yorku.ca/~eiffel/eiffel-new/

Now, proceed to Section 4.1 if you are working on your own machine (in which case you need to install and set
up the Mathmodels library). Otherwise, if you are working on a Prism lab computer, the Mathmodels library has
been installed and setup properly, so you can skip to Section 5

4.1 Download the Mathmodels library (if you work on your own machine)

Skip this section if you are working on a Prism lab machine! If you are setting up your own machine, download from
the following link:

http://www.eecs.yorku.ca/˜eiffel/zip/mathmodels.zip

Assuming that you already stored the archive file mathmodels.zip on your desktop (of if other directory, then just
set up accordingly), type the following command:

cd ∼/Desktop
unzip mathmodels.zip

Now you need to set an environment variable pointing to the where the uncompressed mathmodels directory. If
you work on a Windows machine, you can easily find out from the web how this can be done, e.g., click on this link.
Otherwise, if you work on a mac (and similarly for Linux), then open the .bash profile file:

nano ∼/.bash_profile

Then, write the following line to the .bash profile file (replace jackie by the user account name of your mac):

export MATHMODELS="/Users/jackie/Documents/svn/sel-open/mathmodels"

Type Ctrl + x to exit from the nano editor, and be sure to save the .bash profile file.

Finally, type the following command to make the new environment variable effective:

source ∼/.bash_profile
echo $MATHMODELS

Verify the output path denotes the exact location of the mathmodels directory.

5

http://www.eecs.yorku.ca/~eiffel/zip/mathmodels.zip
https://www.architectryan.com/2018/08/31/how-to-change-environment-variables-on-windows-10/

5 Compiling the Starter Project in Eiffel Studio

– On your terminal, type the following command to launch the latest version of Eiffel Studio (19.05):

estudio19.05 &

where the & means, as you learned from your EECS2031, that the process will be executed at the background of
the current terminal, and thus you do not need to open another terminal to execute other commands if needed.

– Right after EStudio is launched, a window will pop up. Click on the Add Project button:

– Choose the ecf (Eiffel Configuration) file for the counter project, which should be stored in here: ∼/Desktop/eecs3311 workspace/counter/counter.ecf.

6

– Now you should see the counter project being remembered in the EStudio startup window. Click on Open to
start compiling the project. Wait until you see from the Outputs panel that the compilation is successfully
completed.

– A success compilation should look like this:

Remark: The output message above includes phrases of C Compilation. Keep in mind that code written in
Eiffel is not directly executable; instead, they are compiled and, for efficiency reason, optimized into C code. All
C code is stored in a subdirectory of your project named EIFGENs (standing for Eiffel Generations). We will
explore this EIFGENs directory further.

This compilation makes sense: Eiffel is meant to be a design language for you to think at a much higher level
of abstraction, whereas C is meant to be an implementation language for you to tweak the performance of
your code, e.g., pointer arithmetic, dynamic memory (de)allocation.

7

5.1 Exploring Project Structure from the File System

– Using the GUI-based file explorer, understand that the counter project, automatically generated and successfully
compiled, has the following directory structure in the file system:

– Alternatively, using the terminal, reaffirm yourself about the directory structure:

8

5.2 Understanding the Critical Directories

– The directory root typically stores the ROOT class, which serves as the entry point of execution. This is

analogous to the case in Eclipse: a Java class (e.g., MyApplication) with the main method can be run as a Java
application. Just as in Eclipse you can have multiple Java classes with the main method and choose which one
to run as a Java application, in EStudio you can set a class as the root class of the project. See Section 8.2 for
more details on setting the root class of your project.

– The directory tests directory is meant to store all classes related to testing the correctness of the counter.

See Section 2 for the link to a tutorial series, which discusses how to write unit-tests in Eiffel.

– The directory EIFGENs (standing for Eiffel Generations) stores all the C code this is compiled from the source

Eiffel code in the current project. Since we chose the project name as counter, this results in the fact that
there is a subdirectory named counter under the EIFGENs directory. There are two subdirectories under
EIFGENs/counter that you should know about:

• F code: This directory stores the finalized (i.e., optimized and ready for delivery/submission) executable
of your project. When your new project is first created and compiled, the default option is that the project
is not finalized, meaning that it is still subject to a number of intermediate revisions/recompilations. To
see this, on your terminal type the following command:

ls ∼/Desktop/eecs3311 workspace/counter/EIFGENs/counter/F code

You should see an empty output. Why? Because nothing has been finalized yet!

• W code: As said, when your project is first created and compiled, it is still subject to a number of
recompilations until you are satisfied so that you can finalize your project. Currently there is an intermediate
(i.e., not optimized) executable that exists in this W code directory. To see this, type the following command:

ls ∼/Desktop/eecs3311 workspace/counter/EIFGENs/counter/W code

The output should be:

C1 Makefile TRANSLAT counter

E1 Makefile.SH config.sh counter.melted

where the file counter is in fact an executable. Try it by typing:

∼/Desktop/eecs3311 workspace/counter/EIFGENs/counter/W code/counter

You should see two outputs: one on the terminal and the other being a popped up HTML page. The
terminal output looks like:

The above console output says that the TEST EXAMPLE class (in the tests cluster) contains 4 tests, out of
which 3 passed (i.e., t1, t2, and t3) and 1 failed (i.e., t0).

9

The equivalent, but more user-friendly HTML output looks like:

The top of the HTML test table has a red bar: this is bad, because that means not all tests passed (i.e.,
at least one test failed).

6 Launching Tests in EStudio

• You typically do not need to run tests and generate the test report from the terminal (recall Section 5.2).
Instead, it is more advised that you (re-)run tests and (re-)generate the test report in EStudio. Now switch
back to EStudio. Look for a small, downward arrow (H) besides the Run button. Click on H and select Run
Workbench System.

You should then see the HTML report page popped up again (with a red bar).

• Now let’s do something (useless) that would make all tests pass (and get a green bar).

On the Class text box, type ROOT open that class:

10

You should now see the ROOT class on an open tab in the EStudio editor:

1 class
2 ROOT
3 inherit
4 ARGUMENTS_32
5 ES_SUITE -- testing via ESpec
6 create
7 make
8 feature {NONE} -- Initialization
9 make

10 -- Run app
11 do
12 print ("Hello EECS: void safe Eiffel project for 19.05!%N")
13 add_test (create {TEST_EXAMPLE}.make) --suite of tests
14 show_browser
15 run_espec
16 end
17 end

� Line 3 specifies the list of ancestor classes of ROOT.

� Line 4 specifies the ancestor class ARGUMENTS 32 that supports the building of a console application.
For example, Line 12 calls the inherited feature print to write to the console.

� Line 5 specifies the ancestor class ES SUITE that supports the building of a collection of unit-tests. For
example, Line 13 adds all test cases implemented in the TEST EXAMPLE class.

Note. As you might have observed, Eiffel inherit allows you to have multiple ancestors, unlike
Java extends. Also, Eiffel inherit allows all ancestors to contain implementations/code, unlike Java
implements (where each interface contains method headers only).

� Line 6 declares the list of commands (mutators) that can be used as constructors to create instances of
ROOT.

� Line 7 specifies that make currently is the only valid constructor. In general, you may declare as many
constructors as you wish. And, unlike Java, Eiffel constructors need not have the same name as the
residing class.

• Before we re-run the test, let’s show you as to why the ROOT class happens to be the entry point of execution.

� At the top of EStudio, go to Project, then select Project Settings.

� On the left panel, click on Target: counter, and inspect the right panel. You will see that the Root
of the project is set to ROOT.make.

11

Consequently, when we execute the project, the make constructor in the ROOT class will be executed.
Hence ROOT.make being the entry point of execution of the counter project. You can easily change the
root of project. See Section 8.2.

• Now that we know that the ROOT.make is the entry point of execution, let’s now modify the test class which
it depends on currently: TEST EXAMPLE. On the Class text box, type TEST EXAMPLE open that class and
change the t0 test that failed:

t0: BOOLEAN
do

comment ("t0: First test fails as Result = False")
-- this test will fail because Result = False
Result := True

end

• Now look for the small, downward arrow (H) besides the Run button. Click on H and select Run Workbench
System to generate a new test report. You should would then see this:

Why?! Didn’t we just change the test t0? Always remember, to have your program exhibit the behaviour
specified the latest version of your code, you need to re-compile it. In Eclipse your Java code is compiled
when it is saved; in Eiffel, saving a class does not compile it. Now on the top of EStudio, click on the
Compile button:

– After re-compilation, run the Workbench System again. Then you should see this:

12

Hurrah! All tests passed! But we know that this is not very useful as we have not written any tests for counter
yet. But this illustration is meant to remind you that you should always want all tests to pass and get a green
bar.

– To write meaningful tests, you need to learn about the ESpec library. See Section 2 for the link to a tutorial
series, where you can find parts on writing unit-tests in Eiffel.

7 Creating a New Class for Counter

– In EStudio, on the right panel Groups, right click on cluster model, then select New Class....

– Enter the Class name as MY COUNTER and click on Create. In Eiffel convention, class names are all capitals,
separated by underscores for compound words..

13

– Type in the following text for the MY COUNTER class (don’t be lazy, type!):

note
description: "A counter always has its value between 0 and 10."
author: ""
date: "Date"
revision: "Revision"

class
MY_COUNTER
create -- We need to explicitly declare which feature is a constructor.
make

feature -- Attribute: counter value
value: INTEGER

feature -- Constructor
make (v: INTEGER)

-- Initialize counter with value ’v’.
-- No require clause here means that there’s no precondition.
-- Any input value ’v’ will be accepted and used to assign to ’value’.
do
value := v
end

feature -- Commands (mutators in Java)
increment_by(v: INTEGER)
-- Increment the counter value by ’v’ unless
-- it causes its value to go above the max.
require -- Precondition: what’s assumed true by the supplier
not_above_max: value + v <= 10
do
-- Implementation
value := value + v
ensure -- Postcondition: what’s expected to be true, guaranteed by supplier
value_incremented: value = old value + v
end

decrement_by (v: INTEGER)
-- Decrement the counter value by ’v’ unless
-- it causes its value to go below the min.
require
not_below_min: value - v >= 0
do
value := value - v
ensure
value_decremented: value = old value - v
end

invariant -- Class invariant: what a legitimate counter means.
counter_in_range:
0 <= value and value <= 10

end

– Notice that line comments in Eiffel are preceded by --.

– Once you have typed the above Eiffel code, compile and make sure everything is ok.

– Study this code via the comments provided to you. Try to understand what’s going on, especially how contracts
(i.e., preconditions, postconditions, and class invariants) are specified.

Hints: Under Views, switch between the Basic text view and Contract view:

What differences do you between these two views? Based on what we learned about Design by Contract, which
view is supplier’s and which one is client’s?

14

8 Adding Another Root Class for Console Outputs Only

8.1 Adding the APPLICATION Class

By following the same procedure for adding the MY COUNTER class in Section 7, add a new class APPLICATION inside
the root cluster. This is what you should see after the creation:

Up to now, remember the root of project has been set to ROOT.make. In order to print what’s defined in
APPLICATION.make, we need to change the root of project to APPLICATION.make.

8.2 Denoting APPLICATION as the Root

As shown previously, at the top of EStudio, go to Project, then select Project Settings.

On the left panel, click on Target: counter, and inspect the right panel. Now click on the existing ROOT.make,
and in the popped up editor box, enter APPLICATION as the Root Class and make as the Root Procedure:

15

Click on OK and make sure you compile! Question: What would happen if you do not re-compile and run the
workbench system?

8.3 Change of Root Class ⇒ Change of Behaviour

– The root of project (entry point of execution) has been changed to APPLICATION.make, a re-compilation was
done to make sure that change is now effective. Now we can illustrate this on the terminal.

Find a line in the class APPLICATION that reads: print ("Hello Eiffel World!%N"). Notice that the percent-
age sign % there means the start of an escape sequence (whereas in Java, you start an escape sequence using a
backward slash \). The Eiffel escape sequence %N here denotes the new-line character.

Now, modify that line to: print ("Hello Eiffel World @ EECS3311!%N") and save the file (Ctrl + s). Then,
switch back to your terminal and run the (un-finalized) executable again from W code:

∼/Desktop/eecs3311_workspace/counter/EIFGENs/counter/W code/counter

The output should be:

Hello Eiffel World!

Aah! Shouldn’t the output be changed to Hello Eiffel World @ EECS3311!%N?! The reason for this is because,
again, we did not re-compile for the changed code to take effect. We somehow have been spoiled by
Eclipse in the previous Java courses, where a re-compilation is performed automatically as soon as you save
your Java file. In EStudio, saving a file does not trigger re-compilation automatically. To fix this,
re-compile your code from EStudio:

Try running the executable again:

∼/Desktop/eecs3311_workspace/counter/EIFGENs/counter/W code/counter

You should now get the expected output:

Hello Eiffel World @ EECS3311!

16

– The next question is: How do we finalize the project then? In EStudio, click on the tiny, up-side-down triangle
symbol right beside Compile, and this will give you a drop-down menu list of options: click on Finalize....

• Tick the check box Do not show again (Always compile C/C++ code) and click Yes.

• Tick the check box Do not show again (Always discard assertions when finalizing) and click Discard
Assetions.

Then wait until the Outputs panel indicates that the compilation is completed.

• After finalizing the project, let’s switch back to the terminal and type:

ls ∼/Desktop/eecs3311_workspace/counter/EIFGENs/counter/F code

You will see that there is, similar to the case of W code, also an executable file called counter. Run this
(finalized, optimized) executable by typing:

∼/Desktop/eecs3311_workspace/counter/EIFGENs/counter/F code/counter

Remark: The executables in W code and F code have no difference in terms of their behaviour. It is only that
one (in F code) has better performance than the other (in W code). While your still developing your project,
there is no need to finalize your code, as it takes time to finalize/optimize each time.

17

8.4 Redefining the APPLICATION Class

– Now we further modify the APPLICATION class so that it manipulates the MY COUNTER class (Section 7)

– Go to the APPLICATION class that we modified before, change its make feature so that it looks like:

make
-- Run application.
local -- local variables
c: MY_COUNTER
do
create {MY_COUNTER} c.make (-10)
print (c.value)
end

where

• In Eiffel, assignments are done using :=, whereas value comparisons are done using = (which corresponds
more closely to math).

• The Eiffel syntax c: MY COUNTER for declaring a variable corresponds to MY COUNTER c that you write
in Java.

• The Eiffel syntax create {MY COUNTER} c.make (-10) for creating a new object of type MY COUNTER

corresponds to MY COUNTER c = new MY COUNTER(-10) that you write in Java.

– Equivalent to running the executable from the W code or F code directory, on EStudio click on Run to execute
the code. Remember: when you wish to see the HTML test report, you need to Run the Workbench System;
otherwise, just click on Run.

– Then you should run into this contract violation (i.e., the class invariant of MY COUNTER is broken):

18

9 Recompiling from Scratch

Whenever your Eiffel project is behaving weirdly, re-compiling everything from scratch is always the first thing
to try. There are two ways to achieving this. For both ways, close your Eiffel Studio first!

Approach 1. On a terminal, run the following command (only available on your Prism account) on your project:

eclean ∼/Desktop/eecs3311_workspace/counter

This will remove the EIFGENs folder and some other auxiliary files. You are now ready to launch EStudio and
compile.

Approach 2. Without removing the EIFGENs, simply re-launch EStudio, and check the clean box before you
start compiling.

19

10 Your Tasks

– Task 1: Can you explain why a violation of class invariant occurs in the above APPLICATION class?

Hint: What does it mean to be a legitimate MY COUNTER instance and where is that explicitly defined as a
contract (i.e., precondition, postcondition, or class invariant) in the MY COUNTER class.

– Task 2: There are two ways to fixing this class invariant violation (try both and verify that it does get rid of
the contract violation):

• From the supplier MY COUNTER side, does the precondition (specified using require) have any missing cases
of illegal values? If so, fix the current precondition.

• From the client APPLICATION side, let them pass a legitimate value for initializing the counter.

Modify either the APPLICATION class or the MY COUNTER class, so that you can observe other kinds of violations:

• Precondition violation (caused by illegal inputs by client): When a feature call (or method call in
Java) is passed with an input argument value that does not satisfy the Boolean condition under the require
clause.

• Postcondition violation (caused by wrong implementation by supplier): When a feature call’s
input argument value satisfies its precondition, then after executing its implementation (i.e., what goes
between do and ensure), the object state (i.e,. in this case the counter value) does not satisfy the Boolean
condition under the ensure clause.

– Task 3: Switch the root of project back to ROOT.make. Then, based on what you learned about TDD in the
above tutorial series, add 3 different, but meaninful tests to the TEST EXAMPLE class and make sure they all
pass (i.e., a green bar).

Note. Remember: when you wish to see the HTML test report, you need to Run the Workbench System;
otherwise, just click on Run.

– We will continue from here in the lectures.

20

11 Resources

1. Following this concise Eiffel 101 manual would be useful:

https://www.eecs.yorku.ca/˜eiffel/pdf/Eiffel-101.pdf

2. If you wish to read a textbook, it is recommended that you start by reading these chapters from Touch of
Class: Learning to Program Well with Objects and Contracts:

Chapter 2: Dealing with objects

Chapter 4: The interface of a class

Chapter 5: Just Enough Logic

Chapter 6: Creating objects and executing systems

This textbook is available at York’s library page:

https://www.library.yorku.ca/web/

– Search for Touch of Class.

– Click on Available Online.

– Choose the SpringerLink and login via your PPY credentials.

21

https://www.eecs.yorku.ca/~eiffel/pdf/Eiffel-101.pdf
https://www.library.yorku.ca/web/

A Applying for an Educational Github Account

Follow this tutorial series (which will be expanded as the semester progresses):

https://www.youtube.com/playlist?list=PL5dxAmCmjv_58KxTSd1CRbpinmSF8EPJx

B Installing and Launching EStudio

B.1 Windows

Refer to this link:

http://seldoc.eecs.yorku.ca/doku.php/eiffel/faq/windows-install

B.2 Mac OS X

Prerequisites (Make sure that your computer is already installed with the following two items before proceeding
to Step 1)

– Install Xcode from the App Store: https://developer.apple.com/xcode/downloads

After installing Xcode, make sure to install the command line tools: go to the Xcode preferences and
under Downloads install the Command Line Tools components.

– Install X11: http://xquartz.macosforge.org/landing

1. Install Mac Ports: Download and install mac ports from: https://www.macports.org/install.php

After installing mac ports, run the following:

sudo port selfupdate

Then run the following:

sudo port upgrade outdated

2. Install EStudio via Mac Ports: Open a new terminal, type:

sudo port install eiffelstudio

This will take some time (more than 15 minutes) to install Eiffel Studio.

3. Did Mac Ports Install the Latest Version?

When mac ports complete installing Eiffel Studio, type the following in terminal:

port info eiffelstudio

You will see an output to the terminal like this:

22

https://www.youtube.com/playlist?list=PL5dxAmCmjv_58KxTSd1CRbpinmSF8EPJx
http://seldoc.eecs.yorku.ca/doku.php/eiffel/faq/windows-install
https://developer.apple.com/xcode/downloads
http://xquartz.macosforge.org/landing
https://www.macports.org/install.php

Compare if the version that mac ports (e.g., 17.01 in the case of the above example output) installed is the latest
version (i.e., 19.05) of the current semester:

– Yes: If mac ports did install the latest version, we then need to set three environment variables by copying
(command + C) the following three lines:

export ISE_EIFFEL=/Applications/MacPorts/Eiffel_19.05

export ISE_PLATFORM=macosx-x86-64

export PATH=$PATH:$ISE_EIFFEL/studio/spec/$ISE_PLATFORM/bin

– No: If mac ports did not install the latest version, then:

• Download the compressed package by clicking the following link:

https://ftp.eiffel.com/pub/download/19.05/Eiffel_19.05_gpl_103187-macosx-x86-64.tar.bz2

• Unzipping the Compressed Package: After downloading the compressed package, say to your
Desktop, you should manually extract its contents to your hard drive.

For example, open up a terminal, then you can extract it into /usr/local using the following com-
mands:

cd /usr/local

tar xvfj ˜/Desktop/Eiffel_19.05_gpl_103187-macosx-x86-64.tar.bz2

In case the command tar does not work, you can simply try double-click on the compressed package
file and it should be uncompressed to a directory. This will install Eiffel Studio files into the directory
/usr/local/Eiffel 19.05.

• We then need to set three environment variables:

Copy (command + C) the following three lines:

export ISE_EIFFEL=/usr/local/Eiffel_19.05

export ISE_PLATFORM=macosx-x86-64

export PATH=$PATH:$ISE_EIFFEL/studio/spec/$ISE_PLATFORM/bin

4. On the terminal, type the following:

cd

nano .bash_profile

23

https://ftp.eiffel.com/pub/download/19.05/Eiffel_19.05_gpl_103187-macosx-x86-64.tar.bz2

5. Then paste (command + P) the above three lines, then save the file by typing control + x, then type Y, then hit
enter.

6. Then, type the following command to let the above three export statements be in effect:

source .bash_profile

7. Now you should be able to launch the Eiffel Studio IDE by typing the following command on the terminal:

estudio &

Common Issue. In case you see an error message like:

EiffelVision application could not launch, check DISPLAY environment variable

Then launch XQuartz (from the previous installation of X11). In case a x-terminal does not show, go under
Applications then select Termianl.

Try again typing estudio & in the x-terminal and hit return.

8. Optional : Improving the Look and Feel of EStudio

On a new terminal, type the following:

sudo port install gtk2

9. Then type the following:

sudo port install gtk-chtheme

10. Finally, type the following:

gtk-chtheme

which should launch a window like this:

24

Then you can play with different font style (e.g., face, size, etc.) until you are satisfied.

C Last Resorts: Virtual Box Image or Remote Lab

In case you cannot manage to install EStudio on your machine, try either of the two options:

– Use the department’s remote labs (where the Eiffel Studio tool is already installed). See:

https://remotelab.eecs.yorku.ca/

– Follow the instructions here to download and install a virtual machine image (using Virtual Box), where we
already have the latest version of EStudio installed for you:

https://wiki.eecs.yorku.ca/project/sel-students/p:tutorials:vm:start:start

Use your EECS account to log in. To launch Eiffel Studio in a remote lab session or the virtual machine, on a terminal,
type the following command to launch the latest version of Eiffel Studio (19.05):

estudio19.05 &

25

https://remotelab.eecs.yorku.ca/
https://wiki.eecs.yorku.ca/project/sel-students/p:tutorials:vm:start:start

	Acronyms
	(Coming Soon) Tutorial for Introducing You to Design Basics
	Create a Workspace for Your Eiffel Projects
	Creating a Project
	Download the Mathmodels library (if you work on your own machine)

	Compiling the Starter Project in Eiffel Studio
	Exploring Project Structure from the File System
	Understanding the Critical Directories

	Launching Tests in EStudio
	Creating a New Class for Counter
	Adding Another Root Class for Console Outputs Only
	Adding the APPLICATION Class
	Denoting APPLICATION as the Root
	Change of Root Class Change of Behaviour
	Redefining the APPLICATION Class

	Recompiling from Scratch
	Your Tasks
	Resources
	Applying for an Educational Github Account
	Installing and Launching EStudio
	Windows
	Mac OS X

	Last Resorts: Virtual Box Image or Remote Lab

