
Generics

EECS3311 M: Software Design

Winter 2019

CHEN-WEI WANG

Motivating Example: A Book of Any Objects
class BOOK

names: ARRAY[STRING]

records: ARRAY[ANY]

-- Create an empty book

make do . . . end

-- Add a name-record pair to the book

add (name: STRING; record: ANY) do . . . end

-- Return the record associated with a given name

get (name: STRING): ANY do . . . end

end

Question: Which line has a type error?

1 birthday: DATE; phone_number: STRING

2 b: BOOK; is_wednesday: BOOLEAN

3 create {BOOK} b.make

4 phone_number := "416-677-1010"

5 b.add ("SuYeon", phone_number)

6 create {DATE} birthday.make(1975, 4, 10)

7 b.add ("Yuna", birthday)

8 is_wednesday := b.get("Yuna").get_day_of_week = 4

2 of 16

Motivating Example: Observations (1)
● In the BOOK class:○ In the attribute declaration

records: ARRAY[ANY]

● ANY is the most general type of records.● Each book instance may store any object whose static type is a

descendant class of ANY .

○ Accordingly, from the return type of the get feature, we only know

that the returned record has the static type ANY , but not certain

about its dynamic type (e.g., DATE, STRING, etc.).∴ a record retrieved from the book, e.g., b.get("Yuna"), may

only be called upon features defined in its static type (i.e,. ANY).● In the tester code of the BOOK class:○ In Line 1, the static types of variables birthday (i.e., DATE) and

phone_number (i.e., STRING) are descendant classes of ANY.∴ Line 5 and Line 7 compile.

3 of 16

Motivating Example: Observations (2)
Due to polymorphism , in a collection, the dynamic types of

stored objects (e.g., phone number and birthday) need not

be the same.○ Features specific to the dynamic types (e.g., get_day_of_week

of class Date) may be new features that are not inherited from

ANY.○ This is why Line 8 would fail to compile, and may be fixed using an

explicit cast :

check attached {DATE} b.get("Yuna") as yuna_bday then

is_wednesday := yuna_bday.get_day_of_week = 4

end

○ But what if the dynamic type of the returned object is not a DATE?

check attached {DATE} b.get("SuYeon") as suyeon_bday then

is_wednesday := suyeon_bday.get_day_of_week = 4

end

⇒ An assertion violation at runtime!
4 of 16

Motivating Example: Observations (2.1)

● It seems that a combination of attached check (similar to an

instanceof check in Java) and type cast can work.

● Can you see any potential problem(s)?

● Hints:○ Extensibility and Maintainability○ What happens when you have a large number of records of

distinct dynamic types stored in the book

(e.g., DATE, STRING, PERSON, ACCOUNT, ARRAY CONTAINER,

DICTIONARY, etc.)? [all classes are descendants of ANY]

5 of 16

Motivating Example: Observations (2.2)
Imagine that the tester code (or an application) stores 100

different record objects into the book.

rec1: C1
. . . -- declarations of rec2 to rec99

rec100: C100
create {C1} rec1.make(. . .) ; b.add(. . ., rec1)

. . . -- additions of rec2 to rec99

create {C100} rec100.make(. . .) ; b.add(. . ., rec100)

where static types C1 to C100 are descendant classes of ANY.○ Every time you retrieve a record from the book, you need to check

“exhaustively” on its dynamic type before calling some feature(s).

-- assumption: ’f1’ specific to C1, ’f2’ specific to C2, etc.

check attached {C1} b.get("Jim") as c1 then c1.f1 end

. . . -- casts for C2 to C99

check attached {C100} b.get("Jim") as c100 then c100.f100 end

○ Writing out this list multiple times is tedious and error-prone!

6 of 16

Motivating Example: Observations (3)
We need a solution that:● Eliminates runtime assertion violations due to wrong casts● Saves us from explicit attached checks and type casts

As a sketch, this is how the solution looks like:● When the user declares a BOOK object b, they must commit to

the kind of record that b stores at runtime.

e.g., b stores either DATE objects (and its descendants) only

or String objects (and its descendants) only, but not a mix .● When attempting to store a new record object rec into b, if

rec’s static type is not a descendant class of the type of book

that the user previously commits to, then:○ It is considered as a compilation error○ Rather than triggering a runtime assertion violation● When attempting to retrieve a record object from b, there is no
longer a need to check and cast.∵ Static types of all records in b are guaranteed to be the same.

7 of 16

Parameters
● In mathematics:○ The same function is applied with different argument values.

e.g., 2 + 3, 1 + 1, 10 + 101, etc.○ We generalize these instance applications into a definition.

e.g., + ∶ (Z ×Z)→Z is a function that takes two integer

parameters and returns an integer.● In object-oriented programming:○ We want to call a feature, with different argument values, to

achieve a similar goal.

e.g., acc.deposit(100), acc.deposit(23), etc.○ We generalize these possible feature calls into a definition.

e.g., In class ACCOUNT, a feature deposit(amount: REAL)

takes a real-valued parameter .● When you design a mathematical function or a class feature,

always consider the list of parameters , each of which

representing a set of possible argument values.
8 of 16

Generics: Design of a Generic Book
class BOOK[G]

names: ARRAY[STRING]

records: ARRAY[G]

-- Create an empty book

make do . . . end

/* Add a name-record pair to the book */

add (name: STRING; record: G) do . . . end

/* Return the record associated with a given name */

get (name: STRING): G do . . . end

end

Question: Which line has a type error?

1 birthday: DATE; phone_number: STRING

2 b: BOOK[DATE] ; is_wednesday: BOOLEAN

3 create BOOK[DATE] b.make

4 phone_number = "416-67-1010"

5 b.add ("SuYeon", phone_number)

6 create {DATE} birthday.make (1975, 4, 10)

7 b.add ("Yuna", birthday)

8 is_wednesday := b.get("Yuna").get_day_of_week == 4

9 of 16

Generics: Observations
● In class BOOK:○ At the class level, we parameterize the type of records :

class BOOK[G]

○ Every occurrence of ANY is replaced by E.● As far as a client of BOOK is concerned, they must instantiate G.⇒ This particular instance of book must consistently store items of

that instantiating type.● As soon as E instantiated to some known type (e.g., DATE,

STRING), every occurrence of E will be replaced by that type.● For example, in the tester code of BOOK:○ In Line 2, we commit that the book b will store DATE objects only.○ Line 5 fails to compile. [∵ STRING not descendant of DATE]○ Line 7 still compiles. [∵ DATE is descendant of itself]○ Line 8 does not need any attached check and type cast, and

does not cause any runtime assertion violation.∵ All attempts to store non-DATE objects are caught at compile time.

10 of 16

Bad Example of using Generics

Has the following client made an appropriate choice?

book: BOOK[ANY]

NO!!!!!!!!!!!!!!!!!!!!!!!○ It allows all kinds of objects to be stored.∵ All classes are descendants of ANY .○ We can expect very little from an object retrieved from this book.∵ The static type of book’s items are ANY , root of the class

hierarchy, has the minimum amount of features available for use.∵ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

11 of 16

Instantiating Generic Parameters
● Say the supplier provides a generic DICTIONARY class:

class DICTIONARY[V, K] -- V type of values; K type of keys

add_entry (v: V; k: K) do . . . end

remove_entry (k: K) do . . . end

end

● Clients use DICTIONARY with different degrees of instantiations:

class DATABASE_TABLE[K, V]
imp: DICTIONARY[V, K]

end

e.g., Declaring DATABSE_TABLE[INTEGER, STRING] instantiates

DICTIONARY[STRING, INTEGER] .

class STUDENT_BOOK[V]
imp: DICTIONARY[V, STRING]

end

e.g., Declaring STUDENT_BOOK[ARRAY[COURSE]] instantiates

DICTIONARY[ARRAY[COURSE], STRING] .
12 of 16

Generics vs. Inheritance (1)

13 of 16

Generics vs. Inheritance (2)

14 of 16

Beyond this lecture . . .

● Study the “Generic Parameters and the Iterator Pattern” Tutorial

Videos.

15 of 16

Index (1)
Motivating Example: A Book of Any Objects
Motivating Example: Observations (1)
Motivating Example: Observations (2)
Motivating Example: Observations (2.1)
Motivating Example: Observations (2.2)
Motivating Example: Observations (3)
Parameters
Generics: Design of a Generic Book
Generics: Observations
Bad Example of using Generics
Instantiating Generic Parameters
Generics vs. Inheritance (1)
Generics vs. Inheritance (2)
Beyond this lecture . . .

16 of 16

