Design-by-Contract (DbC)

Readings: OOSC2 Chapter 11

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

YORK

\
\

c|c
z|z
mim
D |0
wlwn
==
<lm

LASSONDE

ooooooooooooooooooo

Motivation: Catching Defects — When?

¢ To minimize development costs , minimize software defects.
e Software Development Cycle:

Requirements — Design — Implementation — Release

Q. Design or Implementation Phase?

Catch defects as early as possible .

Design and Integration Customer Postproduct
architecture Implementation testing beta test release
1X* 5X 10X 15X 30X

-~ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.

¢ Discovering defects after release costs up to 30 times more
than catching them in the design phase.

e Choice of design language for your project is therefore of

paramount importance.
: Minimizing code defects to improve software quality and lower development costs.

What This Course Is About e

ooooooooooooooooooo

e Focusis design

o Architecture: (many) inter-related modules
o Specification: precise (functional) interface of each module

¢ For this course, having a prototypical, working implementation
for your design suffices.

e Alater refinement into more efficient data structures and
algorithms is beyond the scope of this course.

[assumed from EECS2011, EECS3101]
.. Having a suitable language for design matters the most.
Q: Is Java also a “good” design language?
A: Let’s first understand what a “good” design is.

LASSONDE

ooooooooooooooooooo

Terminology: Contract, Client, Supplier
e A supplier implements/provides a service (e.g., microwave).

e A client uses a service provided by some supplier.
o The client is required to follow certain instructions to obtain the

service (e.g., supplier that client powers on, closes

door, and heats something that is not explosive).
o If instructions are followed, the client would that the

service does what is guaranteed (e.g., a lunch box is heated).
o The client does not care how the supplier implements it.
¢ What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions
SUPPLIER || assume instructions followed | provide a service

e There is a contract between two parties, violated if:
o The instructions are not followed. [Client’s fault]
o_Instructions followed, but service not satisfactory. [Supplier’s fault]

Client, Supplier, Contract in OOP (1)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}

T
‘class MicrowaveUser {
|
\
void lock() {locked = true;} ‘
|
\

public static void main(...) {
Microwave m = new Microwave() ;

1
\
|
Object obj = ; ‘
|
\

void heat (Object stuff) { m.power (); m.lock();]

m. heat (obj);
b}

Method call m.heat(obj) indicates a client-supplier relation.

o Client: resident class of the method call [MicrowaveUser]
o Supplier: type of context object (or call target) m [Microwave]

ooooooooooooooooo

Client, Supplier, Contract in OOP (2) %

class Microwave {
private boolean on;
private boolean lIlocked;
void power() {on = true;}
void lock () {locked = true;}
void heat (Object stuff) {

\
\
\
e The contract is honoured if:

’ Right before the method call ‘:

e State of mis as assumed: m.on==true and m. locked==ture
e The input argument ob 7 is valid (i.e., not explosive).
’ Right after the method call ‘: ob 7 is properly heated.
e If any of these fails, there is a contract violation.
e m.on Orm.lockedis false = MicrowaveUser’s fault.
e ob7jis an explosive = MicrowaveUser’s fault.
A fault from the client is identified = Method call will not start.
e Method executed but ob 5 not properly heated = Microwave'’s fault

class MicrowaveUser {
public static void main(...) {

Microwave m = new Microwave();

1
\
Object obj = [222]; \
\
\

m.power(); m.lock();

m. heat (ob3j);

LASSONDE

What is a Good Design? [Lssonee

¢ A “good” design should explicitly and unambiguously describe
the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We call such a contractual relation a specification .

¢ When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
o Instructions to clients should not be unreasonable.
e.g., asking them to assemble internal parts of a microwave
o Working conditions for suppliers should not be unconditional.
e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!
o You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.
e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]
o Upon contract violation, there should be the fault of only one side.

o This design process is called Design by Contract (DbC) .

LASSONDE

ooooooooooooooooo

A Simple Problem: Bank Accounts

Provide an object-oriented solution to the following problem:

: Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.

[REQ2: We may withdraw an integer amount from an account.
|REQ3 |: Each bank stores a list of accounts.

: Given a bank, we may add a new account in it.

|REQ5 |: Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").

[REQ6 |: Given a bank, we may withdraw from a specific
account, identified by its name, for an integer amount.

Let’s first try to work on | REQ1 | and | REQ2 | in Java.

This may not be as easy as you might think!
8 of 59

Playing the Various Versions in Java LASSONDE

ooooooooooooooooo

¢ Download the project archive (a zip file) here:
http://www.eecs.yorku.ca/~jackie/teaching/
lectures/2019/F/EECS3311/codes/DbCIntro.zip

¢ Follow this tutorial to learn how to import an project archive
into your workspace in Eclipse:
https://youtu.be/h-rgdQ7Zg2qY

e Follow this tutorial to learn how to enable assertions in Eclipse:
https://youtu.be/OEgRV4a5Dzg

e

Version 1: An Account Class LASSONDE

1 |public class AccountVl {

2 private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

5 public int getBalance() { return balance; }

6 public AccountVI (String owner, int balance) {

7 this.owner = owner; this.balance = balance;

8 }

9 public void withdraw(int amount) {

10 this.balance = this.balance - amount;
11 }
12 public String toString() ({
13 return owner + "’s current balance is: " + balance;
14 }
15 |}

* Is this a good design? Recall : Each account is
associated with ... an integer balance that is always positive .

e This requirement is not reflected in the above Java code.
[10 of 59]

Version 1: Why Not a Good Design? (1) :Aiégsésoms

ooooooooooooooooo

ipublic class BankAppV1 {

‘ public static void main(String[] args) { ‘
System.out.println("Create an account for Alan with balance -10:V)

‘ AccountV1l alan = new AccountVl ("Alan", -10) ;

‘ System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:
Alan’s current balance is: -10

e Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). = Violation of | REQ1 |

¢ Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of

AccountV1 does not require that! = A lack of defined contract
[11 of 59

Version 1: Why Not a Good Design? (2) :Aiégsésoms

ooooooooooooooooo

T 1

‘public class BankAppV1 { ‘

public static void main(String[] args) {

‘ System.out.println("Create an account for Mark with balance lOO:L);
AccountV1l mark = new AccountVIl ("Mark", 100);
System.out.println(mark);

System.out.println("Withdraw -1000000 from Mark’s account:");

| mark. withdraw(-1000000) ; |

‘ System.out.println(mark) ;

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Mark’s current balance is: 1000100

¢ Mark’s account state is always valid (i.e., 100 and 1000100).
e Withdraw amount is never negative! = Violation of

¢ Again a lack of contract between Bank2AppV1 and AccountVi.
[12 of 59

Version 1: Why Not a Good Design? (3) EZ;%E

ooooooooooooooooo

public class BankAppV1 {

System.out.println("Create an account for Tom with balance 100:");
AccountV1l tom = new AccountVl("Tom", 100);
System.out.println(tom);

System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw(150) ;

T
‘ public static void main(String[] args) {
‘ System.out.println(tom);

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Tom’s current balance is: -50

¢ Withdrawal was done via an “appropriate” reduction, but the
resulting balance of Tom is invalid. = Violation of | REQ1 |

e Again a lack of contract between BankAppVv1 and AccountVi.
[13 of 59

Version 1: How Should We Improve it? (1) |assonoe

ooooooooooooooooo

Preconditions of a method specify the precise circumstances
under which that method can be executed.

o Precond. of divide (int x, int y)? [y '= 0]
o Precond. of binSearch (int x, int[] xs)? [xsissorted]
o Precond. of topoSort (Graph g)? [gis a DAG]

14 of 59

Version 1: How Should We Improve it? (2) |assonoe

ooooooooooooooooo

e The best we can do in Java is to encode the logical negations
of preconditions as exceptions:
o divide (int x, int vy)
throws DivisionByZeroException wheny ==
o binSearch (int x, int[] xs)
throws ArrayNotSortedException when xs is not sorted.
o topoSort (Graph qg)
throws NotDAGException when g is not directed and acyclic.
¢ Design your method by specifying the preconditions (i.e.,
service conditions for valid inputs) it requires, not the
exceptions (i.e., error conditions for invalid inputs) for it to fail.

 Create by adding exceptional conditions (an

approximation of preconditions) to the constructor and
withdraw method of the Account class.

15 of 59

Version 2: Added Exceptions LASSONDE
to Approximate Method Preconditions

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if (balance < 0) { /* negated precondition x/

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }
8 }

9 public void withdraw(int amount) throws

10 WlthdrawAmountNegatlVeException, WithdrawAmountTooLargeExcepticn {
11 if (amount < 0) { /* negated ond

12 throw new WithdrawAmountNegativeException();
13 else if (balance < amount) { /* ne or
14 throw new WlthdrawAmountTooLargeExceptlon() }
15 else { this.balance = this.balance - amount; }
16 }

16 of 59

Version 2: Why Better than Version 1? (1)

O W o N OO =

—_

public class BankAppV2 {
public static void main(String[] args) {
System.out.println("Create an account for Alan with balance
try {
AccountV2 alan = new AccountV2("Alan", -10) ;
System.out.println(alan);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");

}

Create an account for Alan with balance -10:
Illegal negative account balance.

L6: When attempting to call the constructor Accountv2 with a
negative balance -10, a BalanceNegativeException (i.e.,
precondition violation) occurs, preventing further operations upon

this invalid object.

Version 2: Why Better than Version 1? (2.1)

0 N O h~hWN =

T
‘public class BankAppV2 {
public static void main(String[] args) {
System.out.println("Create an account for Mark with balance 100:
try {
AccountV2 mark = new AccountV2("Mark",
System.out.println(mark);
System.out.println("Withdraw -1000000 from Mark’s account:");
mark. withdraw (-1000000) ;
System.out.println(mark);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}
| catch
System.out.println("Illegal negative withdraw amount.");
}
catch (WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

100);

(WithdrawAmountNegativeException wane) {

18 of 59

Version 2: Why Better than Version 1? (2.2)

Console Output:

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Illegal negative withdraw amount.

¢ L8: When attempting to call method withdraw with a negative
amount -1000000, a WithdrawAmountNegativeException
(i.e., precondition violation) occurs, preventing the withdrawal
from proceeding.

¢ We should observe that adding preconditions to the supplier
BankV2’s code forces the client BankAppVv2’s code to get
complicated by the t ry-catch statements.

¢ Adding clear contract (preconditions in this case) to the design

should not be at the cost of complicating the client’s code!!
[19 of 59]

Version 2: Why Better than Version 1? (3.1)

0 N O h~hWN =

T
‘public class BankAppVZ2 {
public static void main(String[] args) {
System.out.println("Create an account for Tom with balance 100:"
try {
AccountV2 tom = new AccountV2("Tom",
System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw (150) ;
System.out.println(tom);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}
catch (WithdrawAmountNegativeException wane) {
System.out.println("Illegal negative withdraw amount.");

}

catch

100);

(WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

Version 2: Why Better than Version 1? (3.2) |ussonoe

ooooooooooooooooo

Console Output:

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Illegal too large withdraw amount.

¢ L8: When attempting to call method withdraw with a positive
but too large amount 150, a
WithdrawAmount TooLargeException (i.e., precondition
violation) occurs, preventing the withdrawal from proceeding.

¢ We should observe that due to the added preconditions to the
supplier BankVv2’s code, the client BankAppVv2’s code is forced
to repeat the long list of the t ry-catch statements.

¢ Indeed, adding clear contract (preconditions in this case)

should not be at the cost of complicating the client’s code!!
21 of 59|

Version 2: Why Still Not a Good DeSign? (1) LASSONDE

ooooooooooooooooo

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { /% negated precondition =%/

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 withdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
11 if (amount < 0) { /* negated precondition =/

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated prec 11 on - *
14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

¢ Are all the exception conditions (-~ preconditions) appropriate?

e What if amount == balance when calling withdraw?

Version 2: Why Still Not a Good Design? (2.

T

1 ‘public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jim with balance 100:"};
4 try {

5 AccountV2 jim = new AccountV2("Jim", 100);

6 System.out.println(jim);

7 System.out.println("Withdraw 100 from Jim’s account:");

8 jim. withdraw(100) ;

9 System.out.println(jim);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");
13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");
16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");
19 }

Version 2: Why Still Not a Good Design? (2.

Create an account for Jim with balance 100:
Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Jim’s current balance is: 0

L9: When attempting to call method withdraw with an amount

100 (i.e., equal to Jim’s current balance) that would result in a
zero balance (clearly a violation of [REQ1), there should have
been a precondition violation.
Supplier AccountVv2’s exception condition balance < amount
has a missing case :
e Calling withdraw with amount == balance will also result in an

invalid account state (i.e., the resulting account balance is zero).
e .. L13 of AccountV2 should be balance <= amount.

Version 2: How Should We Improve it? LASSONDE Version 3: Why Better than Version 2?
T 1

» Even without fixing this insufficient precondition, we could 1 |public class BankAppV3 {

have avoided the above scenario by checking at the end of 2 | public static void main(String[] args) { o

each method that the resulting account iS va/id. 3 System.out.println("Create an account for Jim with balance 100:");

. . - - 4 try { AccountV3 jim = new AccountV3("Jim", 100);
= We consider the condition this.balance > 0 as invariant 5 System.out.println(jim);
throughout the lifetime of all instances of Account. 6 System.out.println("Withdraw 100 from Jim’s account:");
. . . " . 7 jim. withdraw (100) ;

* Invariants of a class specify the precise conditions which all 8 System.out.printin(jim;

instances/objects of that class must satisfy. 9 Jx o tat s

o Inv. of cSMajoarStudent? [gpa >= 4.5] 10 ! Y

o Inv. OfBinarySeaJ.:chTree.? [m—or@er tre.w. — sorted key'seq.] Cromte an account for Jim with balance 100
e The best we can do in Java is encode invariants as assertions: Jim’s current balance is: 100

o CSMajorStudent: assert this.gpa >= 4.5 glthdr‘?w 100 from Jim’'s account:

. . . . xception in thread "main
© BinarySearchTree: assert this.inOrder() is sorted java.lang.AssertionError: Invariant: positive balance
o Unlike exceptions, assertions are not in the class/method API. =0 —— —
: . . : on completion of jim.withdraw (100), Jim has a zero
e Create | Version 3 | by adding assertions to the end of P PIe . . o S
tructor and withd method of the 2 ¢ class balance', an assertion fange (i.e., /_n\(ar/a/jt violation) oceurs,

construc withdraw ccoun : ersrsgEVenting further operations on this invalid account object.

27 o1 59

Version 3: Added Assertions LASSONDE Version 3: Why Still Not a Good Design?
to Approximate Class Invariants Let’s recall what we have added to the method withdraw:
o From | Version 2 |: exceptions encoding negated preconditions
1 |public class AccountV3 { -) .])
2 | public AccountV3(String owner, int balance) throws o From | Version 3 |: assertions encoding the class invariants
3 BalanceNegativeException -
4 { 1 |public class AccountV3 {
5 : R 2 public void withdraw(int amount) throws
if (balance < 0) { /# negated preconditior 3 . , . . .
6 throw new BalanceNegativeException(); } - WlthdrawAmountNega/tlveExceptlon, Wl“thz?irawAmountTooLargeExceptlon {
7 else { this.owner = owner; this.balance = balance; } 4 if (amount < Q) { /* negated ;:N"leco.m?f“oir7)
8 ‘ assert this.getBalance() > 0 : "Invariant: positive balance"; ‘ 5 throw new pithdrawAmountNegativeException(); }
9 } 6 else if (balance < amount) { /* negated pre on #*
10 public void withdraw(int amount) throws ; throw ne.w WlthdrawA_moun.tTooLargeExceptlon (.); }
11 withdrawAmountNegativeException, WithdrawAmountTooLargeExceptign { else { this.palance = this.balance - amount; }
12 if (amount < 0) { /% negated precondition */ 9 ‘ assert this.getBalance() > 0 : "Invariant: positive balance"; ‘}
13 throw new WithdrawAmountNegativeException(); } . : ; ; : T !
14 else if (balance < amount) { /# negated precondition x/ However_’ th_ere IS no C(_)ntraCt n WJ_th(.jraw WhICh SpeCIerS'
15 throw new WithdrawAmountTooLargeException(); } o Obligations of supplier (AccountVv3) if preconditions are met.
16 else { this.balance = this.balance - amount; } o Benefits of client (BankAppVv3) after meeting preconditions.
17 assert this.getBalance() > 0 : "Invariant: positive balance"; = We illustrate how problematic this can be by creating
18
: Version 4 |, where deliberately mistakenly implement withdraw.
28 of 59

Version 4: What If the LASSONDE
Implementation of withdraw is Wrong? (1)

public class AccountV4 {
public void withdraw(int amount) throws
WithdrawAmountNegativeException, WithdrawAmountTooLargeException
{ if (amount < 0) { /* negated prec on */
throw new WithdrawAmountNegativeException(); }
else if (balance < amount) { /* negated precondi
throw new WithdrawAmountTooLargeException(); }
else { /+ WRONT IMPI ITATION */

this.balance = this.balance + amount; }
assert this.getBalance() > 0 :
owner + "Invariant: positive balance"; }
o Apparently the implementation at L11 is wrong.
o Adding a positive amount to a valid (positive) account balance
would not result in an invalid (negative) one.
= The class invariant will not catch this flaw.
o When something goes wrong, a good design (with an appropriate
contract) should report it via a contract violation .

O © oONOOAWN =

—_

Version 4: What If the e
Implementation of withdraw is Wrong? (2)

T
‘public class BankAppV4 |{

public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 100:"),
try { AccountV4 jeremy = new AccountV4("Jeremy", 100);
System.out.println(jeremy);
System.out.println("Withdraw 50 from Jeremy’s account:");
jeremy. withdraw (50) ;
System.out.println(jeremy); }
as

QLW N~ WN =

—_

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Jeremy’s current balance is: 150

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal
was done via an mistaken increase. = Violation of m

Version 4: How Should We Improve it?

e Postconditions of a method specify the precise conditions
which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

o Postcondition of double divide (int x, int y)?
[Result x y == x]
o Postcondition of boolean binSearch(int x, int[] xs)?
[x e xs < Result]

e The best we can do in Java is, similar to the case of invariants,
encode postconditions as assertions.

But again, unlike exceptions, these assertions will not be part of
the class/method API.

* Create by adding assertions to the end of

withdraw method of the Account class.
310159

Version 5: Added Assertions
to Approximate Method Postconditions

1 |public class AccountV5 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
4 int oldBalance = this.balance;

5 if (amount < 0) { /* negated precondition x*/

6 throw new WithdrawAmountNegativeException(); }

7 else if (balance < amount) { /% negated precondition */

8 throw new WithdrawAmountTooLargeException(); }

9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";
11 ‘ assert this.getBalance() == oldBalance - amount :
12 ‘ "Postcondition: balance deducted"; '} ‘

A postcondition typically relates the pre-execution value and
the post-execution value of each relevant attribute
(e.g.,palance in the case of withdraw).

= Extra code (L4) to capture the pre-execution value of balance for

the comparison at L11.

LASSONDE

ooooooooooooooooo

Version 5: Why Better than Version 4?

T
public class BankAppV5 {
public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 100:"),
try { AccountV5 jeremy = new AccountV5("Jeremy", 100);
System.out.println(jeremy) ;
System.out.println("Withdraw 50 from Jeremy’s account:");

jeremy. withdraw (50) ;
System.out.println(jeremy); }

/ *

QWO NOOOTA WN =

—_

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Exception in thread "main"
java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw (50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object.

e

LASSONDE

ooooooooooooooooo

Evolving from Version 1 to Version 5

|| Design Flaws

| Improvements Made
Vi - [[Complete lack of Contract

Added exceptions as Preconditions not strong enough (i.e., with missing
method preconditions cases) may result in an invalid account state.

Added assertions as
V3 . . -
class invariants

Deliberately changed
V4 | withdraw’s implementa-
tion to be incorrect.

Incorrect implementations do not necessarily result in
a state that violates the class invariants.

V5 Added assertions as _

method postconditions

® |n Versions 2, 3, 4, 5, preconditions approximated as exceptions.
® These are not preconditions, but their logical negation .

® Client BankApp’s code complicated by repeating the list of t ry-catch statements.
® |n Versions 3, 4, 5, class invariants and postconditions approximated as assertions.

® Unlike exceptions, these assertions will not appear in the API of withdraw.

Potential clients of this method cannot know: 1) what their benefits are; and 2) what

their suppliers’ obligations are.

® For postconditions, exira code needed to capture pre-execution values of attributes.

Version 5:
Contract between Client and Supplier

benefits
balance deduction

obligations
amount non-negative

BankAppV5.main

(CLIENT) positive balance amount not too large
BankV5.withdraw || amount non-negative balance deduction
(SUPPLIER) amount not too large positive balance
benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER precondition postcondition & invariant

DbC in Java
DbC is possible in Java, but not appropriate for your learning:

e Preconditions of a method:
Supplier
e Encode their logical negations as exceptions.
¢ In the beginning of that method, a list of i £-statements for throwing
the appropriate exceptions.
Client
o Alist of t ry-catch-statements for handling exceptions.

e Postconditions of a method:
Supplier
e Encoded as a list of assertions, placed at the end of that method.
Client
o All such assertions do not appear in the API of that method.

e Invariants of a class:
Supplier
e Encoded as a list of assertions, placed at the end of every method.
Client
o All such assertions do not appear in the API of that class.

DbC in Eiffel: Supplier

LASSONDE

ooooooooooooooooo

DbC is supported natively in Eiffel for supplier:

class ACCOUNT
create
make
feature Attributes
owner : STRING
balance : INTEGER
feature - Constructors
make (nn: STRING; nb: INTEGER)
require precond .
positive_balance: nb > 0
do
owner := nn
balance := nb
end
feature ommands
withdraw(amount: INTEGER)
require - precondition
non_negative_amount: amount > 0
affordable_amount: amount <= balance
do
balance := balance - amount
ensure —- postcondition
balance_deducted: balance = old balance - amount
end
invariant ass ariant
positive _balance: balance > 0

end
=,

LASSONDE

ooooooooooooooooo

DbC in Eiffel: Anatomy of a Class

class SOME_CLASS

create

-— Explici ere comn ed as const -to
feature

-— De 1er
feature

—— Decla (m ors) here
feature

—— De I (50rs) re
invariant

-—- List o gged boole expres ons for class invariant S
end

e Use feature clauses to group attributes, commands, queries.
e Explicitly declare list of commands under create clause, so
that they can be used as class constructors.
[See the groups panel in Eiffel Studio.]
e The class invariant invariant clause may be omitted:
o There’s no class invariant: any resulting object state is acceptable.

_oThe class invariant is equivalent to writing] invariant true\

LASSONDE

ooooooooooooooooo

DbC in Eiffel: Contract View of Supplier

Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):

class ACCOUNT

create
make

feature Attributes
owner : STRING
balance : INTEGER

feature - Constructors

make (nn: STRING; nb: INTEGER)
require preconditio
positive_balance: nb > 0
end
feature —- Commands
withdraw(amount: INTEGER)
require precond
non_negative_amount: amount > 0
affordable _amount: amount <= balance problematic, why?
ensure - postconditi
balance_deducted: balance = old balance - amount
end
invariant

positive balance: balance > 0

end

e

DbC in Eiffel: Anatomy of a Feature

LASSONDE

ooooooooooooooooo

some_command

—-— Descrip f e
require

-— List c agged boolean expressio or preconditions
local

-— List of
do

List of

ensure

—-— List of onditio
end

e The precondition require clause may be omitted:
o There’s no precondition: any starting state is acceptable.

o The precondition is equivalent to writing

e The postcondition ensure clause may be omitted:
o There’s no postcondition: any resulting state is acceptable.

asisg! N POSteondition is equivalent to writing

Runtime Monitoring of Contracts (1)

et e
In the specific case of ACCOUNT class with creation procedure
make and command withdraw:
postcond_withdraw:
acc.balance = old acc.balance - a and acc.owner ~ old acc.owner
. account_inv: call precond_withdraw: execute " e
STATE: \ potance > 0 acc.withdraw(a) ...0<aanda<balance .-, acc.withdraw(a) T
balance }.CLLLS S >‘—>: ------------------ T LN T T »
owner N .r : R . :_ .
not (account_inv) not (precond_withdraw) not (postcond. withdraw)s
y v v
." Precondition Postcondition
| Violation Violation
A
. not (precon d,make)f not (postcond,make);
call :+ precond_make: execute .
create {ACCOUNT} acc.make(a, n) Lot a> 0 ol create {ACCOUNT} acc.make(a, n)»l.a
postcond_make:
acc.balance = a and acc.owner = n
41 of 59)
Runtime Monitoring of Contracts (2) LASSONDE

In general, class C with creation procedure cp and any feature f:

postcond._f:
Qf

) execute .
STATE: af(..) -
attributes of }----c P’ e Eeeiaceaceacaaaaaan >
class A -
bl
not/
; v y
:‘ Precondition
: Violation
not Pm : not gm '
call : precond_make: execute :
create {A} a.make(...) -~. Pm --. create {A} a.make(...) -~
— | bcccescsceeePl meeeeiieeeeaoen >
postcond_make:
an

LSSoNDE

Runtime Monitoring of Contracts (3)

e All contracts are specified as Boolean expressions.

* Right a feature call (e.g., acc.withdraw(10)):

o The current state of acc is called the pre-state.
o Evaluate feature withdraw's pre-condition using current values

of attributes and queries.
o Cache values (implicitly) of all expressions involving the old

keyword in the post-condition .

e.g., cache the value of old balance via] old_balance = balance

* Right the feature call:
o The current state of acc is called the post-state.
o Evaluate class ACCOUNT’s invariant using current values of
attributes and queries.
o Evaluate feature withdraw's post-condition using both current
and “cached” values of attributes and queries.

e I——=,

DbC in Eiffel: Precondition Violation (1.1) |.ssonce
The client need not handle all possible contract violations:

class BANK_APP

inherit
ARGUMENTS

create
make

feature - Initialization
make

-—- Run applicat
local

alan: ACCOUNT
do

N g "positive be
th tag positive ba

-— A precondition viola n wi .
create {ACCOUNT} alan.make ("Alan", -10)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag

"positive balance™").
[44 of 59]

DbC in Eiffel: Precondition Violation (1.2) igmg

[E] |O APPLICATION 32| @ ACCOUNT 20 ELdOdew

bank ACCOUNT make < b # O ¢ ototus = Implicit exception pending

Feature [posmve balance: PRECONDITION_VIOLATION rawsed)
§ e 3= 30 el 30 e &8

#[F : AWA B InFeature |InClass | From Class | @

“lat view of feature make' of class ACCOUNT B make . ACCOUNT JUNT 1

make + APPLICATION APPLICATION 1
make (nn: STRING_8; nb: INTEGER_32)

require
positive_balance: nb >= 0
d

w

o
2 owner := nn
2 balance := nb
B end

DbC in Eiffel: Precondition Violation (2.1) igmg
The client need not handle all possible contract violations:

class BANK _APP

inherit
ARGUMENTS

create
make

feature —— Initialization
make

mark: ACCOUNT

do
create {ACCOUNT} mark.make ("Mark", 100)
—-— A precond on violation with tag "non_negative_ar
mark.withdraw(-1000000)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non_negative_amount").

e

DbC in Eiffel: Precondition Violation (2.2) isggm

[E| |0APpLxcnnom:e @ ACCOUNT ERRN Coii stack Faowewa x!

bank ACCOUNT withdraw < » # O 5 St@tus = Implicit exception pending

Feature (non_negative_amount: PRECONDITION_VIOLATION raised)
v 32 3082 =2 o

P[H2 2= 2 stziel AN L 8 InFeature |InClass | From Class | @

Flat view of feature withdraw' of class ACCOUNT » withdraw oACCOUNT |ACCOUNT |1

make + APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)

uire
e E‘rﬁinegat\'veiamount: amount >= 0)
5 affordable_amount: amount <= balance
do
2 balance := balance - amount
ensure
g balance = old balance - amount
B end

DbC in Eiffel: Precondition Violation (3.1) isggm

The client need not handle all possible contract violations:

class BANK _APP
inherit
ARGUMENTS
create
make
feature - Init n
make
Run app
local
tom: ACCOUNT
do
create {ACCOUNT} tom.make ("Tom", 100)
-— A precondition violation with tag "affo
tom.withdraw(150)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable_amount").

e

DbC in Eiffel: Precondition Violation (3.2) |iasoxc: DbC in Eiffel: Class Invariant Violation (4.2) |iasoxo:

L] |® APPLICATION 33| @ ACCOUNT 20 call Stack Faowe =
Status = Implicit exception pending

bank ACCOUNT withdraw < » % O 3
((affordable_amount: PRECONDITION_VIOLATION raised

@ InFeature [InClass | FromClass | @ | |o APPLICATION zz‘o ACCOUNT | G m
— B withdraw s ACCOUNT ~ ACCOUNT 2 renture bank ACCOUNT _invariant < » A 0 51 -Status = Implicit exception pendin i
make ¢ APPLICATION APPLICATION|2 positive_balance: INVARIANT_VIOLATION raised &
withdraw (amount: INTEGER_32) FF e elzial TS O

i | i
Tn Feature [TnClass — [From Class | @ |
> _invariant « ACCOUNT e

© non_negative_amount: amount >= 0 withdraw « ACCOUNT e 5
= affordable_amount: amount <= balance positive_balance: balance > 0 make 4 APPLICATION APPLICATION 2

do

require Flat view of feature *_invariant' of class ACCOUNT

© balance := balance - amount |
ensure
balance = old balance - amount :
g end =
49 of 59) 51 of 59

DbC in Eiffel: Class Invariant Violation (4.1) |assono: DbC in Eiffel: Postcondition Violation (5.1) |issono:

The client need not handle all possible contract violations: The client need not handle all possible contract violations:
class BANK_APP class BANK_APP
inherit inherit ARGUMENTS

ARGUMENTS create make
create feature I izatior

make make
feature - Initialization —— Run appl

make local

jeremy: ACCOUNT
do

jim: ACCOUNT -
do -

1draw in ACC(

create {ACCOUNT} tom.make ("Jim", 100) creatr:e; {ACCOUNT; jeremy.;nake ("Jeremy", 100)
Jim.withdraw(100) jeremy.withdraw(150)
-— A class in ant violati with "posi s s -— A postc on vic on v h tag "bal
end end
end end
By executing the above code, the runtime monitor of Eiffel Studio By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag will report a contract violation (postcondition violation with tag
" 1 3 n " n
Earsd positive balance"). rarsd balance_deducted").

. - |
DbC in Eiffel: Postcondition Violation (5.2) |issonce Index (1) o

[Motivation: Catching Defects — When?|

[What This Course Is About]

[Terminology: Contract, Client, Supplier|

[Client, Supplier, Contract in OOP (1)|

[Client, Supplier, Contract in OOP (2)|

|[What is a Good Design?|

(| |o APPLICATION @ ACCOUNT 3 LRl Call Stack FEroseva
cit exception pendi
balance_deducted: POSTCONDITION_VIOLATION raised

Status = Impli

Feature bank ACCOUNT withdraw < » % O

P[F 1o 3= 30 szt ot [S Y A3 # In Featur InClass | From Class =
) T T, Tl [ASimple Problem: Bank Accounts]
do 4 APPLICATION APPLICATION 2 = = = = =
® " balance - batance + amoun [Playing with the Various Versions in Java|
g e"(:a\anceideducted: balance = old balance - amount) Vgrsign 1 . An AQQQ! !nI g :Iass

[Version 1: Why Not a Good Design? (1))
[Version 1: Why Not a Good Design? (2)|
[Version 1: Why Not a Good Design? (3)|
[Version 1: How Should We Improve it? (1)|
Version 1: How Should We Improve it? (2)|

——— e

Beyond this lecture... LASSONDE Index (2) o T
[Version 2: Added Exceptions |
[to Approximate Method Preconditions]|
[Version 2: Why Better than Version 1? (1)
[Version 2: Why Better than Version 1? (2.1)|
[Version 2: Why Better than Version 1? (2.2)|
e Study this tutorial series on DbC and TDD: [Version 2: Why Better than Version 17 (3.7)
https://www.youtube.com/playlist?list=PL5dxAmCmiv_ [Version 2: Why Better than Version 17 (3.2)]
0ro5VEzCOobTznobDgh,__KS [Version 2: Why Still Not a Good Design? (1)
[Version 2: Why Still Not a Good Design? (2.1))
[Version 2: Why Still Not a Good Design? (2.2))

Version 2: How Should We Improve it?|
Version 3: Added Assertions
[to Approximate Class Invariants|

Version 3: Why Better than Version 27|

——— e

|
Index (3) Lassonpe
Version 3: Why Still Not a Good Design?|

Version 4: What If the |
Implementation of withdraw is Wrong? (1))

Version 4: What If the |

[Implementation of withdraw is Wrong? (2))
Version 4: How Should We Improve it?|
Version 5: Added Assertions

[to Approximate Method Postconditions|
[Version 5: Why Better than Version 47?]
Evolving from Version 1 to Version 5|
Version 5:

[Contract between Client and Supplier|
DbC in Java

[DbC in Eiffel: Supplier|

DbC in Eiffel: Contract View of Supplier|

Index (4)

[DbC in Eiffel: Anatomy of a Class|

[DbC in Eiffel: Anatomy of a Feature|
[Runtime Monitoring of Contracts (1)|
[Runtime Monitoring of Contracts (2)|
|[Runtime Monitoring of Contracts (3)|

[DbC in Eiffel: Precondition Violation (1.1))
[DbC in Eiffel: Precondition Violation (1.2)|
[DbC in Eiffel: Precondition Violation (2.1)|
[DbC in Eiffel: Precondition Violation (2.2)|
[DbC in Eiffel: Precondition Violation (3.1)|
[DbC in Eiffel: Precondition Violation (3.2)|
[DbC in Eiffel: Class Invariant Violation (4.1)|
[DbC in Eiffel: Class Invariant Violation (4.2)|
DbC in Eiffel: Postcondition Violation (5.1)|

LSSoNDE

Index (5)
[DbC in Eiffel: Postcondition Violation (5.2)|

LSSoNDE

[Beyond this lecture...|

Syntax of Eiffel: a Brief Overview

EECS3311 A: Software Design

' Fall 2019

£ CHEN-WEI WANG
Y

LASSONDE

ooooooooooooooooo

Escape Sequences

Escape sequences are special characters to be placed in your
program text.

o In Java, an escape sequence starts with a backward slash \
e.g., \n for a new line character.
o In Eiffel, an escape sequence starts with a percentage sign %
e.g., 3N for a new line characgter.
See here for more escape sequences in Eiffel: https://www.
eiffel.org/doc/eiffel/Eiffel%$20programming$
20language%20syntax#Special_characters

LASSONDE

ooooooooooooooooo

Commands, and Queries, and Features

¢ In a Java class:

o Attributes: Data

o Mutators: Methods that change attributes without returning

o Accessors: Methods that access attribute values and returning
e In an Eiffel class:

o Everything can be called a feature.

o But if you want to be specific:

o Use attributes for data
o Use commands for mutators
o Use queries for accessors

3 of 37

Naming Conventions

e Cluster names: all lower-cases separated by underscores
e.g., root, model, tests, cluster_number_one

¢ Classes/Type names: all upper-cases separated by
underscores

€.g., ACCOUNT, BANK_.ACCOUNT_APPLICATION

¢ Feature names (attributes, commands, and queries): all
lower-cases separated by underscores

e.d., account_balance, deposit_into, withdraw_from

LASSONDE

ooooooooooooooooo

Class Declarations

e In Java:

class BankAccount {

attributes and methods *

}

e In Eiffel:

class BANK_ACCOUNT
/* attributes, commands, and queries */
end

5 of 37|

LASSONDE

ooooooooooooooooo

Class Constructor Declarations (1)

¢ In Eiffel, constructors are just commands that have been
explicitly declared as creation features:

class BANK_ACCOUNT
—-— List names commands that can be used tructor
create
make
feature Commands
make (b: INTEGER)
do balance := b end
make2
do balance := 10 end
end

¢ Only the command make can be used as a constructor.
e Command make?2 is not declared explicitly, so it cannot be used
as a constructor.

6 of 37

LASSONDE

ooooooooooooooooo

Creations of Objects (1)

¢ In Java, we use a constructor Accont (int b) by:
o Writing Account acc = new Account (10) to create a named
object acc
o Writing new Account (10) to create an anonymous object
* In Eiffel, we use a creation feature (i.e., a command explicitly
declared under create) make (int b) inclass ACCOUNT by:

o Writing create {ACCOUNT} acc.make (10) tocreate a
named object acc

o Writing create {ACCOUNT}.make (10) to create an
anonymous object

o Writing’create {ACCOUNT} acc.make (10)‘

is really equivalent to writing

acc := create {ACCOUNT}.make (10)|

Attribute Declarations

¢ In Java, you write: int i, Account acc
¢ In Eiffel, you write: i: INTEGER, acc: ACCOUNT
Think of : as the set membership operator ¢:

e.g., The declaration acc: ACCOUNT means object accis a
member of all possible instances of ACCOUNT.

8 of 37|

LASSONDE

ooooooooooooooooo

Method Declaration

e Command
deposit (amount: INTEGER)
do
balance := balance + amount
end

Notice that you don’t use the return type void

e Query
sum_of (x: INTEGER; y: INTEGER): INTEGER
do
Result := x + y
end

o Input parameters are separated by semicolons ;
o Notice that you don’t use return; instead assign the return value
to the pre-defined variable Result.

LASSONDE

ooooooooooooooooo

Operators: Assignment vs. Equality

e In Java:
o Equal sign = is for assigning a value expression to some variable.
eg.,x = 5 » ychanges xsvalueto5 » y
This is actually controversial, since when we first learned about =,
it means the mathematical equality between numbers.
o Equal-equal == and bang-equal ! = are used to denote the equality
and inequality.

e.g.,x == 5 = y evaluates to frueif x’s value is equal to the
value of 5 = v, or otherwise it evaluates to false.
* In Eiffel:

o Equal = and slash equal /= denote equality and inequality.
e.g.,x = 5 » vy evaluates to frue if x’s value is equal to the value
of 5 * vy, or otherwise it evaluates to false.

o We use : = to denote variable assignment.
e.g.,x := 5 x ychanges x’svalueto5 x y

o Also, you are not allowed to write shorthands like x++,

ustwrltex = x + 1.

LASSONDE

ooooooooooooooooo

Operators: Division and Modulo

| Division | Modulo (Remainder)
Java 20 / 3is6 20 % 3is2
Eiffel || 20 // 3is6 20 \\ 3is2

LASSONDE

ooooooooooooooooo

Operators: Logical Operators (1)

¢ Logical operators (what you learned from EECS1090) are for
combining Boolean expressions.
¢ In Eiffel, we have operators that EXACTLY correspond to
these logical operators:
| Logic | EIFFEL

Conjunction A and
Disjunction v or
Implication = implies
Equivalence = =

LASSONDE

ooooooooooooooooo

Operators: Logical Operators (2)

e How about Java?
o Java does not have an operator for logical implication.
o The == operator can be used for logical equivalence.
o The «& and | | operators only approximate conjunction and
disjunction, due to the short-circuit effect (SCE):
e When evaluating el s& e2,if el already evaluates to false, then el
will not be evaluated.

eg.,In(y !'=0) «& (x / y > 10),the SCE guards the division
against division-by-zero error.

e When evaluatingel || e2,if el already evaluates to true, then el
will not be evaluated.
eg.,In(y ==0) || (x / y > 10),the SCE guards the division

against division-by-zero error.
o However, in math, the order of the two sides should not matter.
¢ In Eiffel, we also have the version of operators with SCE:
|| short-circuit conjunction | short-circuit disjunction

[
or else

Java
Eiffel

&&
and then

|

LASSONDE

ooooooooooooooooo

Selections (1)

if B; then
- B
elseif B, then
= By n(=B1)

something

something

else
- (jB1)/}SﬂBz))

—-—— ae

end

Selections (2)

LASSONDE

LASSONDE

ooooooooooooooooo

Loops (1)

LASSONDE

ooooooooooooooooo

An if-statement is considered as:
o An instruction if its branches contain instructions.

o An expression if its branches contain Boolean expressions.

class
FOO
feature Attributes
x, y: INTEGER
feature - Co s
command
A command with if-statements in implementation and con
require
if x \\ 2 /= 0 then True else False end —— Or: x \\
do
if x > 0 then y := 1 elseif x < 0 then y := -1 else y :
ensure
y = if old x > 0 then 1 elseif old x < 0 then -1 else 0 end
old x > 0 i ies y = 1
s vy = —1) and (old x = 0 [

0 end

and (old (
end
end
——

¢ In Java, the Boolean conditions in for and while loops are

stay conditions.

void printStuffs() {

int i = 0;
while(i < 10 /+ stay condition */)
System.out.println(i);
i=1+1;

}

}

¢ In the above Java loop, we stay in the loop
aslongasi < 10 istrue.

¢ In Eiffel, we think the opposite: we exit the loop

assoonas i >= 10 istrue.

[16 of 37]

Loops(?) |issonne
In Eiffel, the Boolean conditions you need to specify for loops
are exit conditions (logical negations of the stay conditions).

print_stuffs
local
i:
do
from
i =0
until
i >= 10
loop
print (1)
i = 1 + 1

INTEGER

i o:=
end
end -

o Don’tput () after a command or query with no input parameters.

o Local variables must all be declared in the beginning.

Library Data Structures LASSONDE Data Structures: Linked Lists (1) LASSONDE

oooooooooooooooooooooooooooooooooo

Enter a DS name. Explore supported features.

Features ERUER
5 % Inherit before after
@ RESIZABLE [G]
@ INDEXABLE [G, INTEGER]
@ TO_SPECIAL [G] —_— 4G —
= [Initialization .
make_empty _ h A h _ h
make_filled 1 count
make
make_from_array forth
make_from_special —_—
make_from_cil
= 4 Access
4 item
4 at
entry item

sl Grou.psl & Features'EJ AutoTest |»' index: INTEGER

File Edit View Favorites Project E:
EMmEd a6 4
i~ zg&;lCIass [ARRAY i ﬂ

* | Gg Searct Cursor

& a4k g

20 of 37,

Data Structures: Arrays LASSONDE Data Structures: Linked Lists (2) LASSONDE
e Creating an empty array: e Creating an empty linked list:
local a: ARRAY [INTEGER] local
do create {ARRAY[INTEGER]} a.make_empty list: LINKED_LIST[INTEGER]
do
o This creates an array of 1ower and upper indices 1 and 0. create {LINKED_LIST[INTEGER]} Iist.make
o Sizeofarraya:]a.upper - a.lower + 1‘. Tvoical |] h h a linked |
. : ° ical loop structure to iterate throu a linked list:
¢ Typical loop structure to iterate through an array: yp P 9
local
local 1ist: LINKED_LIST [INTEGER]
a: ARRAY[INTEGER] i: INTEGER
i, _7 INTEGER do
do o
ce from
frf’m list.start
3 _:= a.lower until
“nt"'ll list.after
j > a.upper do
do . i := list.item
ti=a [3] list.forth
jo:=3+1 end
ﬁ 21701 37|

- ===

LASSONDE

ooooooooooooooooo

Iterable Structures

o Eiffel collection types (like in Java) are iterable .
e If indices are irrelevant for your application, use:

across ... as ... |loop| ... end
e.g.
local

a: ARRAY[INTEGER]
1: LINKED_LIST|[INTEGER]
suml, sumZ2: INTEGER

do

suml + cursor.item end
sum2 + cursor.item end

across a as cursor loop suml :
across 1 as cursor loop sum2 :

end

[22 of 37]

LASSONDE

ooooooooooooooooo

Using across for Quantifications (1.1)
® across ... as . all] . end
A Boolean expressmn actlng as a universal quantification (V)

local
allPositive: BOOLEAN
a: ARRAY [INTEGER]

do

Result :=
across
a.lower |..
all
a [i.item] > 0
end

| a.upper as 1

0O OVWoONOUA~WN =

_

o L8:a.lower |..| a.upper denotes a list of integers.

o L8: as i declares a list cursor for this list.

o L10: i.item denotes the value pointed to by cursor i.
¢ L9: Changing the keyword all to some makes it act like an
stentlal quantification 3.

LASSONDE

ooooooooooooooooo

Using across for Quantifications (1.2)
e Alternatively: across ... is . all end
A Boolean expression acting as a unlversal quantlflcatlon ()

local
allPositive: BOOLEAN
a: ARRAY [INTEGER]

do

Result :=
across
a.lower |..
all
a [i] > 0
end

| a.upper is 1

0O OVWoONOUA~WN =

_

o L8:a.lower |..| a.upper denotes a list of integers.
o L8: is i declares a variable for storing a member of the list.
o L10: i denotes the value itself.
¢ L9: Changing the keyword all to some makes it act like an
stentlal quantification 3.

LASSONDE

ooooooooooooooooo

Using across for Quantifications (2)

class

CHECKER
feature Att

collection ’, LIST,
feature -

do
ensure
across
collection as cursor
all
cursor.item > 0

end
end

¢ Using all corresponds to a universal quantification (i.e., V).
¢ Using some corresponds to an existential quantification (i.e., 3).

Using across for Quantifications (3) LASSONDE
class BANK
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT
require
Vi: INTEGER | 1< i< accounts.count e accounts[i].id < accounts[i+ 1].id
across
1 |..| (accounts.count - 1) as cursor
all
accounts [cursor.item].id <= accounts [cursor.item + 1].id
end
do
ensure
Result.id = acc_id
end

Using across for Quantifications (4) LASSONDE

ooooooooooooooooo

class BANK

accounts: LIST [ACCOUNT]
contains_duplicate: BOOLEAN

—— Does the unt st contain duvlicate?

roes tn account 1181 contain qaupiica

do

ensure
Vi,j: INTEGER |
\ 1 < i< accounts.count A 1< j< accounts.count e \
accounts[i] ~ accounts[j] = i =
’ end

¢ Exercise: Convert this mathematical predicate for
postcondition into Eiffel.

¢ Hint: Each across construct can only introduce one dummy
variable, but you may nest as many across constructs as
necessary.

Eq uality LASSONDE

ooooooooooooooooo

¢ To compare references between two objects, use =.

¢ To compare “contents” between two objects of the same type,
use the redefined version of is_equal feature.

¢ You may also use the binary operator ~
ol ~ o2 evaluates to:

o true if both o1 and o2 are void
o false if one is void but not the other
o ol.is_equal (02) if both are not void

Use Of ~3 Cautlon LASSONDE
1 |class
2 BANK
3 | feature Attribute
4 accounts: ARRAY[ACCOUNT]
5 | feature - Queries
6 get_account (id: STRING): detachable ACCOUNT
7 Account ’)L‘VJ C ﬁ; n ,i(i,.
8 do
9 across
10 accounts as cursor
11 loop
12 if cursor.item ~ id then
13 Result := cursor.item
14 end
15 end
16 end
17 | end

L15 should be: cursor.item.id ~ id

ASSONDE

ooooooooooooooooo

Review of Propositional Logic (1)

—

e A proposition is a statement of claim that must be of either
true or false, but not both.
¢ Basic logical operands are of type Boolean: true and false.
¢ We use logical operators to construct compound statements.
o Binary logical operators: conjunction (), disjunction (v),
implication (=), and equivalence (a.k.a if-and-only-if <)

| p | g [[prglpPvalp=qg]p = q|
true true true true true true
true | false || false | true false false
false | true || false | true true false
false | false || false | false true true
o Unary logical operator: negation (-)
L p [-p |
true || false
false || true

30 of 37|

Review of Propositional Logic: Implication |.assoce

ooooooooooooooooo

Written as p = q
Pronounced as “p implies g”
We call p the antecedent, assumption, or premise.
We call g the consequence or conclusion.
Compare the fruth of p = q to whether a contract is honoured: p ~
promised terms; and g »~ obligations.
o When the promised terms are met, then:
e The contract is honoured if the obligations are fulfilled.
e The contract is breached if the obligations are not fulfilled.
o When the promised terms are not met, then:
o Fulfilling the obligation (g) or not (~q) does not breach the contract.

O O O O O

| p | g [[p=q]
true | true true
true | false || false

false | true true
false | false true

\wy

Review of Propositional Logic (2)
e Axiom: Definition of =

—

ASSONDE

ooooooooooooooooo

, p=qg=-pvq
e Theorem: Identity of =

frue=p=p

Theorem: Zero of =

false = p = true

Axiom: De Morgan

-(brq) = -pPv-q
-(pvq) = -pr-q
¢ Axiom: Double Negation
p=-(=p)

Theorem: Contrapositive

p=q=-q9=-p

LASSONDE

ooooooooooooooooo

Review of Predicate Logic (1)

e A predicate is a universal or existential statement about
objects in some universe of disclosure.

Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.
We use the following symbols for common numerical ranges:
o Z: the set of integers
o N: the set of natural numbers
Variable(s) in a predicate may be quantified:
o Universal quantification :

All values that a variable may take satisfy certain property.

e.g., Given that / is a natural number, i is always non-negative.
o Existential quantification :

Some value that a variable may take satisfies certain property.

e.g., Given that / is an integer, i can be negative.

Review of Predicate Logic (2.1) LASSONDE

» A universal quantification has the form (VX | R ¢ P)
o X is a list of variable declarations
o Ris a constraint on ranges of declared variables
o Pis a property
(VX|R e P)=(VYX ¢ R=P)
e.g., (VX | True ¢ P)=(VX o True=P)=(VX e P)
eg., (VX | False ¢« P)= (VX e False= P)= (VX e True) = True
e for all (combinations of) values of variables declared in X that
satisfies R, it is the case that P is satisfied.

o

o Vi|ieN e >0 [true]
o Vi|ieZ o i>0 [false]
o VijlieZNnjel o i<jvi>] [false]

e The range constraint of a variable may be moved to where the
variable is declared.
o Vi:N e j>0
o Vi:Z ei>0
o Vij:7Z e i<jvi>j

Review of Predicate Logic (2.2)

* An existential quantification has the form (3X | R ¢ P)
o X is a list of variable declarations
o Ris a constraint on ranges of declared variables
o Pis a property
o (3IX|R e P)=(3X e RAP)
e.g., (3X | True ¢ P)=(3X o TruenP)= (VX o P)
e.g., (3X | False ¢ P)=(3X e Falsen P)=(3X e False) = False
e There exists a combination of values of variables declared in X
that satisfies R and P.

o Jj|ieN e j>0 [true]
o Jji|ieZ o i>0 [true]
o i jlieZnjeZ o i<jvi>j [true]

e The range constraint of a variable may be moved to where the
variable is declared.
o 3i:Neij>0
o Jj:7Z e >0
o i, j:7Z e i<jvi>]j

Predicate Logic (3) LASSONDE

e Conversion between vV and 3

(VX|ReP) «<— —(3X ¢ R=-P)
(3IX|ReP) < (VX ¢eR=-P)

¢ Range Elimination

(VX|ReP) «<— (VX ¢«eR=P)
(IX|ReP) «<— (IX ¢« RAP)

36 of 37|

Index (1) :AssoNDE

[Escape Sequences|

[Commands, Queries, and Features|
[Naming Conventions|

Class Declarations

[Class Constructor Declarations (1))
[Creations of Objects (1))

Attribute Declarations

[Method Declaration|

[Operators: Assignment vs. Equality|
[Operators: Division and Modulo|
[Operators: Logical Operators (1)|
|[Operators: Logical Operators (2)|
Selections (1)

Selections (2)

e ——=,

e
Index (2) :AssoNDE

[Coops (1)
[Library Data Structures|

[Data Structures: Arrays|

[Data Structures: Linked Lists (1)|

[Data Structures: Linked Lists (2)|
[lterable Data Structures]

|Using across for Quantifications (1.1)|
[Using across for Quantifications (1.2)|
|[Using across for Quantifications (2)|
|[Using across for Quantifications (3)|
[Using across for Quantifications (4)|

Equality

%f ~: Caution
———
]

Index (3) fASSONDE
[Review of Propositional Logic (1)|

[Review of Propositional Logic: Implication|

[Review of Propositional Logic (2)|

[Review of Predicate Logic (1)|

[Review of Predicate Logic (2.1))

[Review of Predicate Logic (2.2)|

[Predicate Logic (3)|

39 of 37|

Common Eiffel Errors:
Contracts vs. Implementations

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

YORK

\
\

cic
z|z
mim
D=
wlwn
==
<Im

Contracts vs. Implementations: Definitions |.ssono:

In Eiffel, there are two categories of constructs:
o Implementations
o are step-by-step instructions that have side-effects

e.g.,,’across ... as ... loop ... end

e change attribute values
e do not return values
e ~ commands
o Contracts
e are Boolean expressions that have no side-effects

eg.,|... = ... ,’across ... as ... all ... end

¢ use attribute and parameter values to specify a condition
e return a Boolean value (i.e., True or False)
e ~ queries

Contracts vs. Implementations: Where? LASSONDE

ooooooooooooooooo

e Instructions for Implementations: insty, insts
¢ Boolean expressions for Contracts: expi, expo, exps, €xps, €Xps

class feature Con ds
withdraw
ACCOUNT require
feature —— 0O ies qu exps
balance: INTEGER do
require insty
exp;
do ensure
. expPs
n.
sty end
ensure . .
exps invariant
X
end P5‘ , s
end - end of class AC

Implementations: LASSONDE
Instructions with No Return Values

e Assignments

’ balance := balance + a ‘

¢ Selections with branching instructions:

’if a > 0 then acc.deposit (a) else acc.withdraw (-a) end ‘

e Loops
from from
unlti:: a-dower list.start across
i > a.upver until list as cursor
loo Supp list.after loop
R;;ult 1= loop sum :=
Result + ali] list.item.wdw(10) sum + cursor.item
; : list.forth end
i::=1i+1
end
end

Contracts: LASSONDE

Expressions with Boolean Return Values
¢ Relational Expressions (using =, /=, ~, /~, >, <, >=, <=)
’ a>a»0 ‘

e Binary Logical Expressions (using and, and then, or, or else,
implies)

’ (a.lower <= index) and (index <= a.upper)

¢ Logical Quantification Expressions (using all, some)

across

a.lower |..| a.upper as cursor
all

a [cursor.item] >= 0
end

¢ old keyword can only appear in postconditions (i.e., ensure).

balance = old balance + a ‘
5 of 23]

Contracts: Common Mistake (1) LASSONDE

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
balance := old balance - a
end

Colon-Equal sign (: =) is used to write assignment instructions.

Contracts: Common Mistake (1) Fixed

LASSONDE

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
balance = old balance - a
end

7 of 23

Contracts: Common Mistake (2)

LASSONDE

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
across
a as cursor
loop

end

across...loop...end is used to create loop instructions.

Contracts: Common Mistake (2) Fixed

LASSONDE

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
across

a as cursor
all —-

Contracts: Common Mistake (3)

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
old balance - a
end

Contracts can only be specified as Boolean expressions.

10 of 23]

Contracts: Common Mistake (3) Fixed LASSONDE Contracts: Common Mistake (4) Fixed LASSONDE
class class
ACCOUNT ACCOUNT
feature
feature
withdraw (a: INTEGER) withdraw (a: INTEGER)
do require
balance > 0
ensure do
postcond_1: balance = old balance - a U
postcond_2: old balance > 0 ensure
d o
- end
[11 of 23] [13 of 23]

Contracts: Common Mistake (4) LASSONDE Contracts: Common Mistake (5) LASSONDE
class class LINEAR _CONTAINER
ACCOUNT :::Eiemfjfe;v;. ites
feature a: ARRAY [STRING]
withdraw (a: INTEGER) fe:ot:nrte: INTEGER (d;> Result := a.count end
require get (i: INTEGER): STRING do Result := a[i] end
old balance > O feature —— “ommands
make do create a.make_empty end
do update (i: INTEGER; v: STRING)
cee do ...
ensure ens:zioss Others nchanged
1 |..| count as j
end all
j.item /= i implies old get(j.item) ~ get(j.item)
end
end
e Only postconditions may use the old keyword to specify the =
re/at/onsh/p between pre-state values (before the_ execution of Compilation Error:
withdraw) and post-state values (after the execution of o Expression value to be cached before executing update?
withdraw). [Current.get (j.item)]
* Pre-state values (right before the feature is executed) are o But, in the pre-state, integer cursor j does not exist!

fzegleed W _

Contracts: Common Mistake (5) Fixed

LASSONDE

ooooooooooooooooo

class LINEAR_CONTAINER
create make
feature - Attributes

a: ARRAY[STRING]
feature Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end
feature - Commands

make do create a.make_empty end

update (i: INTEGER; v: STRING)

do ...

ensure Others Unchangec
across

1 |..| count as j
all
j.item /= i implies (old Current) .get (j.item) ~ get(j.item)
end
end
end

o The idea is that the old expression should not involve the local
cursor variable 5 that is introduced in the postcondition.

o Whether to put (old Current.twin) or (old
Current.deep twin) is up to your need.

Implementations: Common Mistake (1)

LASSONDE

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance = balance + 1
end

e Equal sign (=) is used to write Boolean expressions.

¢ In the context of implementations, Boolean expression values

must appear:
o on the RHS of an assignment;

o as one of the branching conditions of an if-then-else statement; or

o as the exit condition of a loop instruction.

e

Implementations: Common Mistake (1) Fixedsono:

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance := balance + 1
end

17 of 23]

Implementations: Common Mistake (2) LASSONDE

ooooooooooooooooo

class
BANK

feature
min_credit: REAL
accounts: LIST[ACCOUNT

no_warning_accounts: BOOLEAN
do
across
accounts as cursor
all
cursor.item.balance > min_credit
end
end

Again, in implementations, Boolean expressions cannot appear
alone without their values being “captured”.

e

Implementations: Common Mistake (2) Fixedsono:

1 |class

2 BANK

3 | feature

4 min_credit: REAL

5 accounts: LIST[ACCOUNT]

6

7 no_warning_accounts: BOOLEAN

8 do

9 Result :=

10 across

11 accounts as cursor

12 all

13 cursor.item.balance > min_credit

14 end

15 end

16
Rewrite L10 — L14 using across ... as ... some ... end.
Hint: Vx e P(x) = —(3x ¢ =P(x))

19 of 2

Implementations: Common Mistake (3)

LSSoNDE

class
BANK
feature
accounts: LIST[ACCOUNT]

total_balance: REAL

do
Result :=
across
accounts as cursor
loop
Result := Result + cursor.item.balance
end
end

In implementations, since instructions do not return values, they

cannot be used on the RHS of assignments.

Implementations: Common Mistake (3) Fixedsono:

class
BANK
feature
accounts: LIST[ACCOUNT]

total_balance: REAL
do
across
accounts as cursor
loop
Result
end
end

:= Result + cursor.item.balance

1ot 23]

Index (1)

LSSoNDE

|[Contracts vs. Implementations: Definitions|
Contracts vs. Implementations: Where?|

Implementations:

nstructions with No Return Val

[Contracts:

[Expressions with Boolean Return Values|
[Contracts: Common Mistake (1))
[Contracts: Common Mistake (1) Fixed|
[Contracts: Common Mistake (2)|
[Contracts: Common Mistake (2) Fixed|
[Contracts: Common Mistake (3)|
[Contracts: Common Mistake (3) Fixed|
[Contracts: Common Mistake (4)|
[Contracts: Common Mistake (4) Fixed|
Contracts: Common Mistake (5)|

Index (2) LASSONDE

ooooooooooooooooo

[Contracts: Common Mistake (5) Fixed|

[Implementations: Common Mistake (1)]

[Implementations: Common Mistake (1) Fixed|

[Implementations: Common Mistake (2)]

[Implementations: Common Mistake (2) Fixed|

[Implementations: Common Mistake (3)|

[Implementations: Common Mistake (3) Fixed|

Drawing a Design Diagram
using the Business Object Notation (BON)

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

LASSONDE

Why a Design Diagram? [Lssonce
e SOURCE CODE is not an appropriate form for communication.

e Use a DESIGN DIAGRAM showing selective sets of important:
o clusters (i.e., packages)
o classes

[deferred vs. effective]
[generic vs. non-generic]
o architectural relations
[client-supplier vs. inheritance]
o features (queries and commands)
[deferred vs. effective vs. redefined]
o contracts
[precondition vs. postcondition vs. class invariant]

¢ Your design diagram is called an abstraction of your system:

o Being selective on what to show, filtering out irrelevant details
o Presenting contractual specification in a mathematical form
(e.g., Vinstead of across ... all ... end).

e

Classes:
Detailed View vs. Compact View (1)

LASSONDE

ooooooooooooooooo

o | Detailed view | shows a selection of:

o features (queries and/or commands)

o contracts (class invariant and feature pre-post-conditions)

o Use the detailed view if readers of your design diagram should
know such details of a class.
e.g., Classes critical to your design or implementation

e | Compact view | shows only the class name.

o Use the compact view if readers should not be bothered with
such details of a class.
e.g., Minor “helper” classes of your design or implementation
e.g., Library classes (e.g., ARRAY, LINKED_LIST, HASH_TABLE)

Classes:

Detailed View vs. Compact View (2)

A cono: Classes: Generic vs. Non-Generic

ooooooooooooooooo

Detailed Vi

ew

Compact View

e Aclassis generic if it declares at least one type parameters.

o Collection classes are generic: ARRAY [G], HASH-TABLE [G, H], elcC.
o Type parameter(s) of a class may or may not be instantiated:

-
FOO

feature -- { A,B,C }

feature -- { NONE }
-- private features
invariant

-- features exported to classes A, B, and C

inv_I: 0 <balance < 1,000,000

_ _J

Contracts: Mathematical vs. Programming |iasoxc: Deferred vs. Effective

o If necessary, present a generic class in the detailed form:

(DATABASEI[G] 1 (DATABASE[STRING]\ (DATABASE[PERSON]\

feature

feature

-- some public features here
feature -- { NONE }

- imp: ARRAY[STRING]
invariant
-- some class invariant here

feature
-- some public features here
feature -- { NONE }
-- imp: ARRAY[G]
invariant
-- some class invariant here

- some public features here
feature - { NONE }

-- imp: ARRAY[PERSON]
invariant
-- some class invariant here

e Aclassis non-generic if it declares no type parameters.

ooooooooooooooooo

o When presenting the detailed view of a class, you should include
contracts of features which you judge as important.
o Consider an array-based linear container:

ARRAYED_CONTAINER+

feature -- Querics
count+: INTEGER
— Number of items stored in the container

feature -- Commands
assign_at+ (i: INTEGER; s: STRING)

-- Change the value at position 'i' to 's’.

require
valid_index: 1 <1< count

ensure
size_unchanged: imp.count = (old imp.twin).count
item_assigned: imp[i] ~ s
others_unchanged: ¥j : 1 <j < imp.count : j # i =imp[j] ~ (old imp.twin) [j]

feature -- { NONE }
imp+: ARRAY[STRING]
- Implementation of an arrayed-container

e A tag should

invariant
__consistency: imp.count = count

means unimplemented (~ abstract in Java)
Effective | means implemented

J

be included for each contract.

o Use mathematical symbols (e.g., V, 3, <) instead of programming
symbols (e.g., across all , across

... some ..., <=).

LASSONDE

ooooooooooooooooo

Classes: Deferred vs. Effective

e A deferred class has at least one feature unimplemented.

o A deferred class may only be used as a static type (for
declaration), but cannot be used as a dynamic type.

o e.g., By declaring 1ist: LIST[INTEGER] (where LIST is a
deferred class), it is invalid to write:
e create list.make
e create {LIST[INTEGER]} list.make

¢ An effective class has all features implemented.

o An effective class may be used as both static and dynamic types.
o e.g., By declaring 1ist: LIST[INTEGER],itis valid to write:

e create {LINKED_LIST[INTEGER]} list.make
e create {ARRAYED LIST[INTEGER]} list.make

where LINKED_LIST and ARRAYED_LIST are both effective
descendants of LIST.

e

Features: Deferred, Effective, Redefined (1) |.assonoe

ooooooooooooooooo

A deferred feature is declared with its header only
(i.e., name, parameters, return type).

o The word “deferred” means a descendant class would later
implement this feature.
o The resident class of the deferred feature must also be deferred.

deferred class
DATABASE[G]
feature - Queries
search (g: G): BOOLEAN
Does item ‘g' exist in database?
deferred end
end

Features: Deferred, Effective, Redefined (2) |.ssonoe

ooooooooooooooooo

e An effective feature implements some inherited deferred
feature.

class
DATABASE_V1[G]

inherit
DATABASE

feature - Queries
search (g: G): BOOLEAN

—— Perform

linear search on the database
a linear search on the database.

deferred end
end

¢ A descendant class may still later re-implement this feature.

10 of 25|

Features: Deferred, Effective, Redefined (3) |.assonoe

ooooooooooooooooo

e A redefined feature re-implements some inherited effective
feature.

class
DATABASE_V2[G]
inherit
DATABASE_VI1[G]
redefine search end
feature —— Queries
search (g: G): BOOLEAN

errorm >lnary searcn

deferred end
end

¢ A descendant class may still later re-implement this feature.

[11 of 25|

Classes: Deferred vs. Effective (2.1)

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

e Deferred or effective classes may be in the compact form:

ARRAYED_LIST[G]+

ARRAYED LIST[G]+

LASSONDE

ooooooooooooooooo

DATABASE[G]* DATABASE_VI[G]+ DATABASE_V2[GJ+
12 of 25
Classes: Deferred vs. Effective (2.2) e

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

e Deferred or effective classes may be in the detailed form:

DATABASE[G]*) (DaTaBASE Vi[G]+ | [DATABASE V2[GJ+
feature {NONE} -- Implementation feature {NONE;} - Implementation
data: ARRAY[G]

feature {NONE} -- Implementation
data: ARRAY[G] data: ARRAY[G]

~

J

feature -- Commands feature -- Commands
add_item* (g: G)

feature -- Commands
add_item+ (g: G)

add_item++ (g: G)
-~ Add new item "¢’ into database

-~ Append new item g’ into end of 'data’.
require
non_existing_item: exists (2) feature - Queries
ensure count+: INTEGER
- Number of items stored in database

~ Insert new item "’ into the right slot of “data’.

feature - Queries
count+: INTEGER
-- Number of items stored in database

size_incremented: count = old count + 1
item_added: exists (g)

exists+ (g: G): BOOLEAN exists++ (g: G): BOOLEAN
feature - Queries __ -~ Perform a linar scarch on ‘data’ array.) -- Perform a binary search on “data” array.
count+: INTEGER

- Number of items stored in database

ensure
correct_result: Result = data.count

invariant

sorted_data: Vi: 1< < count: data[i] < datali + 1]

J
exists* (g: G): BOOLEAN
-- Does item g’ exist in database?

L correct_result: Result = (3i : 1 <i < count : data[i] ~ g)

13 of 25|

Class Relations: Inheritance (1)

LASSONDE

ooooooooooooooooo

e An inheritance hierarchy is formed using red arrows.
o Arrow’s origin indicates the child/descendant class.
o Arrow’s destination indicates the parent/ancestor class.
¢ You may choose to present each class in an inheritance
hierarchy in either the detailed form or the compact form:

A

(MY _LIST INTERFACE[G]* }

feature

-- some public features here
feature - { NONE }

-- some implementation features here
invariant

-- some class invariant here

N V.

14 of 25|

Class Relations: Inheritance (2)

LASSONDE

ooooooooooooooooo

More examples (emphasizing different aspects of DATABASE):

Inheritance Hierarchy || Features being (Re-)implemented

DATABASE[G]*
DATABASE_VI[G]+

TABASE[G]*

DATABASE_V2[G]+

15 of 25|

LASSONDE

ooooooooooooooooo

Class Relations: Client-Supplier (1)

e A ’ client-supplier (CS) relation ‘ exists between two classes:

one (the client) uses the service of another (the supplier).

e Programmatically, there is CS relation if in class CLIENT there
is a variable declaration [s1: SUPPLIER].
o A variable may be an attribute, a parameter, or a local variable.

e A green arrow is drawn between the two classes.
o Arrow’s origin indicates the client class.
o Arrow’s destination indicates the supplier class.
o Above the label there should be a /abel indicating the supplier
name (i.e., variable name).
o In the case where supplier is an attribute, indicate after the label
name if it is deferred (), effective (+), or redefined (++).

16 of 25|

LASSONDE

ooooooooooooooooo

Class Relations: Client-Supplier (2.1)

class DATABASE

feature {NONE} mplementatio
data: ARRAY [STRING]

feature —- Commands
add_name (nn: STRING)

. class UTILITIES
feature Queries
search (a: ARRAY[STRING]; n: STRING): BOOLEAN

require ... do ... ensure ... end
name_exists (n: STRING): BOOLEAN - . ‘0 exist ir
. o e cre catabase require ... do ... ensure ... end

require ...
I end

local
u: UTILITIES
do ... ensure ... end
invariant

end

o Attribute] data: ARRAY[STRING] |indicates two suppliers:
STRING and ARRAY.

o Parameters nn and n may have an arrow with label ,
pointing to the STRING class.

o Local variable u may have an arrow with label , pointing to the

UTILITIES class.

LASSONDE

ooooooooooooooooo

Class Relations: Client-Supplier (2.2.1)

If STRING is to be emphasized, label is |data: ARRAY[...]|
where ... denotes the supplier class STRING being pointed to.

"
DATABASES data+: ARRAY]...]

feature
add_name+ (nn: STRING)
-- Add name “nn’ into database.
require

ensure

name_exists+ (n: STRING): BOOLEAN
-- Does name 'n” exist?
require

ensure (
invariant u feature
search+ (a: ARRAY[STRING]; n: STRING): BOOLEAN

—- Does name "n” exist in array ‘a*?
require

UTILITIES+

L/

L y

ensure

18 of 25|

LASSONDE

ooooooooooooooooo

Class Relations: Client-Supplier (2.2.2)

If ARRAY is to be emphasized, label is[data |
The supplier's name should be complete: ARRAY [STRING]

DATABASE+

feature

add_name+ (nn: STRING) data+

-- Add name “nn’ into datab
require

ensure

name_exists+ (n: STRING): BOOLEAN
-- Does name "n" exist?
require

ensure u

b

invariant

_ J

19 of 25|

Class Relations: Client-Supplier (3.1) LASSONDE Class Relations: Client-Supplier (3.2.2) LASSONDE

oooooooooooooooooooooooooooooooooo

Known: The deferred class LIST has two effective
descendants ARRAY LIST and LINKED_LIST).
e DESIGN ONE:

Alternatively, we may focus on the L.1ST supplier class, which in
this case helps us judge which design is better.

B

DATABASE V1+

class DATABASE V1 .
. . feature imp+ N
feature {NONE} - imp tation - some public features here ARRAYED_LIST[PERSON]
imp: ARRAYED_LIST[PERSON] feature ~ { NONE } _

o

-- some implementation featurcs here
P d contracts invariant

—— more Ireatures and contr

-- some class invariant here

end _J

e DESIGN TwO:

class DATABASE V2

feature {NONE} im ion (DATABASE_V2+
imp: LIST[PERSON] P imp+
... —— more features and contracts '_;tsomep??\lia;e;‘\;reshere w
end _i sl:me;r:\plelnel;mtion features here VAV
-- some class invariant here
Question: Which design is better? [DESIGN TwO] ~
Rationale: Program to the interface, not the implementation. w w

Class Relations: Client-Supplier (3.2.1) LASSONDE Clusters: Grouping Classes LASSONDE

oooooooooooooooooooooooooooooooooo

We may focus on the PERSON supplier class, which may not Use clusters to group classes into logical units.
help judge which design is better.

DATABASE V1+
feature imp+: ARRAYED_LIST[]

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

BB

DATABASE_TESTS+

DATABASE[G]+

feature - C
add_iter
— Ins

nds

................................

em "g' into the right slot of "data’ jmp

(DATABASE vo+
feature imp+: LIST[]

-- some public features here
feature -- { NONE }
-- some implementation features here

feature - Queries LIST[G]
count+: INTEGER

4
[
[
[
1
1
[
- Number of items stored in database [
[
1
1
[
1
1

G): BOOLEAN
a binary search on *data’ array.

invariant
_ sorted da Vi 1 << count: daal] < datei + 1])

J N R4 . -

invariant
-- some class invariant here

21 0t 25,

Index (1)

Why a Design Diagram?|

Classes: |
Detailed View vs. Compact View (1)|

Classes: |
[Detailed View vs. Compact View (2)|

|Contracts: Mathematical vs. Programming|
[Classes: Generic vs. Non-Generic]
Deferred vs. Effective

Classes: Deferred vs. Effective

[Features: Deferred, Effective, Redefined (1)|
[Features: Deferred, Effective, Redefined (2)|
[Features: Deferred, Effective, Redefined (3)|
[Classes: Deferred vs. Effective (2.1)|
LQIﬁsses: Deferred vs. Effective (2.2)]

LSSoNDE

LSSoNDE

Index (2)

[Class Relations: Inheritance (1)|

[Class Relations: Inheritance (2)|

[Class Relations: Client-Supplier (1)|

[Class Relations: Client-Supplier (2.1)|

[Class Relations: Client-Supplier (2.2.1)|

[Class Relations: Client-Supplier (2.2.2)]

[Class Relations: Client-Supplier (3.1)|

[Class Relations: Client-Supplier (3.2.1)]

[Class Relations: Client-Supplier (3.2.2)|

[Clusters: Grouping Classes]|

Copies: Reference vs. Shallow vs. Deep
Writing Complete Postconditions

EECS3311 A: Software Design

YORKRE} e
UNIVERSITE CHEN-WEI WANG
UNIVERSITY

LSSoNDE

Copying Objects
Say variables c1 and c¢2 are both declared of type C. [c1, c2: ¢]
e There is only one attribute a declared in class C.

e cl.aand c2.a are references to objects.

C
=
cl
C
=
c2

LASSONDE

ooooooooooooooooo

Copying Objects: Reference Copy

Reference Copy cl i= c2
o Copy the address stored in variable c2 and store itin c1.

= Both c1 and c2 point to the same object.

= Updates performed via c1 also visible to c2.

—

[aliasing]

k

cl

g

c2
Copying Objects: Shallow Copy VT
Shallow COpy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a

o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

C
a

ANATAS

4 of 38

Copying Objects: Deep Copy LASSONDE
Deep Copy [c1 := c2.deep twin]
o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c3 as follows:
Base Case: a is primitive (e.g., INTEGER). = c3.a := c2.a.
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin

o Make a reference copy of c3: cl := ¢3
= c1 and c2 are not pointing to the same object.
= cl.a and c2.a are not pointing to the same object.
= No aliasing occurs at any levels.

<

c2 ”

Copying Objects

@ 1

= Initial situation: name | “Almaviva”
landlord —:l

|
oved_one i, _1 03

02

“Figaro” “Susanna”
= Result of:
bi=a]
o4 ‘Almaviva”
c := a.twin ©
d := a.deep_twin @ name | “Almaviva” :l 05
landlord i
loved_one _1 o7
06 P " » -
Figaro Susanna

6 of 38

Example: Collection Objects (1)

LASSONDE

ooooooooooooooooo

o In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):

At runtime, that variable stores the address of an object of that type

(as opposed to storing the object in its entirety).
o Assume the following variables of the same type:

local
imp : ARRAY [STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Ton", 3)

e Before we undergo a change on imp, we “ copy " itto old_imp.
o After the change is completed, we compare imp vs. old_imp.
e Can a change always be visible between “old” and “new” imp?

7 of 38

Example: Collection Objects (2)

LASSONDE

ooooooooooooooooo

¢ Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]
imp
imp[1] imp[2] imp[3]
STRING STRING STRING
22
old imp

8 of 38

Reference Copy of Collection Object LASSONDE
T 1
1 ‘ old-imp := imp
2 |Result := old _imp = imp -- Result = true
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old _imp [7]
7 end Re [t = true
Before Executing L3 After Executing L3
-y
old_imp
o1d_inp IPNEEN i
STRING STRING STRING
m NAEL m “Mark” m “Tom”
imp
STRING STRING STRING
[vatue [EAEA [value RG] [vaive [EETE [vatue [BIA
9 of 38|
Shallow Copy of Collection Object (1) LASSONDE
T 1
1 ‘ old-imp := imp.twin
2 |Result := old imp = imp -- Result = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [j]
7 end Result = false

Before Executing L3

After Executing L3

ARRAY[STRING] ARRAY[\STRING] STRING
P / N
imp imp / X \
STRING STRING STRING STRING STRING STRING
m “Alan” m “Mark” m “Tom” m “Alan” value a value
old_imp ‘ ‘ old_imp ‘ ‘
ARRAY[STRING] ARRAY[STRING]

10 of 38|

Shallow Copy of Collection Object (2)

T

1 ‘ old-imp := imp.twin ‘
2 |Result := old imp = imp —- Re:
3 | imp[2].append ("xx*")
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [7j]
7 end Result = true
Before Executing L3 After Executing L3
ARRAY[STRING]
P varn Pgvae
imp imp / \ \
STRING STRING STRING STRING STRING STRING
) " m “Mark” m “Tom” value a value m “Tom”
pram———
old_imp ‘ /‘ / old_imp ‘ / /
ARRAY[STRING] ARRAY[STRING]
Deep Copy of Collection Object (1) LASSONDE

T 1
1 ‘ old-imp := imp.deep_twin ‘
2 |Result := old imp = imp -- R
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [j] end —- Result = false

Before Executing L3

After Executing L3

imp

/

(

ARRAY m STRING
/ “Jim”
imp

STRING STRING

STRING
[vatue [RTTR

STRING STRING STRING

STRING

STRING

ARRAY[STRING]

STRING

ARRAY[STRING]

oOgs WD =

Deep Copy of Collection Object (2)

‘ old-imp := imp.deep-twin

Result := old _imp = imp Rex: = false
imp[2] .append ("xx*")
Result :=

across 1 |..| imp.count is j

all imp [j] ~ old_imp [j] end It = false

Before Executing L3 After Executing L3

/ ARRAY[STRING]
i

mp
STRING STRING STRING

STRING

STRING STRING
- v QR om

How are contracts checked at runtime?

o All contracts are specified as Boolean expressions.

o Right before a feature call (e.g., acc.withdraw(10)):

e The current state of acc is called its pre-state.

o Evaluate pre-condition using current values of attributes/queries.

e Cache values, via[: =], of old expressions in the post-condition .

e.g.,| (old accounts|i]).id
e.g.,| (old accounts]i].twin).id
e.g.,| (old accounts)[i].id

e.g.,’ (old accounts.twin)[i].id ‘

e.g.,| (old Current).accounts[i].id ‘

e.g.,| (old Current.twin).accounts[i].id ‘

o Right after the feature call:
e The current state of acc is called its post-state.

o Evaluate invariant using current values of attributes and queries.

[old_accounts_i_id := accountsi].id]

[old_accounts._i := accounts|i]]

[old_accounts_i_twin := accounts|i].twin]
[old_accounts := accounts]

[old_accounts_twin := accounts.twin |

[old_current := Current]

[old_current_twin := Current.twin]

o Evaluate post-condition using both current values and “cached”

values of attributes and queries.

When are contracts complete?

LASSONDE

ooooooooooooooooo

In post-condition , for each attribute , specify the relationship

between its pre-state value and its post-state value.
o Eiffel supports this purpose using the old keyword.

rather than simple:

This is tricky for attributes whose structures are composite

e.g., ARRAY, LINKED_LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

Rule of thumb: For an attribute whose structure is composite,

we should specify that after the update:

1. The intended change is present; and

2. The rest of the structure is unchanged .

o Reference aliasing
o lterable structure

The second contract is much harder to specify:

[ref copy vs. shallow copy vs. deep copy]

[use across |

Account LASSONDE
class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
create balance = old balance + a
make end
feature - Attributes is_equal (other: ACCOUNT): BOOLEAN
owner: STRING do
balance: INTEGER Result :=
owner ~ other.owner
feature —— Commands and balance = other.balance
make (n: STRING) end
do end
owner := n
balance := 0
end

Bank

LASSONDE

ooooooooooooooooo

class BANK

create make

feature
accounts:

account_of (n:
require the

—-— not (across

add (n: STRING)

require - the

local new_account:
do

accounts. force

end
end

existing: across accounts is acc some acc.owner ~ n end
- ounts 1s

account

do ... ensure Result.owner ~ n end

input

not (across accounts is

ARRAY [ACCOUNT]
make do create accounts.make_empty end
STRING) :

Iinput ncq

ACCOUNT
me exists

s acc all acc.owner /~ n end)

5 not exist

acc some acc.owner ~ n ;“JiL!)

ACCOUNT

create new_account.make (n)
(new_account, accounts.upper + 1)

non_existing: across accounts is acc all acc.owner /~ n end

[17 of 38]

Roadmap of lllustrations

LASSONDE

ooooooooooooooooo

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

g\

Object Structure for lllustration SSONDE

scrooL

We will test each version by starting with the same runtime object

structure:
BANK 0 1
b.accounts
<f//”’#—' accounts
b
ACCOUNT ACCOUNT
“Bill” “Steve”
balance
19 of 38|

Version 1: e
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_v1l (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i:=1+1
end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n) .balance + a
end
end

20 of 38|

L\

Test of Version 1 SSONDE

scroot

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN

local
b: BANK
do

comment ("t1l: correct imp and incomplete contract")
create b.make

b.add ("Bill")

b.add ("Steve")

— deposit 100 dollars to Steve’s accoun
b.deposit_on-vl ("Steve", 100)
Result :=
b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance = 100
check Result end
end

end

21 of 38|

Test of Version 1: Result o

scroot

APPLICATION
Note: * indicates a violation test case

PASSED (1 out of 1)
CoseTypl Passed | o Toa
[} 0

Violation

Boolean 1 1
All Cases

1 1
| State |Contract Violation] TestName |
TEST_BANK
PASSED NONE tl: test deposit_on with correct imp and incomplete contract

Version 2: ASSONDE Test of Version 2: Result LASSONDE

Incomplete Contracts, Wrong Implementation

class BANK

J

\wy

A

deposit_on_v2 (n: STRING; a: INTEGER)
t_on_) APPLICATION
require across accounts is acc some acc.owner ~ n end c 0
local i: INTEGER Note: * indicates a violation test case
do ...

Dt Dower deposit (a; - R FAILED (1 failed & 1 passed out of 2)
0

num_of_accounts_unchanged: Violation 0
Boolean 1 2

accounts.count = old accounts.count
All Cases 1

. 2
balance_of_n _increased: . .
State | Contract Violation
Current.account_of (n) .balance =
TEST_BANK

old Current.account_of(n).balance + a oaccen | - - : :
PASSED NONE tl: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract

accounts e

ensure

end
end

Current postconditions lack a check that accounts other than n
are unchanged.

ASSONDE Version 3: LASSONDE
Complete Contracts with Reference Copy

\wy

Test of Version 2

A

class TEST_BANK
test_bank_d it i i let t t: BOOLEAN class BANK
els *la“ —deposit_wrong_imp_incompiete_contract: deposit_on_v3 (n: STRING; a: INTEGER)
obca BANK require across accounts is acc some acc.owner ~ n end
: local i: INTEGER
do do
comment ("t2: wrong imp and incomplete contract™) P
create b.make) S o
K accounts[accounts.lower].deposit (a)
b.add ("Bill")
b.add ("Steve") ensure
: num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:

g account Current.account_of (n) .balance =
old Current.account_of(n) .balance + a

("Steve”, 100)

Result :=
b.account_of ("Bill") .balance = 0 others.unchanged : ‘
and b.account_of ("Steve") .balance = 100 across old accounts is acc
check Result end all
end acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end end
end
end

Test of Version 3 LASSONDE Version 4: LASSONDE

(00L OF ENGINEERING (00L OF ENGINEERING

Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref copy: BOOLEAN

local . .
b BANK require across accounts is acc some acc.owner ~ n end
’ local i: INTEGER
do do
comment ("t3: wrong imp and complete contract with ref copy") P
create b.make ., n o
b.add ("Bill")]] -
b.add ("Steve") ensure
: num_of_accounts_unchanged: accounts.count = old accounts.count

balance_of_n_increased:

—— deposit 100 dollars to Steve’s account
. dk . ‘; (nsi . ‘;0) : Current.account_of(n) .balance =
- epostton shever 4 old Current.account_of(n).balance + a
Result := o ., P
b.account_of ("Bill") .balance = 0 others.-uncnanged : ‘
and b.account_of("Steve") .balance = 100 across old accounts.twin is acc
check Result end all
end acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

end

27 of 38|

end
end
end
—_— -
. .. |

Test of Version 3: Result VT Test of Version 4 LASSONDE

CHOOL OF ENGINEERING. SCHOOL OF ENGINEERING.

class TEST_BANK AL
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE
APPLICATION local
b: BANK
Note: * indicates a violation test case do

ST comment ("t4: wrong imp and complete contract with shallow copy"|)
[FAILED (2 failed & 1 passed out of 33] create b.make
b.add ("Bill")
Violation 4]) b.add ("Steve")

Boolean 1 3
A1l Cases 1 3

PASSED NONE t1l: test deposit_on with correct imp and incomplete contract Result :=
FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract b. accountﬁof("Bill") .balance = 0
FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy and b.account_of("Steve") .balance = 100
check Result end
end
end
28 of 38| 30 of 38|

Test of Version 4: Result LASSONDE

SCHOOL OF ENGINEERING.

APPLICATION

Note: * indicates a violation test case

1 passed out of 4)

Case Tyoel ___passed | Total
Violation 0 0
Boolean 1 4

ALl Cases 1 4

PASSED NONE tl: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated.|[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy

1 of 38

Version 5: LASSONDE
Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
do

[

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n) .balance + a
others_unchanged :
across old accounts.deep_-twin is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end

—f3zorsst

Test of Version 5 LASSONDE

(00L OF ENGINEERING

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
local
b: BANK
do
comment ("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

S account

- t az to & 7
b.deposit_on.v5 ("Steve", 100)

Result :=
b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance = 100
check Result end
end

end

"I

Test of Version 5: Result LASSONDE

(00L OF ENGINEERING

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)

Total
Violation| o)

Boolean 1 5
ALl Cases 1

5
Contiract Violation
Testl TEST_BANK

PASSED NONE t1l: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated.|t4: test deposit_on with wrong imp, complete contract with shallow object copy
FAILED Postcondition violated] t5: test deposit_on with wrong imp, complete contract with deep object copy

34 of 38|

Exercise LassonDE

e Consider the query account_of (n: STRING) of BANK.

¢ How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o laccounts = old accounts‘ [X]
o laccoum‘:s = old accounts.twin‘ X
O | accounts = old accounts.deep_twin‘ X
O | accounts ~ old accounts‘ [><
o laccounts ~ old accounts.twin‘ [><
o ’accounts ~ old accounts.deepﬁtwin‘ [

¢ Which equality of the above is appropriate for the
postcondition?

¢ Why is each one of the other equalities not appropriate?

Index (1) :AssoNDE

[Copying Objects|

[Copying Objects: Reference Copy]|
|[Copying Objects: Shallow Copy|
[Copying Objects: Deep Copy|
[Example: Copying Objects|

[Example: Collection Objects (1)|
[Example: Collection Objects (2)|
[Reference Copy of Collection Object|
[Shallow Copy of Collection Object (1)|
[Shallow Copy of Collection Object (2)|
[Deep Copy of Collection Object (1))
[Deep Copy of Collection Object (2)|
How ar ntr heck runtime?
L%ep are contracts complete?|

Index (2) Lassonoe

[Bank]

[Roadmap of lllustrations|

Object Structure for lllustration|

Version 1:

[[ncomplete Contracts, Correct Implementation|
[Test of Version 1l

Test of Version 1: Result|
Version 2:

[Incomplete Contracts, Wrong Implementation|
T f Version 2

T f Version 2: R |
Version 3:

[Complete Contracts with Reference Copyj|

%Pf Version 3

Index (3) Lassonoe

Test of Version 3: Result

[Version 4:
[Complete Contracts with Shallow Object Copy|

T f Version 4

[Test of Version 4: Resuli|

[Version 5:
[Complete Contracts with Deep Object Copy|

Test of Version 5

Test of Version 5: Resul

38 of 38|

Use of Generic Parameters
Iterator and Singleton Patterns

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

YORK

<Im

cic
z|z
mim
D |
wlwn
==

LASSONDE

ooooooooooooooooo

Generic Collection Class: Motivation (1)

class STRING _STACK

feature {NONE} - Imp
imp: ARRAY([STRING] ;

feature —— Ou
count: INTEGER do Result :

tation

: INTEGER

ries

—— Number oIl items on s

top: STRING do Result :=

] :=v; 1 :=1 + 1 end

o Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type STRING
(e.g., at, append)? [NO!]

o How would you implement another class ACCOUNT_STACK?

LASSONDE

ooooooooooooooooo

Generic Collection Class: Motivation (2)

class ACCOUNT _STACK
feature {NONE} - Imple tation
imp: ARRAY[ACCOUNT] ; i: INTEGER
feature —— Queries
count: INTEGER do Result := i end

—-— Number of items on stack.
top: ACCOUNT do Result := imp [i] end

> of stack.

feature —— s
push (v: ACCOUNT) do imp[i] := v; 1 := 1 + 1 end
—-— Add v’ to top of stack.

pop do 1 - 1 end

Remove top of

stack.
end

o Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type
ACCOUNT (e.g., deposit, withdraw)? [NO!]

o A collection (e.g., table, tree, graph) is meant for the storage and

retrieval of elements, not how those elements are manipulated.

LASSONDE

ooooooooooooooooo

Generic Collection Class: Supplier

¢ Your design “smells” if you have to create an almost identical
new class (hence code duplicates) for every stack element
type you need (e.g., INTEGER, CHARACTER, PERSON, efc.).

¢ Instead, as supplier, use G to parameterize element type:

class STACK [G]
feature {NONE} - Implementation
imp: ARRAY[G] ; i: INTEGER
feature —— Queries
count: INTEGER do Result :

- NN per or 1tem

top: G do Result

feature - C s
push (v: G) do imp[i] := v; 1 := 1 + 1 end

—-— Add v’ to top of stack

LASSONDE

ooooooooooooooooo

Generic Collection Class: Client (1.1)

As client, declaring ss: STACK[STRING] instantiates every
occurrence of G as STRING.

T 1
class STACK [f STRING]

feature {NONE} - Implementation
imp: ARRAY[ﬁ STRING] ; i: INTEGER
feature Queries

count: INTEGER do Result :

Remove top of stack.

LASSONDE

ooooooooooooooooo

Generic Collection Class: Client (1.2)

As client, declaring ss: STACK[ACCOUNT] instantiates every
occurrence of G as ACCOUNT.

T 1
class STACK [f ACCOUNT]
feature {NONE} - Imple

imp: ARRAY[ﬁ ACCOUNT] ; 1i: INTEGER
feature Queries

count: INTEGER do Result := i end

—— Number of items on st

LASSONDE

ooooooooooooooooo

Generic Collection Class: Client (2)
As client, instantiate the type of G to be the one needed.

test_stacks: BOOLEAN

local
ss: STACK[STRING] ; sa: STACK[ACCOUNT]
s: STRING ; a: ACCOUNT

ss.push("A")
ss.push (create {ACCOUNT}.make ("Mark", 200)

O©CoONOOH~WN =
o
o

S := ss.top
a := ss.top
10 sa.push(create {ACCOUNT}.make ("Alan", 100)
11 sa.push("B")
12 a := sa.top
13 s := sa.top
14 end

e L3 commits that ss stores STRING objects only.
o L8 and L10 valid; L9 and L11 invalid.
e L4 commits that sa stores ACCOUNT objects only.

o L12 and L14 valid; L13 and L15 invalid.

LASSONDE

ooooooooooooooooo

What are design patterns?

e Solutions to recurring problems that arise when software is
being developed within a particular confext.
o Heuristics for structuring your code so that it can be systematically
maintained and extended.
o Caveat : A pattern is only suitable for a particular problem.
o Therefore, always understand problems before solutions!

8 of 48

Iterator Pattern: Motivation (1) o
Client:
|i r: class
Supp e SHOP
class feature
CART cart: CART
feature checkout: INTEGER
orders: ARRAY[ORDER] do
end from
i := cart.orders.lower
class until
ORDER i > cart.orders.upper
feature do
price: INTEGER Result := Result +
quantity: INTEGER cart.orders[i] .price
end *
cart.orders[i].quantity
i:=4i+1
end
Problems? end
end
9 of 48]

Iterator Pattern: Motivation (2) LASSONDE
. Client:
Supplier:
class
class SHOP
CART feature
feature cart: CART

orders: LINKED LIST[ORDER]
end

class
ORDER
feature
price: INTEGER
quantity: INTEGER
end

Client’s code must be modi-
fied to adapt to the supplier’s
change on implementation.

10 of 48]

checkout: INTEGER

do
from
cart.orders.start
until
cart.orders.after
do
Result := Result +

cart.orders.item.price
*
cart.orders.item.quantity
end
end
end

lterator Pattern: Architecture

ITERATION_CURSOR[G]*

Iterator Pattern: Supplier’s Side LASSONDE

ooooooooooooooooo

e Information Hiding Principle :

o Hide design decisions that are likely to change (i.e., stable API).

o Change of secrets does not affect clients using the existing API.
e.g., changing from ARRAY to LINKED_LIST in the CART class

e Steps:

1. Let the supplier class inherit from the deferred class
ITERABLE[G].

2. This forces the supplier class to implement the inherited feature:
new_cursor: ITERATION_-CURSOR [G], where the type parameter
G may be instantiated (e.g., ITERATION_CURSOR[ORDER)).

2.1 If the internal, library data structure is already iterable
e.g., imp: ARRAY[ORDER), then simply return imp.new_cursor.

2.2 Otherwise, say imp: MY_TREE[ORDER]J, then create a new class
MY _TREE_ITERATION_CURSOR that inherits from
ITERATION_CURSOR|[ORDER)], then implement the 3 inherited
features after, item, and forth accordingly.

12 of 48]

Iterator Pattern: Supplier’s Implementation (s Iterator Pattern: Supplier’s Imp. (2.2)

class
MY ITERATION_CURSOR[G]
class inherit
CART ITERATION_ CURSOR[TUPLE [STRING, G]]
inherit feature - u
ITERABLE [ORDER] make (ns: ARRAY[STRING]; rs: ARRAY([G])
do ... end
feature {NONE} - Inf g
cursor_position: INTEGER
feature {NONE} - Infc ation Hiding names: ARRAY [STRING]
orders: ARRAY [ORDER] records: ARRAY[G]
feature - ¢ r Operat
feature - ITteration item: TUPLE[STRING G]
new_cursor: ITERATION_CURSOR[ORDER] do ... end
do after: Boolean
Result := orders.new_cursor do ... end
end forth
do ... end
When the secrete implementation is already iterable, reuse it! You need to implement the three inherited features:
item, after, and forth.

Iterator Pattern: Supplier’s Imp. (2.1) o T Iterator Pattern: Supplier’s Imp. (2.3)

class Visualizing iterator pattern at runtime:
GENERIC_BOOK|[G]

inherit
ITERABLE|[TUPLE [STRING, G]]

ArrayedMap
inherit ITERABLE[TUPLE[STRING, G]] names . upper

names - ----_

feature {NONE } Information Hic records . upper

names: ARRAY [STRING] 7 records &
records: ARRAY[G] new_cursor ----

feature - Iteration
new_cursor: ITERATION_CURSOR[TUPLE |[STRING, G]]

local
ITERATION_CURSOR[TUPLE[STRING, G]]
cursor: MY_ITERATION-CURSOR[G] values 1
do values_2
create cursor.make (names, records) cursor_position
Result := cursor i
end after, forth

No Eiffel library support for iterable arrays = Implement it yourself!

14 of 48] 16 of 48]

Exercises LASSONDE

ooooooooooooooooo

1. Draw the BON diagram showing how the iterator pattern is
applied to the CART (supplier) and SHOP (client) classes.

2. Draw the BON diagram showing how the iterator pattern is
applied to the supplier classes:
o GENERIC_BOOK (a descendant of ITERABLE) and
o MY_ITERATION_CURSOR (a descendant of
ITERATION_CURSOR).

Resources LASSONDE

ooooooooooooooooo

¢ Tutorial Videos on Generic Parameters and the Iterator Pattern
e Tutorial Videos on Information Hiding and the lterator Pattern

18 of 48]

lterator Pattern: Client’s Side LASSONDE

ooooooooooooooooo

Information hiding : the clients do not at all depend on how the
supplier implements the collection of data; they are only interested
in iterating through the collection in a linear manner.

Steps:

1. Obey the code to interface, not to implementation principle.

2. Let the client declare an attribute of interface type
ITERABLE[G] (rather than implementation type ARRAY,
LINKED_LIST, or MY_TREE).

e.g., cart: CART, where CART inherits ITERATBLE [ORDER]

3. Eiffel supports, in both implementation and coniracts, the
across syntax for iterating through anything that’s iterable.

Iterator Pattern: LASSONDE
Clients using across for Contracts (1)
class
CHECKER
feature - Attributes
collection: RABLE [INTEGER]

feature Queries
is_all_positive: BOOLEAN

—-— Are all items in collection positive?
do

ensure
across
collection is item
all
item > 0O
end

end

¢ Using all corresponds to a universal quantification (i.e., V).
¢ Using some corresponds to an existential quantification (i.e., 3).

20 of 48]

I —
—

Iterator Pattern: LASSONDE Iterator Pattern: LASSONDE

ooooooooooooooooo

Clients using across for Contracts (2) Clients using Iterable in Imp. (1)

class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

with the maximum balance value.

class BANK

accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT

scending order. require ??

require local
across cursor: ITERATION_CURSOR[ACCOUNT]; max: ACCOUNT
1 (accounts.count - 1) is 1 do
all from max := accounts [1l]; cursor := accounts. new.cursor
accounts [1i].id <= accounts [i + 1].1id until cursor. after
end do
do if cursor. item .balance > max.balance then
en;;nre max := cursor. item
Result.id = acc_id end
end cursor. forth

end

ensure ??
end

e

This precondition corresponds to:
;fi: INTEGER | 1 < i < accounts.count e accounts[i].id < accounts[i+1].id

21 of 4

Iterator Pattern: LASSONDE Iterator Pattern: LASSONDE
Clients using across for Contracts (3) Clients using Iterable in Imp. (2)
class BANK
: 1 class SHOP
accounts: LIST [ACCOUNT] 2 cart: CART
contains_duplicate: BOOLEAN 3 checkout: INTEGER
— Does the account 1list contain ¢ cate 5 recuire ” ‘
do 6 doqu
. 7 across
ensure g N cart is order
Virj: INTEGER ‘ i 10 ReP;ult := Result + order.price x order.quantity
1 < i< accounts.count A 1< j< accounts.count e 11 end
accounts[i] ~ accounts[j] = i =j 12 ensure 2?7
’ end ‘ 13 end
e Exercise: Convert this mathematical predicate for e Class CART should inherit from ITERABLE[ORDER].
pc_)stcondltlon into Eiffel. . e L10 implicitly declares cursor: ITERATION_CURSOR[ORDER]
¢ Hint: Each across construct can only introduce one dummy L
. and does cursor := cart.new_cursor
variable, but you may nest as many across constructs as
necessary.
24 of 48]

22 of 48]

Iterator Pattern:
Clients using Iterable in Imp. (3)

LASSONDE

ooooooooooooooooo

class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

with the

require ??
local
max: ACCOUNT
do
max := accounts [1]
across
accounts is acc

loop
if acc.balance > max.balance then
max := acc
end
end

ensure ??

Expanded Class: Modelling

end

LASSONDE

ooooooooooooooooo

¢ We may want to have objects which are:
o Integral parts of some other objects
o Not shared among objects

e.g., Each workstation has its own CPU, monitor, and keyword.

All workstations share the same network.

26 of 48]

Expanded Class: Programming (2)

LASSONDE

ooooooooooooooooo

class KEYBOARD ... end class CPU ... end
class MONITOR ... end class NETWORK ... end
class WORKSTATION

k: expanded KEYBOARD

c: expanded CPU

m: expanded MONITOR

n: NETWORK

Alternatively:

expanded class KEYBOARD ... end
expanded class CPU ... end
expanded class MONITOR ... end
class NETWORK ... end

class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK

Expanded Class: Programming (3)

LASSONDE

ooooooooooooooooo

1 | test_expanded: BOOLEAN
2 local
expanded class 3 ebl, eb2: B
B 4 do
feature 5 Result := ebl.i = 0 and eb2.1i
change_1 (ni: INTEGER) 6 check Result end
do 7 Result := ebl = eb2
i := ni 8 check Result end
end 9 eb2.change_1i (15)
feature 10 Result := ebl.i = 0 and eb2.1
i: INTEGER 11 check Result end
end 12 Result := ebl /= eb2
13 check Result end
14 end

¢ L5: object of expanded type is automatically initialized.
¢ L9 & L10: no sharing among objects of expanded type.

e L7 & L12: = between expanded objects compare their contents.

28 of 48]

Reference vs. Expanded (1) LASSONDE

ooooooooooooooooo

Every entity must be declared to be of a certain type (based on
a class).

e Every type is either referenced or expanded.

In reference types:

o y denotes a reference to some object
o x := y attaches x to same object as does y
o x = ycompares references

In expanded types:

o y denotes some object (of expanded type)
o x := y copies contents of y into x
o x = ycompares contents [x ~ vy]

29 of 48]

Reference vs. Expanded (2) LASSONDE

ooooooooooooooooo

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author || expanded-typed author
“The Red and the Black™ “Life of Rossini”
1830 1823 “The Red and the Black” “Life of Rossini”
341 307 1830 1823
referance reference 341 307

“Stendhall” “Stendhall”

“Henri Beyle” “Henri Beyle”
1783 1783

1842 1842

“Stendhall”
“Henri Beyle”
1783
1842

Hyperlinked author page || Physical printed copies

30 of 48]

Singleton Pattern: Motivation LASSONDE

ooooooooooooooooo

Consider two problems:

1. Bank accounts share a set of data.

e.g., interest and exchange rates, minimum and maximum
balance, etc.

2. Processes are regulated to access some shared, limited
resources.

e.g., printers

31 of 48]

Shared Data via Inheritance LASSONDE
Descendant:
class DEPOSIT inherit SHARED DATA

—— 'maximum_balance’ relevant AnceStOI‘:
end

class

class WITHDRAW inherit SHARED DATA SHARED_DATA

—-— 'minimum_balance’ relevant feature

interest_rate: REAL
exchange_rate: REAL
minimum_balance: INTEGER
B maximum _balance: INTEGER

‘osvrha ratal ol
exchange_rate rel

class INT TRANSFER inherit SHARED DATA

end
end
class ACCOUNT inherit SHARED DATA
feature
‘interest_rate’ relevant
deposits: DEPOSIT_LIST Problems?

withdraws: WITHDRAW _LIST
end

32 of 48]

LASSONDE

ooooooooooooooooo

Sharing Data via Inheritance: Architecture

TBANK

< WITHDRAWAL_LIST |

o [rreverent features are inherited.
= Descendants’ cohesion is broken.
o Same set of data is duplicated as instances are created.

= Updates on these data may result in inconsistency .
33 of 48]

LASSONDE

ooooooooooooooooo

Sharing Data via Inheritance: Limitation

e Each descendant instance at runtime owns a separate copy of
the shared data.
¢ This makes inheritance not an appropriate solution for both
problems:
o What if the interest rate changes? Apply the change to all
instantiated account objects?
o An update to the global lock must be observable by all regulated
processes.
Solution:
o Separate notions of data and its shared access in two separate
classes.
o Encapsulate the shared access itself in a separate class.

34 of 48]

Introducing the Once Routine in Eiffel (1.1) |ssonoe

ooooooooooooooooo

1 |class A

2 | create make

3 | feature - Constructor

4 make do end

5 | feature - Query

6 new_once_array (s: STRING): ARRAY[STRING]

7 —-— A once query that returns an array.

8 once

9 create {ARRAY[STRING]} Result.make_empty
10 Result. force (s, Result.count + 1)

11 end

12 new_array : STRING) : ARRAY[STRING]

13 -— An ordi 7 qu that returns an array
14 do

15 create {ARRAY[STRING]} Result.make_empty
16 Result. force (s, Result.count + 1)

17 end

18 |end

L9 & L10 executed only once for initialization.

L15 & L16 executed whenever the feature is called.

Introducing the Once Routine in Eiffel (1.2) |.assonoe

ooooooooooooooooo

1 | test_qguery: BOOLEAN
2 local
3 a: A
4 arrl, arr2: ARRAY [STRING]
5 do
6 create a.make
7
8 arrl := a.new_array ("Alan")
9 Result := arrl.count = 1 and arrl[l] ~ "Alan"
10 check Result end
11
12 arr2 := a.new_array ("Mark")
13 Result := arr2.count = 1 and arr2[1l] ~ "Mark"
14 check Result end
15
16 Result := not (arrl = arr2)
17 check Result end
18 end
36 of 48]

Introducing the Once Routine in Eiffel (1.3)

EASS0NDE
1 | test_once_query: BOOLEAN
2 local
3 a: A
4 arrl, arr2: ARRAY [STRING]
5 do
6 create a.make
7
8 arrl := a.new_once_array ("Alan")
9 Result := arrl.count = 1 and arrl[l] ~ "Alan"
10 check Result end
11
12 arr2 := a.new_once_array ("Mark")
13 Result := arr2.count = 1 and arr2[1l] ~ "Alan"
14 check Result end
15
16 Result := arrl = arr2
17 check Result end
18 |end

3

Introducing the Once Routine in Eiffel (2)

7

of 48]

LASSONDE

ooooooooooooooooo

r

(.o): T
once

end

The ordinary do ... end is replaced by once ... end.

The first time the once routine r is called by some client, it
executes the body of computations and returns the computed
result.

From then on, the computed result is “cached”.

In every subsequent call to r, possibly by different clients, the
body of r is not executed at all; instead, it just returns the
“cached” result, which was computed in the very first call.
How does this help us?

Cache the reference to the same shared object !

38 of 48]

Approximating Once Routine in Java (1)

LASSONDE

ooooooooooooooooo

We may encode Eiffel once routines in Java:

class BankData {
BankData () { }
double interestRate;
void setIR(double r);

class Account {
BankData data;
Account () {
data = BankDataAccess.getData() ;
}
}

class BankDataAccess {
static boolean initOnce;
static BankData data;
static BankData getData/()
if(!initOnce) |
data = new BankDatal();
initOnce = true;
}
return data;
}
}

{

39 of 48]

Problem?

Multiple BankData objects may
be created in Account,
breaking the singleton!

Account () |
data = new BankData() ;

}

Approximating Once Routine in Java (2)

LASSONDE

ooooooooooooooooo

We may encode Eiffel once routines in Java:

class BankData ({
private BankData() { }
double interestRate;
void setIR(double r);
static boolean initOnce;
static BankData data;
static BankData getData/()
if(!initOnce) {
data = new BankDatal();
initOnce = true;
}
return data;
}
}

{

40 of 48|

Problem?

Loss of Cohesion: Data
and Access to Data are
two separate concerns,
so should be decoupled
into two different classes!

Singleton Pattern in Eiffel (1) LASSONDE Testing Singleton Pattern in Eiffel LASSONDE
Supplier: Client: test_bank_shared_data: BOOLEAN
—-— Test that a single data o S

class DATA test: BOOLEAN local accl, acc2: ACCOUNT
create {DATA ACCESS} make local do
feature {DATA_ACCESS} access: DATA ACCESS comment ("t1l: test that a single data object is shared")

make do v 10 end dl, d2: DATA create accl.make ("Bill")
feature Data Attributes do create acc2.make ("Steve")

v: INTEGER dl := access.data Result := accl.data = acc2.data

change_v (nv: INTEGER) d2 := access.data check Result end

do v := nv end Result := dl1 = d2 Result := accl.data ~ acc2.data
end and dlI.v = 10 and d2.v = 10 check Result end
check Result end accl.data.set_interest_rate (3.11)
dl.change_v (15) Result :=

expanded class Result := dl = d2 accl.data.interest_rate = acc2.data.interest_rate

DATA ACCESS and dlI.v = 15 and d2.v = 15 and accl.data.interest_rate = 3.11
feature end check Result end

data: DATA end acc2.data.set_interest_rate (2.98)

—— The one and only ac 55 Result :=
once create Result.make end iy . accl.data.interest_rate = acc2.data.interest_rate
invariant data = data ertmg’create d1‘make‘ln test and accl.data.interest__rate = 2.98 -
feature does not compile. Why? end

41 of 48| 43 of 48|

Singleton Pattern in Eiffel (2) LASSONDE Singleton Pattern: Architecture LASSONDE
Supplier: Client:
class BANK DATA class
I~ 1
create {BANK DATA ACCESS} make ACCOUNT LLCLENT NG .
feature {BANK.DATA ACCESS} feature { AP T T o________iSUPPLIER OF SHARED DATA}
2 . “~
make do ... end data: BANK DATA N / /)
N ~ !
feature Data Attributes make (...) | DATA_ACCESS + ;
interest_rate: REAL —— Init. access to ban ettty : \ !
. . | CLIENT_2 data: DATA v: VALUE !
set_interest_rate (r: REAL) local i — N — A shared data object. data + ~ An example query. i
data_access: BANK DATA ACCESS ! : Lyl once L daa® e !
\ / I create Result.make -- An example command. !
end do | PSR ’ end < i
Invariant DATA_ACCESS 1
data := data_access.data |y shared_instance: make . |
o }_(_L_IETTI'I_';B_'\ | data = data - - Initialize a data object. }
expanded class pTTIRTT IR ~ \ /
end 4 \ S ,
BANK_DATA_ACCESS a i = T
en \ ’
feature D e g

data: BANK DATA

— The one and only access

L e W_”t'rfg |create data.make| in Important Exercises: Instantiate this architecture to both
once create Resu.t.make en client's make feature does not

invariant data = data ; problems of shared bank data and shared lock. Draw them in
compile. Why?

draw.io.

Index (1) Lassonoe

|Generic Collection Class: Motivation (1))
|Generic Collection Class: Motivation (2))
|Generic Collection Class: Supplier|
|Generic Collection Class: Client (1.1)|
|Generic Collection Class: Client (1.2)|
|[Generic Collection Class: Client (2)|
(What are design patterns?|

[Iiterator Pattern: Motivation (1)]

[iterator Pattern: Motivation (2)]

Ilterator Pattern: Architecture

[Iiterator Pattern: Supplier’s Side|

[Ilterator Pattern: Supplier’s Implementation (1)|
[lterator Pattern: Supplier’s Imp. (2.1)|
%ar Pattern: Supplier’s Imp. (2.2)|

Index (2) Lassonoe

[Ilterator Pattern: Supplier’s Imp. (2.3)|

[Iterator Pattern: Client’s Sidel

[lterator Pattern:]
[Clients using across for Contracts (1)|

[lterator Pattern: |
[Clients using across for Contracts (2)|

lterator Pattern: |
[Clients using across for Contracts (3)|

[lterator Pattern: |
[Clients using lterable in Imp. (1)|

[Iterator Pattern:]
%ts using Iterable in Imp. (2)|

Index (3) Lassonoe

[iterator Pattern:]
[Clients using Iterable in Imp. (3)|
|[Expanded Class: Modelling|

[Expanded Class: Programming (2)|
[Expanded Class: Programming (3)|
[Reference vs. Expanded (1)|

[Reference vs. Expanded (2)|

[Singleton Pattern: Motivation|

[Shared Data via Inheritance]

[Sharing Data via Inheritance: Architecture]
[Sharing Data via Inheritance: Limitation|
[introducing the Once Routine in Eiffel (1.1)|
[Introducing the Once Routine in Eiffel (1.2)|
%ducing the Once Routine in Eiffel (1.3)|

Index (4) Lassonoe

[Introducing the Once Routine in Eiffel (2)|

|[Approximating Once Routines in Java (1)|

|[Approximating Once Routines in Java (2)|

[Singleton Pattern in Eiffel (1)|

[Singleton Pattern in Eiffel (2)|

[Testing Singleton Pattern in Eiffel]

[Singleton Pattern: Architecture|

48 of 48|

Inheritance
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A: Software Design

YORK ' Fall 2019

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Aspects of Inheritance LASSONDE

e Code Reuse

¢ Substitutability
o Polymorphism and Dynamic Binding
[compile-time type checks]
o Sub-contracting
[runtime behaviour checks]

Why Inheritance: A Motivating Example LASSONDE

ooooooooooooooooo

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.

The COURSE Class LASSONDE

ooooooooooooooooo

class
COURSE

D
T
D

create —— Declare commands that can
make

feature - Attributes
title: STRING
fee: REAL

feature - Commands
make (t: STRING; f: REAL)

No Inheritance: RESIDENT STUDENT Class |.issono: No Inheritance: Testing Student Classes |.issono:

oooooooooooooooooooooooooooooooooo

class RESIDENT_STUDENT
create make
feature Attri es

: STRIN i1
name: 8 G jim: RESIDENT_STUDENT

courses: LINKED_LIST[COURSE] Jeremy: NON_RESIDENT_ STUDENT
premium-rate: REAL do

test_students: BOOLEAN
local
cl, c2: COURSE

feature - Co ructor create cl.make ("EECS2030", 500.0)

make (n: STRING) create c2.make ("EECS3311", 500.0)
do name := n ; create courses.make end create jim.make ("J. Davis")
feature —- nds jim.set_pr (1.25)
set_pr (r: REAL) do premium.rate := r end jim.register (cl)
register (c: COURSE) do courses.extend (c) end Jjim.register (c2)
feature —— Queries Result := jim.tuition = 1250
tuition: REAL check Result end
local base: REAL create jeremy.make ("J. Gibbons")
do base := 0.0 jeremy.set_dr (0.75)
across courses as c loop base := base + c.item.fee end jeremy.register (cl)
| Result := base # premium.rate | jeremy.regiyster (CZ)V ‘
end Result := jeremy.tuition = 750
end end
—f5orez

No Inheritance: NON_ RESIDENT STUDENT ClasSono: No Inheritance: LASSONDE
class NON.RESIDENT.STUDENT Issues with the Student Classes

create make

feature Attributes

name: STRING .
courses: LINKED LIST[COURSE] Implementations for the two student classes seem to work. But

discount_rate: REAL can you see any potential problems with it?

feature - Constructo: i
ma;e (n: STRING) ¢ The code of the two student classes share a lot in common.
feaiﬁrza’f‘f 7 i create courses.make end » Duplicates of code make it hard to maintain your software!
set.dr (r: REAL) do discount rate := r end e This means that when there is a change of policy on the
fel;iguiriter (c: COURSE) do courses.extend (c) end common part, we need modify more than one places.
—— Queries
tuition: REAL = This violates the Single Choice Principle :
local base: REAL . i
do base := 0.0 when a change is needed, there should be a single place (or
across courses as c loop base := base + c.item.fee end a minimal number ofplaces) Where y0U need to make that
Result := base * discount_rate
change.
end
end

ASSONDE NO Inheritance: LASSONDE

oooooooooooooooooooooooooooooooooo

—

No Inheritance: Maintainability of Code (1)

What if a new way for course registration is to be implemented?
e.g.,

A Collection of Various Kinds of Students

How do you define a class StudentManagement System that
contains a list of resident and non-resident students?

, class STUDENT_MANAGEMENT _SYSETM
redngter(course e rs : LINKED_LIST[RESIDENT.STUDENT]
o_f o= MAX CAPACITY th nrs : LINKED_LIST[NON.RESIDENT.STUDENT]
* cgy{sgérc?gét\ j o . hwén add_rs (rs: RESIDENT_STUDENT) do ... end
Error: maximum capacity reached. add_nrs (nrs: NON_RESIDENT_STUDENT) do . end
else . ; o N o s
register_all (Course c¢) —— Register a c n c e
courses.extend (c)
d do
en across rs as c loop c.item.register (c) end
end , .,
across nrs as ¢ loop c.item.register (c) end
end
We need to change the register commands in both student end
classes!

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the

same manner, separately!

= Violation of the Single Choice Principle

No Inheritance: Maintainability of Code (2) |.assono: Inheritance Architecture LASSONDE

ooooooooooooooooo

What if a new way for base tuition calculation is to be
implemented? STUDENT
e.g.,

tuition: REAL

inherit
local base: REAL

do base := 0.0 inherit
across courses as c loop base := base + c.item.fee end
Result := base x inflation.rate x ...

end

RESIDENT_STUDENT NON_RESIDENT_STUDENT

We need to change the tuition query in both student
classes.

= Violation of the Single Choice Principle

Inheritance: The STUDENT Parent Class U SoNDE

ooooooooooooooooo

O©CoOo~NOO~WN =

class STUDENT
create make
feature - Attributes
name: STRING
courses: LINKED_ LIST|[COURSE]

feature C 1ds that can be used as constructors.
make (n: STRING) do name := n ; create courses.make end
feature —— C ands
register (c: COURSE) do courses.extend (c) end

feature Queries
tuition: REAL
local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base
end
end

Inheritance: LASSONDE
The RESIDENT STUDENT Child Class

1 |class

2 RESIDENT_STUDENT

3 | inherit

4 STUDENT

5 redefine tuition end

6 | create make

7 | feature - Attr X

8 ‘ premium_rate : REAL

9 | feature C 1ds

10 set_-pr (r: REAL) do premium rate := r end

11 | feature - Queries

12 tuition: REAL

13 local base: REAL

14 ‘ do base := Precursor ; Result := base * premium.rate end ‘

15

|

end

e L3: RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command

e L14: Precursor returns the value from query tuition in STUDENT.

Inheritance:

The NON RESIDENT STUDENT Child Class

© oo NOOR~WN =

class

NON_RESIDENT_STUDENT
inherit

STUDENT

redefine tuition end

create make
feature —— At es

discount_rate : REAL

feature - Co

1S
set.dr (r: REAL) do discount_rate := r end
feature —— Queri
tuition: REAL
local base: REAL
do base := Precursor ; Result := base * discount_-rate end
end

r1es

e L3: NON_RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command

e L14: Precursor returns the value from query tuition in STUDENT.

Inheritance Architecture Revisited

STUDENT
inherit
inherit
RESIDENT_STUDENT NON_RESIDENT_STUDENT

¢ The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

e Each “specialized” class is called a child , sub, or

descendent class.

Static Type vs. Dynamic Type v
e In object orientation , an entity has two kinds of types:
o static type is declared at compile time [unchangeable]
An entity’s ST determines what features may be called upon it.
o dynamic type is changeable at runtime

Using Inheritance for Code Reuse

SSCnDE

HooL OF B

Inheritance in Eiffel (or any OOP language) allows you to:

o Factor out common features (attributes, commands, queries) in a
separate class.

e.g., the STUDENT class e In Java:
o Define an “specialized” version of the class which:

. Student s = new Student ("Alan");

e inherits clzlefmmons of all attributes, commands, and queries Student rs — new ResidentStudent ("Mark");
e.g., attributes name, courses -
e.g., command register * In Eiffel:
e.g., query on base amount in tuition local s: STUDENT
This means code reuse and elimination of code duplicates! rs: STUDENT

o defines new features if necessary do create {STUDENT} s.make ("Alan")

create {RESIDENT_STUDENT} rs.make ("Mark")

e.g., set_pr for RESIDENT_STUDENT

e.g., set _dr for NON_RESIDENT_STUDENT o

e redefines features if necessary

In Eiffel, the dynamic type can be omitted if it is meant to be the
same as the static type:

e.g., compounded tuition for RESIDENT_STUDENT

e.g., discounted tuition for NON_RESTDENT_STUDENT ltocal s: STUDENT
do create s.make ("Alan")
17 of 62] 19 of 6.

Inheritance Architecture Revisited

name: STRING

Testing the Two Student Sub-Classes

register (Course ¢)

test_students: BOOLEAN tuition: REAL STUDENT courses: LINKED_LIST[COUNRSE]
local
cl, c2: COURSE /% new features */ /* new features */
jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_STUDENT premium_rate: REAL discount_rate: REAL
do set_pr (r: REAL) RESIDENT_STUDENT NON_RESIDENT_STUDENT| set_dr (r: REAL)

/i I‘_(‘l[(‘ﬁll ed features */ /* redefined features */
create cl.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0) tuition: REAL tuition: REAL
éfeate jim.make (J'.QaVls X .. . sl,s2,s3: STUDENT ; rs: RESIDENT STUDENT ; nrs : NON_RESIDENT STUDENT
jim.set_pr (1.25) ; jim.register (cl); jim.register (c2)

. o create {STUDENT} sl.make ("S1")
Result := jim.tuition = 1250
check Result end create {RESIDENT_STUDENT} sZ2.make ("S2")
create jeremy.make ("J. Gibbons") create {NON RESIDENT STUDENT} s3.make ("S3")
. J o) ,) . create {RESIDENT_STUDENT} rs.make ("RS")
jeremy.set_dr (0.75); jeremy.register (cl); jeremy.register (c2)
. - create {NON_RESIDENT_STUDENT} nrs.make ("NRS")
Result := jeremy.tuition = 750
end H name | courses ‘reg ‘tuition ‘pr H set,pr‘ dr H set_dr
. sl. v X
* The software can be used in exactly the same way as before - 7 X
(because we did not modify feature signatures). 53, N »
¢ But now the internal structure of code has been made rs v v x
maintainable using inheritance . nrs v X v

[18 of 62]

Polymorphism: Intuition (1) LASSONDE
1 | local
2 s: STUDENT
3 rs: RESIDENT STUDENT
4 |do
5 create s.make ("Stella")
6 create rs.make ("Rachael")
7 rs.set_pr (1.25)
8 s := rs /+ Is this valid? x/
9 rs := s /x Is this valid? =/
e Which one of L8 and L9 is valid? Which one is invalid?
o L8: What kind of address can s store? [STUDENT]

.. The context object s is expected to be used as:
e s.register(eecs3311) and s.tuition
o L9: What kind of address can rs store? [RESIDENT_STUDENT]

.. The context object rs is expected to be used as:
e rs.register (eecs3311) and rs.tuition
e rs.set pr (1.50) [increase premium rate]

Polymorphism: Intuition (2) LASSONDE

ooooooooooooooooo

local s: STUDENT ; rs: RESIDENT STUDENT
do create {STUDENT} s.make ("Stella")
create {RESIDENT STUDENT} rs.make ("Rachael")
rs.set_pr (1.25)
s := rs /» Is this valid? =/
rs := s /» Is this valid? =/

e rs := s (L6) should be invalid:

oA wWN =

s: STUDENT
[name]

"Stella”

rs:RESIDEN:! TQJ:E;I\
e rsdeclared of type RESIDENT_S TUDEN
s.calling rs.set pr(1.50) can be expected.
e rsis now pointing to a STUDENT object.
e Then, what would happento rs.set pr(1.50)7?
CRASH s rs.premium_rate is undefined!l

Polymorphism: Intuition (3) LASSONDE

ooooooooooooooooo

local s: STUDENT ; rs: RESIDENT STUDENT
do create {STUDENT} s.make ("Stella")
create {RESIDENT STUDENT} rs.make ("Rachael")
rs.set_pr (1.25)
s := rs /» Is this valid? =/
rs := s /x Is this valid? =/

oA wWN =

e s :=rs (L5) should be valid:

“Stella”
rs: RE‘SIDEN%
Y

RESIDENT_STUDENT

e Since s is declared of type STUDENT, a subsequent call
s.set pr(1.50) is never expected.

e sis now pointing to a RESIDENT_STUDENT object.

e Then, what would happento s. tuition?

OK "+ s.premium_rate is just never used!!
Dynamic Binding: Intuition (1) LASSONDE
1 |local ¢ : COURSE ; s : STUDENT
2 |do crate c.make ("EECS3311", 100.0)

3 create {RESIDENT STUDENT} rs.make("Rachael")

4 create {NON_RESIDENT_STUDENT} nrs.make("Nancy")
5 rs.set_pr(l.25); rs.register(c)

6 nrs.set_dr(0.75); nrs.register(c)

7 s := rs; ; check s .tuition = 125.0 end

8 s := nrs; ; check s .tuition = 75.0 end

After s := rs (L7), s points {0 @ RESTDENT_STUDENT Object.
= Calling s .tuition applies the premium rate.

rs:RESIDENT STUDENT RESIDENT_STUDENT

———

S :STUDENT

[title REESEEEE
100.0

nrs:NON_RESIDENT STUDENT | NON_RESIDENT STUDENT
name

courses

discount_rate

Dynamic Binding: Intuition (2) LASSONDE ES _TEST: Expecting to Fail Postcondition (1).assonce
1 |local ¢ : COURSE ; s STUDENT model
2 |do crate c.make ("EECS3311", 100.0) /; ;x\
,
3 create {RESIDENT_STUDENT} rs.make("Rachael") ' ACCOUNT \
4 create {NON_RESIDENT_STUDENT} nrs.make("Nancy") ! . !
; 1| feature - Commands 1
5 rs.set_pr(l.25); rs.register(c) 1 withdraw (amount: INTEGER) 1
. . 1 require 1
6 nrs.set_dr(0.75); nrs.register(c) ' on_negative_amount: amount > 0 '
7 s := rs; ; check s .tuition = 125.0 end 1 affordable_amount: amount < balance 1
L 1 d 1
8 s := nrs; ; check s .tuition = 75.0 end 1 oba]ame = balance - amount 1
1 ensure 1
[' 1 balance_deduced: balance = old balance - 1
After s:=nrs (L8), s points to a NON_.RESIDENT_STUDENT object. st Y
. o .) ests | 1
= Calling s .tuition applies the discount _rate. Rslalalelalalelalellatalalailalely N ' '
N\ 1 !
rs:RESIDENT STUDENT RESIDENT_STUDENT : TEST ACCOUNT ! 1 1
- “Rachael” 1 1
1 y ¢ frp 7 ions 1
feature -- Test Commands for Contract Violations 1 () 1
//, premium_rate 125 : test_withdraw_postcondition_violation ! 1 BAD—ACCOUNT—WITHDRAW 1
local ! 1 1
1 . . acc feature -- Redefined Commands
s :STUDENT 1 do““' BAD_ACCOUNT_WITHDRAW : : (amount: INTEGER) ++ :
[Fcours= Y ! ereate acc.make ("Alan", 100) ! 1 w, . 1
% EECo9sL ! - Violation of Postcondition ! 1 r;f“““; (""l“"“") p 1
1000 ! —- with tag "balance_deduced" expected ! 1 - Wrong Impiementation 1
1 JU 1 balance := balance + 2 * amount
nrs:NON RESIDENT STUDENT —>| NON_RESIDENT_STUDENT . acc.withdraw (50) 1 end 1
= - name 1 U
courses \ end) B \\ ,
discount_rate M e ___. . M e e e e e e o2 P
27 of 62

DbC: Contract View of Supplier ES_TEST: Expecting to Fail Postcondition (2{3js

LASSONDE
Any potential client who is interested in learning about the kind of 1 [e1ass
services provided by a supplier can look through the 2 | BAD_ACCOUNT_WITHDRAW
. R 3 |inherit
contract view (without showing any implementation details): 4 | accounT
class ACCOUNT 5 redefine withdraw end
create . 6 |create
make
feature Attributes 7 make
owner : STRING 8 | feature - redef d
balance : INTEGER 9 withdraw(amount: INTEGER)
feature - onstructors
make (nn: STRING; nb: INTEGER) 10 do
require preconditio 11 Precursor (amount)
positive balance: nb > 0 12 R lementati
end
feature —— Commands 13 balance := balance + 2 * amount
withdraw(amount: INTEGER) 14 end
requ;"rion,m;gakt"ive‘,amount : amount > 0 15 end
affordable_amount: amount <= balance problematic, w
e dodmetod: balance — old balance - amount o L3-5: BAD_ACCOUNT_WITHDRAW.withdraw inherits postcondition
invariant e“d“ o from ACCOUNT.withdraw: balance = old balance - amount.
positive balance: balance > 0 o L11 calls correct implementation from parent class ACCOUNT.
end o L13 makes overall implementation incorrect.

28 of 62]

——— e

ES_TEST: Expecting to Fail Postcondition (22

O©CoONOOHA~WN =

class TEST_ACCOUNT
inherit ES_TEST
create make
feature - Co
make
do
add_violation_casewith tag ("balance_deducted",
agent test_withdraw_postcondition_violation)

end
feature - Test ¢ ds (test to fail)
test_withdraw_postcondition_violation
local
acc: BAD _ACCOUNT_WITHDRAW
do

comment ("test: expected postcondition violation of withdraw")
create acc.make ("Alan", 100)

DPost cc

) Wi

acc.withdraw (50
end

end

Exercise

Recall from the “Writing Complete Postconditions” lecture:

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
do ... Put Correct Implementation Here.

ensure

others_unchanged :

across old accounts.deep-twin as cursor
all cursor.item.owner /~ n implies

cursor.item ~ account_of (cursor.item.owner)

How do you create a “bad” descendant of BANK that violates
this postcondition?

class BAD BANK DEPOSIT
inherit BANK redefine deposit end
feature edefined feature
deposit_on_v5 (n: STRING; a: INTEGER)
do Precursor (n, a)
accounts [accounts. lower] .deposit (a)
end

L\

Multi-Level Inheritance Architecture (1) LASSONDE

DOMESTIC_STUDENT FOREIGN_STUDENT

DOMESTIC_RESIDENT_STUDENT ‘

DOMESTIC_NON_RESIDENT_STUDENT FOREIGN_NON_RESIDENT_STUDENT

‘ FOREIGN_RESIDENT_STUDENT ‘

131 of 62

Multi-Level Inheritance Architecture (2)

SMART_PHONE dial -- basic fsatflre
surf_web -- basic feature
surf_web -- redefined using safari ‘

facetime -- new feature

‘ HUAWEI ‘

surf_web -- redefined using firefox
skype -- new feature

ANDROID

N
~

IPHONE_XS_MAX

quick_take side_sync

IPHONE_11_PRO

zoomage /

‘ HUAWEI_P30_PRO ‘

HUAWEI_MATE_20_PRO GALAXY_S10_PLUS

‘ GALAXY_S10 ‘

LASSONDE

ooooooooooooooooo

Inheritance Forms a Type Hierarchy
e A (data) type denotes a set of related runtime values.

o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:

o (Implicit) Root of the hierarchy is ANY.
o Each inherit declaration corresponds to an upward arrow.
o The inherit relationship is transitive: when A inherits B and B
inherits C, we say A indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class A are: 2 itself and all classes that
A directly, or indirectly, inherits.
e A inherits all features from its ancestor classes.
.. A’s instances have a wider range of expected usages (i.e.,
attributes, queries, commands) than instances of its ancestor classes.
o The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, inherits A.
¢ Code defined in A is inherited to all its descendant classes.

e

LASSONDE

ooooooooooooooooo

Inheritance Accumulates Code for Reuse

e The lower a class is in the type hierarchy, the more code it
accumulates from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
e Declare new attributes.
¢ Define new queries or commands.
e Redefine inherited queries or commands.
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).
o When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.
o e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT_STUDENT Or @ NON_RESIDENT_STUDENT object.
o Justification: A descendant class contains at least as many
features as defined in its ancestor classes (but not vice versal).

LASSONDE

ooooooooooooooooo

Substitutions via Assighments

e By declaring |v1:C1|, reference variable v1 will store the
address of an object of class c1 at runtime.

e By declaring [v2:C2 |, reference variable v2 will store the
address of an object of class c2 at runtime.

* Assignment copies the address stored in v2 into v1.
o v1 will instead point to wherever v2 is pointing to. [object alias |

v H

C1i

« In such assignment|v1:=v2 |, we say that we substitute an
object of type C1 with an object of type c2.

e Substitutions are subject to rules!

Rules of Substitution LASSONDE
Given an inheritance hierarchy:
1. When expecting an object of class 2, it is safe to substitute it

with an object of any descendant class of 2 (including 2).

o e.g., When expecting an 10s phone, you can substitute it with
either an TPHONE _XS_MAX or IPHONE_11_PRO.

o - Each descendant class of A is guaranteed to contain all code
of (non-private) attributes, commands, and queries defined in A.

o .. All features defined in A are guaranteed to be available in the
new substitute.

2. When expecting an object of class 2, it is unsafe to substitute

it with an object of any ancestor class of A’s parent .

o e.g., When expecting an 10s phone, you cannot substitute it with
just a SMART _PHONE, because the facetime feature is not
supported in an ANDROID phone.

o --Class A may have defined new features that do not exist in any
of its parent’s ancestor classes .

Reference Variable: Static Type ,:-,é;é
* A reference variable’s static type is what we declare it to be.

o e.g.,| jim:STUDENT |declares jim’s static type as STUDENT.
o e.g.,|my_phone: SMART_PHONE \
declares a variable my_phone of static type SmartPhone.
o The static type of a reference variable never changes.
e For a reference variable v, its static type defines the

expected usages of v as a context object .
» Afeaturecall v.m(...) is compilable if mis defined in .

o e.g., After declaring| jim: STUDENT |, we

e may call register and tuitionon jim
e may not call set_pr (specific to a resident student) or set _dr
(specific to a non-resident student) on jim
o e.g., After declaring | my phone : SMART PHONE |, we
e may call dial and surf_web ONn my_phone
e may noft call facetime (specific to an IOS phone) or skype (specific
to an Android phone) on my phone

Reference Variable: Dynamic Type LASSONDE

ooooooooooooooooo

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.

o The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
o There are two ways to re-assigning a reference variable.

38 of 62]

Reference Variable: LASSONDE
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

o Substitution Principle : the new object’s class must be a
descendant class of the reference variable’s static type.

o e.g., Given the declaration | jim: STUDENT |:

. ’ create {RESIDENT_STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jimto RESIDENT_STUDENT.

° ’ create {NON RESIDENT STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jim to NON_RESIDENT_STUDENT.

o e.g., Given an alternative declaration] jim:RESIDENT STUDENT \:

e €4, ’ create {STUDENT} jim.make ("Jim") ‘ is illegal

because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT_STUDENT).

e

Reference Variable: LASSONDE
Changing Dynamic Type (2)
Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):
o Substitution Principle : the static type of other must be a

descendant class of v’s static type.
o e.g.,

jim: STUDENT ; rs: RESIDENT STUDENT; nrs: NON_RESIDENT STUDENT
create {STUDENT} jim.make (...)

create {RESIDENT STUDENT} rs.make (...)

create {NON RESIDENT STUDENT} nrs.make (...)

e rs := Jjim X

e nrs := Jjim

e jim := rs v
changes the dynamic type of jim to the dynamic type of rs

e jim := nrs v

changes the dynamic type of jim to the dynamic type of nrs

LSSoNDE

Polymorphism and Dynamic Binding (1)

e Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).
o Consequently, there are multiple possible versions of each feature
that may be called.
e e.g., 3 possibilities of tuition on a STUDENT reference variable:
In STUDENT: base amount
In RESIDENT STUDENT: base amount with premium_rate
In NON_RESIDENT STUDENT: base amount with discount_rate

e Dynamic binding : When a feature m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.

jim: STUDENT; rs: RESIDENT_STUDENT; nrs: NON_STUDENT
create {RESIDENT STUDENT} rs.make (...)
create {NON_RESIDENT_STUDENT} nrs.nrs (...)

jim := rs

jim.tuitoion; /% version in RESIDENT_STUDENT x/

jim := nrs

jim.tuition; /* version in NON_RESIDENT_STUDENT x/
41 of 62

Polymorphism and Dynamic Binding (2.1)

LSSoNDE

1 | test_polymorphism_students

2 local

3 jim: STUDENT

4 rs: RESIDENT_STUDENT

5 nrs: NON_RESIDENT_STUDENT

6 do

7 create {STUDENT} jim.make ("J. Davis")

8 create {RESIDENT STUDENT} rs.make ("J. Davis")
9 create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
10 jim := rs

11 rs := jim x

12 jim := nrs V'

13 rs := jim X

14 end

In (L3, L7), (L4, L8), (L5, L9), ST = DT, so we may abbreviate:

L7: ’create jim.make ("J. Davis")‘

L8: ’create rs.make ("J. Davis™") ‘

L9: ’create nrs.make ("J. Davis") ‘

LSSoNDE

Polymorphism and Dynamic Binding (2.2)

test_dynamic_binding_students: BOOLEAN
local
jim: STUDENT
rs: RESIDENT STUDENT
nrs: NON_RESIDENT STUDENT
c: COURSE
do
create c.make ("EECS3311", 500.0)
create {STUDENT} jim.make ("J. Davis")
create {RESIDENT STUDENT} rs.make ("J. Davis")
rs.register (c)
rs.set_pr (1.5)

jim := rs

Result := jim.tuition = 750.0

check Result end

create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
nrs.register (c)

nrs.set_dr (0.5)

jim := nrs

Result := jim.tuition = 250.0

end

LSSoNDE

Reference Type Casting: Motivation

local jim: STUDENT; rs: RESIDENT STUDENT

do create {RESIDENT STUDENT} jim.make ("J. Davis")
rs := jim
rs.setPremiumRate (1.5)

AW =

e Line 2 is legal: resrpent_stupent iS @ descendant class of the
static type of jim (i.e., stupenT).

e Line 3 is illegal: jim’s static type (i.e., stupent) is not a
descendant class of rs’s static type (i.€., resrpenT_sTupent).

e Eiffel compiler is unable to infer that jim’s dynamic type in

Line 4 is resrpENT STUDENT. [Undecidable]
¢ Force the Eiffel compiler to believe so, by replacing L3, L4 by a
type cast (which temporarily changes the ST of jim):

check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim
rs.set_pr (1.5)

end

LASSONDE

ooooooooooooooooo

Reference Type Casting: Syntax

check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim
rs.set_pr (1.5)

end

L1 is an assertion:
o ’attached RESIDENT STUDENT jim‘is a Boolean expression

AW =

that is to be evaluated at runtime .
o If it evaluates to frue, then the expression has the effect

of assigning “the cast version” of jim to a new variable rs_jim.
o [f it evaluates to false, then a runtime assertion violation occurs.

o Dynamic Binding : Line 4 executes the correct version of set_pr.
e |t is approximately the same as following Java code:

if (jim instanceof ResidentStudent) ({
ResidentStudent rs = (ResidentStudent) jim;
rs.set_pr(l.5);

}

else { throw new Exception("Cast Not Done."); }

45 of 62|

Notes on Type Cast (1) LASSONDE

ooooooooooooooooo

* |check attached {C} y then end| always compiles

e What if C is not an ancestor of y's DT?
= A runtime assertion violation occurs!
-+ y's DT cannot fulfill the expectation of C.

146 of 62|

Notes on Type Cast (2) LASSONDE

ooooooooooooooooo

e Given v of static type ST, it is violation-free to castvto C, as
long as C is a descendant or ancestor class of ST.
e Why Cast?
o Without cast, we can only call features defined in ST on v.
o By castingvto C,we create an alias of the object pointed by v,
with the new static type C .
= All features that are defined in C can be called.

my_phone: IOS
create {IPHONE 11 PRO} my_phone.make

dial, surf_web, facetime
check attached {SMART_PHONE}

end
check attached {IPHONE_11_PRO} my_phone as ipll_pro then

dial, surf_web, facetime, quick_take v skype, side_syn >, zoomage X

Notes on Type Cast (3) LASSONDE

ooooooooooooooooo

A cast | check attached ic} v as ...|triggers an assertion
violation if C is not along the ancestor path of v’'s DT.

test_smart_phone_type cast_violation
local mine: ANDROID
do create {HUAWEI} mine.make

-— ST of ; DT of mine 1s HUAWE

check attached
-— ST of sp is
check attached

-— ST of huaweil

check attached

>stor of mine’s DT (HUAWETI)

check attached HUAWEI'P30 PRO} mine as p30_pro then ... end

end

148 of 62|

Polymorphism: Feature Call Arguments (1) |.assonoe

ooooooooooooooooo

1 class STUDENT MANAGEMENT SYSTEM {

2 ss : ARRAY|[STUDENT] -- ss[1] has static type Student

3 add_s (s: STUDENT) do ss[0] := s end

4 add_rs (rs: RESIDENT_STUDENT) do ss[0] := rs end

5 add_nrs (nrs: NON_RESIDENT STUDENT) do ss[0] := nrs end

e L4: is valid. -- RHS’s ST RESIDENT STUDENT is
a descendant class of LHS’s ST STUDENT.
e Say we have a STUDENT MANAGEMENT_SYSETM object sms:

o -+ call by value , | sms.add_rs (o) |attempts the following
assignment (i.e., replace parameter rs by a copy of argument o):

rs := O ‘

o Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class c, then we may call feature m by passing objects whose

static types are C’s descendants.

Polymorphism: Feature Call Arguments (2) |.assono:

ooooooooooooooooo

test_polymorphism feature_arguments

local
sl, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT
sms: STUDENT_ MANAGEMENT _SYSTEM

do
create sms.make
create {STUDENT} sl.make ("sl1")
create {RESIDENT _STUDENT} sZ.make ("s2")
create {NON_RESIDENT _STUDENT} s3.make ("s3")
create {RESIDENT _STUDENT} rs.make ("rs"
create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
sms.add_s (sl) v sms.add_s (s2) v sms.add_s (s3) Vv
sms.add_s (rs) v sms.add_s (nrs) v
sms.add_rs (sl) x sms.add_rs (s2) x sms.add_rs (s3) x
sms.add _rs (rs) v sms.add_rs (nrs) x
sms.add_nrs (sl) x sms.add _nrs (s2) X sms.add_nrs (s3) x
sms.add_nrs (rs) x sms.add_nrs (nrs) Vv

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class STUDENT MANAGEMENT_SYSETM
that contains a list of resident and non-resident students?

class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST|[STUDENT]
add_student (s: STUDENT)
do
students.extend (s)
end
registerAll (c: COURSE)
do
across
students as s
loop
s.item.register (c)
end

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students

test_sms_polymorphism: BOOLEAN
local

rs: RESIDENT STUDENT

nrs: NON_RESIDENT STUDENT

c: COURSE

sms: STUDENT_MANAGEMENT _SYSTEM
do

create rs.make ("Jim")

rs.set_pr (1.5)

create nrs.make ("Jeremy")

nrs.set_dr (0.5)

create sms.make

sms.add_s (rs)

sms.add s (nrs)

create c.make ("EECS3311", 500)

sms.register_all (c

Result := sms.ss[l].tuition = 750 and sms.ss[2].tuition = 250
end

LASSONDE

ooooooooooooooooo

Polymorphism: Return Values (1)

class STUDENT_MANAGEMENT_SYSTEM {
ss: LINKED_LIST[STUDENT]
add_s (s: STUDENT)
do
ss.extend (s)
end
get_student (i: INTEGER): STUDENT
require 1 <= i and i <= ss.count
do
10 Result := ss[i]
11 end
12 | end

O©CoOoONOOORWN =

e L2: ST of each stored item (ss[11]) in the list: [STUDENT]
e L3: ST of input parameter s: [STUDENT]
e L7: ST of return value (Result) of get _student: [STUDENT]
e L11: ss[i]’s ST is descendant of Result’ ST.
Question: What can be the dynamic type of s after Line 117
Answer: All descendant classes of Student.

LASSONDE

ooooooooooooooooo

Polymorphism: Return Values (2)

1 | test_sms_polymorphism: BOOLEAN

2 |local

3 rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT
4 c: COURSE ; sms: STUDENT_MANAGEMENT_SYSTEM

5 |do

6 create rs.make ("Jim") ; rs.set_pr (1.5)

7 create nrs.make ("Jeremy") ; nrs.set_dr (0.5)

8 create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)
9 create c.make ("EECS3311", 500) ; sms.register_all (c)
10 Result :=

11 get_student (1) .tuition = 750

12 and get_student (2) .tuition = 250

13 |end

e L11: get_student (1)’s dynamic type?
e L11: Version of tuition? [rRESTDENT_STUDENT]
e L12: get_student (2)’s dynamic type? [won_resipenT sTupENT]

e L12: Version of tuition?

[rRESIDENT_SsTUDENT]

[NON_RESTDENT_STUDENT]

Design Principle: Polymorphism

* When declaring an attribute

= Choose static type | T | which “accumulates” all features that
you predict you will want to call on a.

e.g., Choose if you do not intend to be specific about

which kind of student s might be.
= Let dynamic binding determine at runtime which version of
tuition will be called.

» What if after declaring you find yourself often
needing to cast s to RESIDENT_STUDENT in order to access
premium_rate?

check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(...) end‘

= Your design decision should have been: [s:restpEnT_sTupEnT |
e Same design principle applies to:

o Type of feature parameters: fla: T)

o Type of queries: gl...): T

e

LASSONDE

ooooooooooooooooo

Static Type vs. Dynamic Type:
When to consider which?

o Whether or not an OOP code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Eiffel code being executed at runtime

e.g., which version of method is called
e.g., ifacheck attached {...} as ... then ... end
assertion error will occur

depends on the dynamic types of relevant variables.

= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

Summary: Type Checking Rules LASSONDE
[[Cope [[CONDITION TO BE TYPE CORRECT I
X 1=y v’'s ST a descendant of x’s ST
% £(y) Feature f defined in x's ST

v’'s ST a descendant of £’s parameter's ST
Feature £ defined in x's ST
v’'s ST a descendant of £’s parameter’s ST
ST of m’s return value a descendant of z's ST
check attached {C} y Always compiles
check attached {C} y as temp || C adescendantof x’s ST

then x := temp end
check attached {C} y as temp Feature f defined in x’s ST

then x.f (temp) end C a descendant of £'s parameter’'s ST

Even if’check attached {C} y then ... end‘always compiles,

a runtime assertion error occurs if C is not an ancestor of yv's DT/

57 of 62]

Index (1) :AssoNDE

[Aspects of Inheritance]

[Why Inheritance: A Motivating Example|
[The COURSE Class|

No Inheritance: RESIDENT STUDENT Class
No Inheritance: NON RESIDENT STUDENT Class
No Inheritance: Testing Student Classes|
No Inheritance:

[Issues with the Student Classes]

[No Inheritance: Maintainability of Code (1)|
[No Inheritance: Maintainability of Code (2)|
[No Inheritance:

[A Collection of Various Kinds of Students]|
Inheritance Architecture]

!&ﬂjitance: The STUDENT Parent Class

Index (2) Lassonoe

[Inheritance: I

[The RESIDENT STUDENT Child Class

Inheritance: |
[The NON. RESIDENT STUDENT Child Class|
Inheritance Architecture Revisited

|[Using Inheritance for Code Reuse|
[Testing the Two Student Sub-Classes|
[Static Type vs. Dynamic Type|
Inheritance Architecture Revisited
[Polymorphism: Intuition (1)|
[Polymorphism: Intuition (2)|
[Polymorphism: Intuition (3)|

[Dynamic Binding: Intuition (1)

[Dynamic Binding: Intuition (2)]

l_%i Contract View of Supplier|

Index (3) Sssonee

[ES_TEST: Expecting to Fail Postcondition (1)|
[Es_TEST: Expecting to Fail Postcondition (2.1)|
[ES_TEST: Expecting to Fail Postcondition (2.2)|
[Multi-Level Inheritance Architecture (1)|
[Multi-Level Inheritance Architecture (2)|
[Inheritance Forms a Type Hierarchy|
[Inheritance Accumulates Code for Reuse]
[Substitutions via Assignments|

Rules of Substitution

[Reference Variable: Static Type|

Reference Variable: Dynamic Type)|
Reference Variable: |

Changing Dynamic Type (1))

Index (4) Lassonoe
[Reference Variable: I
[Changing Dynamic Type (2)|

[Polymorphism and Dynamic Binding (1)|

[Polymorphism and Dynamic Binding (2.1)|

[Polymorphism and Dynamic Binding (2.2)|

[Reference Type Casting: Motivation|

[Reference Type Casting: Syntax|

[Notes on Type Cast (1)|

[Notes on Type Cast (2)|

[Notes on Type Cast (3)|

[Polymorphism: Feature Call Arguments (1)

Polymorphism: Feature Call Arguments (2)|
Why Inheritance: |

A Polymorphic Collection of Students|
“erorez

Index (5) Lassonpe
[Polymorphism and Dynamic Binding: |
|A Polymorphic Collection of Students|

[Polymorphism: Return Values (1)|

[Polymorphism: Return Values (2)|

[Design Principle: Polymorphism |

Static Type vs. Dynamic Type:
When to consider which?

[Summary: Type Checking Rules|

Generics

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

YORK

cic
z|z
<|<
mim
D=
wlwn
==
<Im

Motivating Example: A Book of Any Objects .assono:

class BOOK
names: ARRAY [STRING]
records: ARRAY [ANY]
—— Create an empty
make do ...

Add a

name-record pair to the book

STRING; record: ANY) do .

add (name
—— Return the record associated with a given name

get (name: STRING): ANY do ... end
end

Question: Which line has a type error?

1 | birthday: DATE; phone_number: STRING

b: BOOK; is_wednesday: BOOLEAN

3 | create {BOOK} b.make

4 | phone_number := "416-677-1010"

5 | b.add ("SuYeon", phone_number)

6 | create {DATE} birthday.make (1975, 4, 10)

7 |b.add ("Yuna", birthday)

8 | is_wednesday := b.get ("Yuna") .get_day_of_week = 4

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (1)

¢ |n the BOOK class:
o In the attribute declaration

’ records: ARRAY [ANY] ‘

e ANY is the most general type of records.
e Each book instance may store any object whose static type is a
descendant class of ANY.

o Accordingly, from the return type of the get feature, we only know
that the returned record has the static type ANY, but not certain
about its dynamic type (e.g., DATE, STRING, efc.).

.. a record retrieved from the book, e.g., b.get ("Yuna"), may
only be called upon features defined in its static type (i.e,. ANY).
¢ In the tester code of the BOOK class:

o In Line 1, the static types of variables birthday (i.e., DATE) and
phone_number (i.e., STRING) are descendant classes of ANY.

.. Line 5 and Line 7 compile.
3 of 16/

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (2)

Due to polymorphism , in a collection, the dynamic types of

stored objects (e.g., phone_number and birthday) need not

be the same.

o Features specific to the dynamic types (e.g., get_day_of_week
of class Date) may be new features that are not inherited from
ANY.

o This is why Line 8 would fail to compile, and may be fixed using an
explicit cast :

check attached {DATE} b.get("Yuna") as yuna bday then
is_wednesday := yuna_bday.get_day_of week = 4
end

o But what if the dynamic type of the returned object is not a DATE?

check attached {DATE} b.get ("SuYeon") as suyeon_bday then
is_wednesday := suyeon_bday.get_day_of week = 4
end

= An assertion violation at runtime!

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (2.1)

e |t seems that a combination of attached check (similar to an
instanceof check in Java) and type cast can work.

e Can you see any potential problem(s)?
¢ Hints:
o Extensibility and Maintainability
o What happens when you have a large number of records of
distinct dynamic types stored in the book
(e.g., DATE, STRING, PERSON, ACCOUNT, ARRAY _CONTATINER,
DICTIONARY, etfc.)? [all classes are descendants of ANY]

5 of 16)

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (2.2)
Say a client stores 100 distinct record objects into the book.

recl: C1

... —— declarations of rec2 to rec99

recl00: C100

create {Cl} recl.make(...) ; b.add(..., recl)
—— additions of rec2 to rec99

create {C100} recl00.make(...) ; b.add(..., recl00)

where static types C1to C100 are descendant classes of ANY.
o Every time you retrieve a record from the book, you need to check
“exhaustively” on its dynamic type before calling some feature(s).

if attached {Ci1} b.ge;:("Jim") as cl then A
cl.f1

—— cases for C2 to C

as

c99

elseif attached {C100} b.get("Jim") as cl00 then
cl00. 100

end

o Writing out this list multiple times is tedious and error-prone!
6 of 16]

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (3)
We need a solution that:
¢ Eliminates runtime assertion violations due to wrong casts
e Saves us from explicit at tached checks and type casts
As a sketch, this is how the solution looks like:
¢ When the user declares a BOOK object b, they must commit to
the kind of record that b stores at runtime.
e.g., b stores either DATE objects (and its descendants) only
or string objects (and its descendants) only, but not a mix .
¢ When attempting to store a new record object rec into b, if

rec’s static type is not a descendant class of the type of book
that the user previously commits to, then:
o ltis considered as a compilation error
o Rather than triggering a runtime assertion violation

* When attempting to retrieve a record object from b, there is no
longer a need to check and cast.

I Static types of all records in b are guaranteed to be the same.

LASSONDE

ooooooooooooooooo

Parameters

¢ In mathematics:

o The same function is applied with different argument values.
eg.,2 + 3,1 + 1,10 + 101, etc.

o We generalize these instance applications into a definition.
e.g., +: (Z xZ) - Z is a function that takes two integer

parameters and returns an integer.
¢ In object-oriented programming:

o We want to call a feature, with different argument values, to
achieve a similar goal.

e.g., acc.deposit (100), acc.deposit (23), efc.

o We generalize these possible feature calls into a definition.
e.g., In class ACCOUNT, a feature deposit (amount: REAL)
takes a real-valued parameter .

¢ When you design a mathematical function or a class feature,
always consider the list of parameters , each of which
resenting a set of possible argument values.

Generics: Design of a Generic Book

class BOOK|[G]
names: ARRAY [STRING]
records: ARRAY[G]

—-— Create an empty book

make do ... end
/* Add a name-record pair to the book x/
add (name: STRING; record: G) do ... end
/* Return the record associated with a given name x/
get (name: STRING): G do ... end
end

Question: Which line has a type error?

1 |birthday: DATE; phone_number: STRING

b: BOOK[DATE] ; is_wednesday: BOOLEAN

create BOOK[DATE] b.make

phone_number = "416-67-1010"

b.add ("SuYeon", phone_number)

create {DATE} birthday.make (1975, 4, 10)

b.add ("Yuna", birthday)

is_wednesday := b.get("Yuna") .get_day_of week == 4

ONOOTA~ W N

9 of 16)

LASSONDE

ooooooooooooooooo

Generics: Observations

¢ |n class BOOK:
o Atthe class level, we parameterize the type of records :

’class BOOK[G] ‘

o Every occurrence of ANY is replaced by E.

As far as a client of BOOK is concerned, they must instantiate G.
= This particular instance of book must consistently store items of
that instantiating type.

¢ As soon as E instantiated to some known type (e.g., DATE,

STRING), every occurrence of E will be replaced by that type.

For example, in the tester code of BOOK:

In Line 2, we commit that the book b will store DATE objects only.

Line 5 fails to compile. [.- STRING not descendant of DATE]

Line 7 still compiles. [-- DATE is descendant of itself]

Line 8 does not need any attached check and type cast, and

does not cause any runtime assertion violation.

- All attempts to store non-DATE objects are caught at compile time.

e}

o O O

10 of 16|

LASSONDE

ooooooooooooooooo

Bad Example of using Generics

Has the following client made an appropriate choice?

book: BOOK[ANY]

o It allows all kinds of objects to be stored.
-+ All classes are descendants of ANY.

o We can expect very little from an object retrieved from this book.
-+ The static type of book’s items are ANY, root of the class
hierarchy, has the minimum amount of features available for use.
-~ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

11 of 16|

LASSONDE

ooooooooooooooooo

Instantiating Generic Parameters
e Say the supplier provides a generic DICTIONARY class:

class DICTIONARY[V, K] -- V type of values; K type of keys
add_entry (v: V; k: K) do ... end
remove_entry (k: K) do ... end

end

¢ Clients use prcrronary with different degrees of instantiations:

class DATABASE_TABLE[K, V]
imp: DICTIONARY[V, K]
end

e.g., DeC|ariﬂg’DATABSE_TABLE[INTEGER, STRING] |instantiates

’ DICTIONARY[STRING, INTEGER] |

class STUDENT_BOOK[V]
imp: DICTIONARY[V, STRING]
end

e.g., Declaring [stupenT_Boox [arRaY [coursE]] | instantiates
DICTIONARY [ARRAY [COURSE], STRING] ‘
12 of 16

LASSONDE

ooooooooooooooooo

Generics vs. Inheritance (1)

Abstraction

SET_OF_
BOOKS

Type parameterization Type parameterization

LIST OF LIST OF LIST OF
PEOPLE BOOKS JOURNAL

LINKED_LIS
OF BOOKS

Specialization

13 of 16|

LASSONDE

ooooooooooooooooo

Generics vs. Inheritance (2)

Inheritance and

/‘ﬁT Generalization gemericity
CHAIN [TAXT] -~ ®

Inheritance

Genericity
(type parameterization)

LINKED LIS
[T4XT)

A ‘Specialization

14 of 16|

LSSoNDE

Beyond this lecture ...

e Study the “Generic Parameters and the lterator Pattern” Tutorial
Videos.

15 of 16|

Index (1) Lassonpe
[Motivating Example: A Book of Any Objects]|
[Motivating Example: Observations (1)|
[Motivating Example: Observations (2)|
[Motivating Example: Observations (2.1)|
[Motivating Example: Observations (2.2)|
[Motivating Example: Observations (3)|
|Generics: Design of a Generic Book|
|[Generics: Observations|

[Bad Example of using Generics|
[Instantiating Generic Parameters|

|[Generics vs. Inheritance (1)|

|[Generics vs. Inheritance (2)|

Beyond this lecture .. |

The Composite Design Pattern

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

YORK

\
\

cic
z|z
mim
D=
wlwn
==
<Im

LSSoNDE

Motivating Problem (1)

¢ Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.
e.g., A computer system is composed of:
« Individual pieces of equipment (hard drives, cd-rom drives)
Each equipment has properties : e.g., power consumption and cost.
e Composites such as cabinets, busses, and chassis
Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

¢ Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

Motivating Problem (2)

LASSONDE

ooooooooooooooooo

Design for free structures with whole-part hierarchies.

CABINET

CHASSIS CH

0 qL

HARD_DRIVE

CARD

ASSIS

M

&WER_SUPPLY

DVD-CDROM

Challenge : There are base and recursive modelling artifacts.

Multiple Inheritance:
Combining Abstractions (1)

E——

LASSONDE

ooooooooooooooooo

A class may have two more parent classes.

COMPARABLE

|
MI: Combining Abstractions (2.1)

LASSONDE

ooooooooooooooooo

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window

8|

MI: Combining Abstractions (2)

5 of 1

ESONDE
A: Separating Graphical features and Hierarchical features
class RECTANGLE
feature Queries
width, height: REAL | |¢l3ss TREE[G]
“pos os: REAL feature - Queries
pos, ¥p o descendants: ITERABLE[G]
feature Commands feature
make (w, h: REAL) add (c G)"" -~
change_width [
change_height end
move
end
test_window: BOOLEAN
local wil, w2, w3, w4: WINDOW
class WINDOW do
inheri
lr;;;:NGLE create wl.make(8, 6) ; create w2.make (4, 3)
TREE [WINDOW)] create w3.make(l, 1) ; create w4.make(1l, 1)
end w2.add(w4) ; wl.add(w2) ; wl.add(w3)
Result := wl.descendants.count = 2
end

LASSONDE

ooooooooooooooooo

MI: Name Clashes

00

In class ¢, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.

7 of 18

MI: Resolving Name Clashes

EESSONDE
foo
rename foo as fog rename foo as zoo
class C o.foo | o.fog | 0.z00
inherit

A rename foo as fog end o: A v X a

B rename foo as zoo end o: B v X X

o C X v v

8 of 18

LASSONDE

Solution: The Composite Pattern |Lsson

J : Categorize into base artifacts or recursive artifacts.

Programming |

Build a tree structure representing the whole-part hierarchy .

* [Runtime |
Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

= | Polymorphism |: leafs and nodes are “substitutable”.

= | Dynamic Binding |: Different versions of the same

operation is applied on individual objects and composites.
e.g., Given|e: EQUIPMENT |:
o may return the unit price of a DTSk DRIVE.

o |e.price|may sum prices of a cHasIs’ containing equipments.
9 of 18]

LASSONDE

ooooooooooooooooo

Composite Architecture: Design (1.1)

equipment

EQUIPMENT* children+: LISTI[..]

feature '

'
o+ H price: REAL H

" feature '

' add_child(e: EQUIPMENT) '

ensure children[children.count] = e
' \ J

A

s

10 of 18]

Composite Architecture: Design (1.2) LASSONDE

ooooooooooooooooo

Q: Any flaw of this first design?

A: Two “composite” features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]

© add(child: EQUIPMENT)

= Inherited to all base equipments (e.g., HARD_DRIVE) that do

not apply to such features.

11 of 18]

Composite Architecture:

Design (2.1) LASSONDE

ooooooooooooooooo

equipment

(COMPOSITE[T]* \
feature
children: LIST[T]
add_child(c: T)
ensure children[children.count] = ¢

EQUIPMENT*

.
.
/
f
'
et feature
T price: REAL
'

_ children+: LISTL.]

*

COMPOSITE_EQUIPMENT

12 of 18]

Implementing the Composite Pattern (1) LASSONDE

ooooooooooooooooo

deferred class

EQUIPMENT
feature

name: STRING

price: REAL uniform access principle
end

class
CARD
inherit
EQUIPMENT
feature
make (n: STRING; p: REAL)
do
name := n
price := p —- price is an attribute
end
end

Implementing the Composite Pattern (2.1) |.assonoe

ooooooooooooooooo

deferred class
COMPOSITE[T]

feature
children: LINKED_ LIST|[T]

add (c: T)
do
children.extend (c) —-- Polymorphism
end
end

Exercise: Make the COMPOSITE class iterable.

Implementing the Composite Pattern (2.2)

LSSoNDE

class

COMPOSITE _EQUIPMENT
inherit

EQUIPMENT

COMPOSITE [EQUIPMENT]
create

make
feature

make (n: STRING)

do name := n ; create children.make end
price : REAL —- price is a query

—-— Sum the net pr
do
across
children as cursor
loop
Result := Result + cursor.item.price -- dynamic binding
end
end
end

15 of 1

Testing the Composite Pattern

LSSoNDE

test_composite_equipment: BOOLEAN

local
card, drive: EQUIPMENT
cabinet: CABINET —— !
chassis: CHASSIS —- co ins a BUS and a DISK_DRIVE
bus: BUS holds a CARD

do
create {CARD} card.make("l6Mbs Token Ring", 200)
create {DISK DRIVE} drive.make("500 GB harddrive", 500)
create bus.make ("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)

chassis.add(bus)

chassis.add(drive)

cabinet.add(chassis)

Result := cabinet.price = 700
end

16 of 18]

Index (1)

LSSoNDE

[Motivating Problem (1)
Motivating Problem (2)|

Multiple Inheritance:

[Combining Abstractions (1)|

[MI: Combining Abstractions (2.1)|

[MI: Combining Abstractions (2)|

MI: Name Clashes

[MI: Resolving Name Clashes|

[Solution: The Composite Pattern|
[Composite Architecture: Design (1.1)|
[Composite Architecture: Design (1.2)|
[Composite Architecture: Design (2.1)|
[Implementing the Composite Pattern (1)|
Implementing the Composite Pattern (2.1)|

Index (2)

LSSoNDE

[Implementing the Composite Pattern (2.2)|

[Testing the Composite Pattern|

18 of 18]

Motivating Problem (2)

ooooooooooooooooooo

Extend the composite pattern to support operations such as

. . evaluate, pretty printing (print prefix, print_postfix),
The Visitor Design Pattern and type_check.

(EXPERSSION* COMPOSITE*]
value: INTEGER e/‘t right: EXPRESSION
evaluate*

print_prefix*
print_postfix*

EECS3311 A: Software Design Qe chec

YORK ' Fall 2019

UNI CHEN-WEI WANG
U N (CONSTANT+ (appimon:)

evaluate+ evaluate+
print_prefix+ print_prefix+
D

mim
D |0
wlwn
==
<lm

print_postfix+ rint_postfix+
type_check+ type_check+

3 of 13

\wy

Motivating Problem (1) LASSONDE Problems of Extended Composite Pattern | asoxo:
Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions

(e.9., 341, 2, 341 + 2). * Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :
(EXPERSSION* 1 (COMPOSITE*) . .
—NTEGER To add/delete/modify an operation
V“ ue: [’eﬁ right: EXPRESSION = Change of all descendants of EXPRESSION
e Each node class lacks in cohesion :

CONSTANT+ ADDITION+ unrelated operations.

A class is supposed to group relevant concepts in a single place.
= Confusing to mix codes for evaluation, pretty printing, and type
checking.
= We want to avoid “polluting” the classes with these various

1

T)

\
2 of 13] 4 of 13

Open/Closed Principle LASSONDE

ooooooooooooooooo

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

= When extending the behaviour of a system, we:

o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.
e.g., In designing the application of an expression language:
o Alternative 1:
Syntactic constructs of the language may be closed, whereas
operations on the language may be open.
o Alternative 2:
Syntactic constructs of the language may be open, whereas
operations on the language may be closed.

5 of 13

Visitor Pattern LASSONDE

ooooooooooooooooo

e Separation of concerns

o Set of language constructs
o Set of operations

= Classes from these two sets are decoupled and organized
into two separate clusters.

e Open-Closed Principle (OCP) :

o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations

= OCP helps us determine if Visitor Pattern is applicable .

= If it was decided that language constructs are open and
operations are closed, then do not use Visitor Pattern.

6 of 13

Visitor Pattern: Architecture LASSONDE

ooooooooooooooooo

EXPERSSION*

juecet] (vemoe)
. visit_constant(c: CONSTANT)*
(cowpositer)i !

visit_addition(a: ADDITION)*
lef,right: EXPRESSION. | !

accept(v: VISITOR)*

1 [constant+) (_apbpmons) . EVALUATOR+) (erertv.eRiNtER+ | [TYPE CHECKER+)
: i [Visit_constant(c: CONSTANT)=| [Visit_constant(c: CONSTANT)+] | visit_constant(c: CONSTANT#| |
i (vsit_adaition(a: ADDITION)+ visit_addition(a: ADDITION)+ | | visit_addition(a: ADDITION)+ | +

+ | accept(v: vistTor)+ accept(v: VISITOR)+

7 of 13

LASSONDE

ooooooooooooooooo

Visitor Pattern Implementation: Structures

Cluster expression_language
o Declare deferred feature] accept (v: VISITOR) \in EXPRSSION.

o Implement accept feature in each of the descendant classes.

class CONSTANT inherit EXPRESSION

accept(v: VISITOR)
do
v.visit_ constant (Current)
end
end

class ADDITION
inherit EXPRESSION COMPOSITE

accept (v: VISITOR)
do
v.visit_ addition (Current)
end
end

8 of 13

Visitor Pattern Implementation: Operations |.ssono:

Cluster expression_operations
o For each descendant class C of EXPRESSION, declare a deferred

feature in the deferred class VISITOR.

deferred class VISITOR
visit_constant (c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end
end

o Each descendant of vISITOR denotes a kind of operation.

class EVALUATOR inherit VISITOR ‘

: INTEGER |
visit_constant (c: CONSTANT) do 1= c.value end

\
\
visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)
a.right.accept (eval_right)

:= eval_left.value + eval_right.value

Testing the Visitor Pattern LASSONDE

ooooooooooooooooo

test_expression_evaluation: BOOLEAN
local add, cl, c2: EXPRESSION ; v: VISITOR
do
create {CONSTANT} cl.make (1) ; create {CONSTANT} c2.make (2)
create {ADDITION} add.make (cl, c2)
create ({EVALUATOR} v.make
| add.accept (v) |
check attached {EVALUATOR} v as eval then
Result := eval.value = 3
end
end

0O OWoOO NOoOOOMWN =

—_

Double Dispatch in Line 7:

1. DT of add is apprrron = Call accept in apprrron

v.visit_addition (add)

2. DT of vis evarvaror = Call visit_addition in Evaruaror
’visiting result of add.left ‘ + ’ visiting result of add. right ‘

10 of 13|

To Use or Not to Use the Visitor Pattern LASSONDE

ooooooooooooooooo

¢ In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?

o Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | C_CODE_GENERATOR] of VISITOR,
then implement how to handle each language element in that class.
= Single Choice Principle is obeyed.

o Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSTON,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new ’ visitmultiplication ‘operation.

= Single Choice Principle is violated.
e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations applied to structure change often.

= Do not use visitor if the structure change often.

Beyond this Lecture. .. LASSONDE

ooooooooooooooooo

Learn about implementing the Composite and Visitor Patterns,
from scratch, in this tutorial series:

https://www.youtube.com/playlist?list=PL5dxAmCmiv_
475eXCGW-7ZBgsS2WZTyBHY?2

12 of 13]

Index (1) :ASSONDE

ooooooooooooooooo

[Motivating Problem (1)

[Motivating Problem (2)|

[Problems of Extended Composite Pattern|

|Open/Closed Principle]

Visitor Pattern
Visitor P rn: Archi r

[Visitor Pattern Implementation: Structures|

|Visitor Pattern Implementation: Operations|

[Testing the Visitor Pattern|

To Use or Not to Use the Visitor Pattern

[Beyond this Lecture. . .|

Abstractions via Mathematical Models

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

Motivating Problem: Complete Contracts

LASSONDE

ooooooooooooooooo

¢ Recall what we learned in the Complete Contracts lecture:

o In post-condition , for each attribute , specify the relationship
between its pre-state value and its posi-state value.

o Use the old keyword to refer to posi-state values of expressions.

o For a composite-structured attribute (e.g., arrays, linked-lists,
hash-tables, etc.), we should specify that after the update:

1. The intended change is present; and
2. The rest of the structure is unchanged .

¢ Let’s now revisit this technique by specifying a L/IFO stack.

e

Motivating Problem: LIFO Stack (1)

ooooooooooooooooo

¢ Let’s consider three different implementation strategies:

Arra Linked List
Stack Feature v
Strategy 1 Strategy 2 ‘ Strategy 3
count imp.count
top imp[imp.count] imp.first imp.last
push(g) imp.force(g, imp.count + 1) | imp.put_front(g) | imp.extend(g)
imp.list.remove_tail (1) list.start imp.finish
pop . .
list.remove imp.remove

¢ Given that all strategies are meant for implementing the same
ADT, will they have identical contracts?

Motivating Problem: LIFO Stack (2.1)

i

ASSONDE

class LIFO STACK[G] create make
feature {NONE } S y 1 -
imp: ARRAY|[G]
feature —— Initialization
make do create 1mp make_empty ensure imp.count = 0 end
feature 2
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ~ g
unchanged: across 1 |..| count - 1 as i all
impl[i.item] ~ (old imp.deep_twin) [i.item]
end
pop
do imp.remove_tail(l)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
impl[i.item] ~ (old imp.deep_twin) [i.item]
end

end

end

Motivating Problem: LIFO Stack (2.2)

LSSoNDE

class LIFO _STACK[G] create make
feature {NONE } St yy 2: linked-1 to
imp: LINKED LIST[G]
feature - on
make do create 1mp make ensure imp.count = 0 end
feature Cc S
push(g: G)
do imp.put_front (g)
ensure
changed: imp.first ~ g
unchanged: across 2 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item - 1] end
end
pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item + 1] end
end

|
Motivating Problem: LIFO Stack (2.3)

15

ASSONDE

class LIFO STACK[G] create make
feature {NONE} Strat y 3: 11 item as top
imp: LINKED_LIST[G]
feature —— Initialization
make do create 1mp make ensure imp.count = 0 end
feature Commands
push(g: G)
do imp.extend(qg)
ensure
changed: imp.last ~ g
unchanged: across 1 |..| count - 1 as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end
pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end

Motivating Problem: LIFO Stack (3) e

e Postconditions of all 3 versions of stack are complete .
i.e., Not only the new item is pushed/popped, but also the
remaining part of the stack is unchanged.

e But they violate the principle of information hiding :
Changing the secret, internal workings of data structures
should not affect any existing clients.

e How so?
The private attribute imp is referenced in the postconditions ,

exposing the implementation strategy not relevant to clients:
o Top of stack may be’ imp [count] ‘ ’ imp.first ‘ or’ imp.last ‘

e Remaining part of stack may be’across 1 |..| count - 1‘or

’across 2 |..| count ‘
= Changing the implementation strategy from one to another will
also change the contracts for all features .

T This also violates the Single Choice Principle .

LSSoNDE

Math Models: Command vs Query

o Use MATHMODELS library to create math objects (SET, REL, SEQ).
o State-changing commands: Implement an Abstraction Function

class LIFO STACK[G —-> attached ANY] create make
feature {NONE} - I
imp: LINKED_LIST[G]
feature - Abstra
model: SEQ[G]
do create Result.make_empty
across Imp as cursor loop Result.append(cursor.item) end
end

the stack ADT

o Side-effect-free queries: Write Complete Contracts

class LIFO_STACK[G -> attached ANY] create make

feature - Abstra function of the stack ADI
model: SEQ/[G]
feature C

push (g: G)
ensure model ~ (old model.deep_twin) .appended(g) end

8 of 39

LSSoNDE

Implementing an Abstraction Function (1)

class LIFO_STACK[G —-> attached ANY] create make
feature {NONE} —— t o) tre 1
imp: ARRAY[G]
feature —— 4L
model: SEQ[G]
do create Result.make_from.array (imp)

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Co ds
make do create imp.make_empty ensure model.count = 0 end

push (g: G) do imp.force(g, imp.count + 1)

‘ ensure pushed: model ~ (old model.deep_-twin) .appended(g) end ‘
‘ pop do imp.remove_tail (1) ‘
‘ ensure popped: model ~ (old model.deep_-twin).front end ‘
| |

|
Abstracting ADTs as Math Models (1)

‘push(g: G)’ feature of LIFO_STACK ADT

[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction
Jfunction

old imp: ARRAY[G]

private/hidden (implementor’s view)

n'_ \u,

ASSONDE

abstraction
Sfunction

convert the current array
into a math sequence

convert the current array
into a math sequence

imp: ARRAY[G]

e | Strategy 1| Abstraction function : Convert the implementation
array to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

imp.force(g, imp.count + 1)

’ model ~ (old model.deep_twin) .appended(qg) ‘

10 of 39|

LSSoNDE

Implementing an Abstraction Function (2)

class LIFO_STACK[G —> attached ANY] create make
feature {NONE} - Implement ategy 2 (first as top)
imp: LINKED_ LIST[G]
feature Abst
model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.prepend(cursor.item) end

nn S

ractior

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result([i.item] ~ imp[count - i.item + 1]
end
feature - C S
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.put_front (g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.start ; imp.remove
‘ ensure popped: model ~ (old model.deep-twin).front end ‘
’end

[11 of 39]

Abstracting ADTs as Math Models (2) LASSONDE

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current linked list | abstraction

into a math sequence Sfunction
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
prlvate/hldden (implementor’s view)

Strategy 2| Abstraction function : Convert the /mp/ementat/on

list (first item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

~

abstraction | convert the current liked list
Sfunction into a math sequence

imp.put_front(g)

’ model ~ (old model.deep_twin) .appended(qg) ‘

Implementing an Abstraction Function (3)

LSSoNDE

class LIFO_STACK[G —-> attached ANY] create make
feature {NONE} - Implementation
imp: LINKED_ LIST[G]
feature Abstraction function of the stack ADT
model : SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]

Strategy 3 (last as top)

end
feature - C S
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.extend(g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.finish ; imp.remove
‘ ensure popped: model ~ (old model.deep-twin).front end ‘
’ end ‘

13 of 39

Abstracting ADTs as Math Models (3)

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current linked list | abstraction

into a math sequence function
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
prlvate/hldden (implementor’s view)

Strategy 3| Abstraction function : Convert the /mplementat/on
list (last item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:
’ model ~ (old model.deep_twin) .appended(qg) ‘

abstraction | convert the current liked list
Sfunction into a math sequence

imp.extend(g)

Solution: Abstracting ADTs as Math Models L’ALE

e Writing contracts in terms of implementation attributes (arrays,
LLs, hash tables, efc.) violates information hiding principle.

e Instead:
o For each ADT, create an abstraction via a mathematical model.
e.g., Abstract a LIFO_STACK as a mathematical .
o For each ADT, define an abstraction function (i.e., a query
whose return type is a kind of mathematical model.
e.g., Convert implementation array to mathematical sequence
o Write contracts in terms of the abstract math model.
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.
o Upon changing the implementation:
¢ No change on what the abstraction is, hence no change on contracts.
e Only change how the abstraction is constructed, hence changes on
the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
= The Single Choice Principle is obeyed.

Math Review: Set Definitions and Membershi;

e A set is a collection of objects.
o Objects in a set are called its elements or members.
o Order in which elements are arranged does not matter.
o An element can appear at most once in the set.
¢ We may define a set using:
o Set Enumeration: Explicitly list all members in a set.
e.g., {1,3,5,7,9}
o Set Comprehension: Implicitly specify the condition that all
members satisfy.
eg.,{x|1<x<10Ax is an odd number}

An empty set (denoted as {} or @) has no members.

We may check if an element is a member of a set:
e.g.,5¢{1,3,5,7,9} [true]
eg.,4¢{x|x<1<10,x is an odd number} [true]

e The number of elements in a set is called its cardinality.

e.9.,12]=0,[{x|x<1<10,x is an odd number}|=5

LASSONDE

ooooooooooooooooo

Math Review: Set Relations

Given two sets Sy and S:
e S, is a subset of S, if every member of Sy is a member of S,.

S51€8S «— (Vx e xeSy=>x€8p)

e S; and S, are equal iff they are the subset of each other.

S1=Sg <~ 51932/\82981

e S, is a proper subset of S, if it is a strictly smaller subset.
S1cS «— S5 cSA|S1<]S52

Math Review: Set Operations

LASSONDE

ooooooooooooooooo

Given two sets Sy and S:
e Union of Sy and S, is a set whose members are in either.

S1U82={X|XES1VX€SQ}

¢ Intersection of S; and S, is a set whose members are in both.

S1ﬁSg={X|XES1/\X€SQ}

e Difference of S; and S, is a set whose members are in S; but
not So.
S1 \82={X|XES1/\X¢82}

LASSONDE

ooooooooooooooooo

Math Review: Power Sets

The power set of a set Sis a set of all S’ subsets.

P(S)={s|sc S}

The power set contains subsets of cardinalities 0,1, 2, ..., |S|.

e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

9z,

{1}, {2}, {3},
{1.2}, {2,3}, {3,1},
{1,2,3}

19 of 39

Math Review: Set of Tuples LASSONDE

ooooooooooooooooo

Given nsets Sy, Sy, ..., Sp, @ cross product of theses sets is
a set of n-tuples.

Each n-tuple (eq, e, ..., en) contains n elements, each of
which a member of the corresponding set.

SixSox--xSp={(e1,6€2,...,en) | €eSian1<i<n}

e.g., {a b} x{2,4} x {$,&} is a set of triples:

{a,b} x {2,4} x {$,&}
{(e1,e2,63) | e1e{abfrerec{2,4) ne3e{$,&} }
{(a,2,%),(a,2,&),(a,4,9%),(a,4,&),
(b,2,%$),(b,2,&),(b,4,$),(b,4,&)}

e

Math Models: Relations (1) o

ooooooooooooooooo

e A relation is a collection of mappings, each being an ordered
pair that maps a member of set S to a member of set T.
e.g.,,Say S={1,2,3}and T = {a, b}

o @ is an empty relation.

o Sx T is arelation (say r1) that maps from each member of S to
each memberin T: {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

o {(x,y):SxT|x=+1}isarelation (say r.) that maps only some
members in S to every member in T: {(2,a),(2,b),(3,a),(3,b)}.

e Given a relation r:

o Domain of r is the set of S members that r maps from.

dom(r)={s:S|(3te(s,t)er)}
e.g., dom(ry) = {1,2,3}, dom(r2) = {2,3}
o Range of r is the set of T members that r maps to.
ran(r)={t: T|(3se(s,t)er)}

e.g., ran(ry) = {@, b} =ran(rz)
21 0739

Math Models: Relations (2)

ooooooooooooooooo

¢ We use the power set operator to express the set of all possible
relations on Sand T:
P(SxT)

¢ To declare a relation variable r, we use the colon (:) symbol to
mean set membership:

r:P(SxT)

¢ Or alternatively, we write:
r:S< T

where the set S <> T is synonymous to the set P(Sx T)

Math Models: Relations (3.1)

ooooooooooooooooo

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
o [r.domain|: set of first-elements from r
o rdomain={d|(d,r)er}
o e.g., r.domain = {a,b,c,d,e,f}
e [r.range]: set of second-elements from r
orrange={r|(d,r)er}
o e.g., rrange = {1,2,3,4,5,6}
« [rinversel: a relation like r except elements are in reverse order

o rinverse = { (r,d)|(d,r)er}
o e.g., rinverse = {(1,a),(2,b),(3,c), (4,a), (5,b), (6,¢), (1,d),(2,e), (3,)}

e
Math Models: Relations (3.2)

ooooooooooooooooo

Say r={(a1).(b,2),(c,3),(a4),(b,5).(c6),(d,1),(e,2),(f3)}
r.domain_restricted(ds) ‘: sub-relation of r with domain ds.

o r.domain_restricted(ds) = { (d,r) | (d,r)erndeds}

o e.g., r.domain_restricted({a, b}) = {(a, 1), (b,2),(a,4), (b,5)}
r.domain_subtracted(ds) ‘: sub-relation of r with domain not ds.
o r.domain_subtracted(ds) = { (d,r) | (d,r)ernd¢ds}

o e.g., .domain_subtracted({a, b}) = {(¢,6),(d,1),(e,2),(f,3)}
r.range_restricted(rs) ‘: sub-relation of r with range rs.

o rrrange_restricted(rs) = { (d,r) | (d,r)erarers}

o e.g., r.range_restricted({1,2}) = {(a,1),(b,2),(d,1),(e,2)}
r.range_subtracted(ds) \: sub-relation of r with range not ds.

o rrrange_subtracted(rs) = { (d,r) | (d,r)eranr¢rs}
o e.g., r.range_subtracted({1, 2}) = {(c,3),(a,4),(b,5),(c,6)}

Math Models: Relations (3.3)

ooooooooooooooooo

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
. : a relation which agrees on r outside domain of

t.domain, and agrees on t within domain of t.domain
o r.overridden(t) = { u r.domain_subtracted(t.domain)

[e]

r.overridden({(a,3),(c,4)})

[—

{(@.3).(c.4)}u{(b.2),(b.5).(d.1).(e.2),(£.3)}

t r.domain_subtracted(f.domain)
[—
{a,c}

{(a,3),(c,4),(b,2),(b,5),(d,1),(e;2),(f,3)}

LASSONDE

ooooooooooooooooo

Math Review: Functions (1)

A function fon sets Sand T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T.

VSis;t12T;t21TO(S,t1)€f/\(S,t2)Ef=>t1=t2

e.g., Say S={1,2,3} and T = {a, b}, which of the following
relations are also functions?

o SxT [No]
o (SxT)-{(x,y) | (x,¥)eSxTArx=1} [No]
° {(1,a),(2,b),(3,a)} [Yes]
° {(1,a),(2,0)} [Yes]

e

Math Review: Functions (2)

LASSONDE

ooooooooooooooooo

e We use sef comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

(r:SoT|
(VSIS;HIT;tg:TO(S,t1)EI‘/\(S,t2)EI’=>t1 =t2)}

e This set (of possible functions) is a subset of the set (of
possible relations): P(Sx T) and S« T.

¢ We abbreviate this set of possible functions as S — T and use it
to declare a function variable f:

f:S-T

27 of 39|

Math Review: Functions (3.1)

LASSONDE

ooooooooooooooooo

Given a function f: S— T

e fis injective (or an injection) if f does not map a member of S

to more than one members of T.

f is injective «—

(VS1 :S;Sgts;t:TO(S1,t)Ef/\(32,t)EI’:>S1 232)

e.g., Considering an array as a function from integers to

objects, being injective means that the array does not contain

any duplicates.

e fis surjective (or a surjection) if f maps to all members of T.

f is surjective <= ran(f)=T

e fis bijective (or a bijection) if f is both injective and surjective.

28 of 39|

Math Review: Functions (3.2)

LASSONDE

ooooooooooooooooo

X Y X

=<

/]
> 0 m O

-)X
o)<
_<

|/
\

Math Models: Command-Query Separation

LASSONDE

ooooooooooooooooo

Command |

| Query

domain_restrict
domain_restrict_ by

domain_subtract
domain_subtract. by

domain_restricted
domain_restricted by

domain_subtracted
domain_subtracted by

range_restrict
range_restrict_by

range_subtract
range_subtract by

range_restricted
range_restricted._by

range_subtracted
range_subtracted._by

override
override_by

overridden
overridden_by

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}

e Commands modify the context relation objects.
| £ domain restrict ({a}) | changes r to {(a.1),(a,4)}

e Queries return new relations without modifying context objects.
’r.domain,restricted({a}) \ returns {(a,1),(a,4)} with r untouched

Math Models: Example Test LASSONDE
test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]
do
create r.make from tuple_array (
<<["a", 11, ["b", 2], ["c", 31,
["a", 4], ["b", 5], ["c", 6],
[lldll, 1]’ [lleH’ 2], ["fll, 3]>>)
create ds.make_from array (<<"a">>)
—-— r 1s not changed by the query ‘domain_subtracted’
t := r.domain_subtracted (ds)
Result :=
t /~ r and not t.domain.has ("a") and r.domain.has ("a")
check Result end
-— r 1s changed by the command ‘do _subt ct’
r.domain_subtract (ds)
Result :=
t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
end

Case Study: A Birthday Book

LSSoNDE

A birthday book stores a collection of entries, where each entry
is a pair of a person’s name and their birthday.

No two entries stored in the book are allowed to have the same
name.

Each birthday is characterized by a month and a day.

A birthday book is first created to contain an empty collection of
entires.

Given a birthday book, we may:

o Inquire about the number of entries currently stored in the book

o Add a new entry by supplying its name and the associated birthday
o Remove the entry associated with a particular person
o]
]

Find the birthday of a particular person
Get a reminder list of names of people who share a given birthday

e

Birthday Book: Decisions

LSSoNDE

e Design Decision

Classes

Client Supplier vs. Inheritance
Mathematical Model?
Contracts

e Implementation Decision

o Two linear structures (e.g., arrays, lists) [O(n)]
o A balanced search tree (e.g., AVL tree) [O(log-n) 1]
o A hash table [O()]

e Implement an abstract function that maps implementation to
the math model.

O O O O

[e.g., REL or FUN]

Birthday Book: Design

ELg

ASSONDE

-
BIRTHDAY_BOOK

model: FUN[NAME, BIRTHDAY]
-- abstraction function

count: INTEGER
-- number of entries

put(n: NAME; d: BIRTHDAY)
ensure

-- infix symbol for override operator: @<+
remind(d: BIRTHDAY): ARRAY[NAME]
ensure
nothing_changed: model ~ (old model.deep_twin)
- infix symbol for range restriction: model @> (d)

invariant:
consistent_book_and_model_counts: count = model.count

‘model_operation: model ~ (old model.deep_twin).overriden_by ([n,d])

same_counts: Result.count = (model.range_restricted_by(d)).count
same_contents: ¥ name € (model.range_restricted_by(d)).domain: name € Result

model: FUN[NAME, ..]

BIRTHDAY

day: INTEGER

remind: ARRAY[NAME]

4. month: INTEGER

invariant
1 <month < 12
1 <day<31

item: STRING

_/

Birthday Book: Implementation

invariant
item[1] EA..Z

===,

LSSoNDE

BIRTHDAY_BOOK

model: FUN[NAME, BIRTHDAY]
-- abstraction function
do
- promote hashtable to function
ensure
same_counts: Result.count = implementation.count

end

put(n: NAME: d: BIRTHDAY)
do
- implement using hashtable
ensure

end

remind(d: BIRTHDAY): ARRAY[NAME]
do
— implement using hashtable
ensure
nothing_changed: model ~ (old model.deep_twin)
same_counts: Result.count = (model @> d).count

end
count: INTEGER -- number of names

feature {NONE}
implementation: HASH_TABLE[BIRTHDAY, NAME]

invariant:
consistent_book_and_model_counts: count = model.count

‘model_operation: model ~ (old model.deep_twin) @<+ [n.d]

same_contents: ¥/ name € (model @> d).domain: name € Result

consistent_book_and_imp_counts: count = implementation.count

same_contents: ¥ [name, date] € Result: [name, date] € implementation

‘model: FUN[NAME, .]

BIRTHDAY

day: INTEGER
month: INTEGER

remind: ARRAY[NAME]

g

>

invariant
1<month< 12
1<day<31

| item: STRING

J

>

invariant
item{1] € A..Z

Beyond this lecture . .. o T

e Familiarize yourself with the features of classes SEQ, REL, FUN,
and SET for the lab test.

e Exercise:

o Consider an alternative implementation using two linear structures
(e.g., here in Java).

o Implement the design of birthday book covered in lectures.

o Create another LINEAR BIRTHDAY BOOK class and modify the
implementation of abstraction function accordingly.
Do all contracts still pass?

Index (2) Lassonoe

[Math Review: Set Definitions and Membership|
[Math Review: Set Relations]
[Math Review: Set Operations|
Math Review: Power Sets
[Math Review: Set of Tuples|
[Math Models: Relations (1))
[Math Models: Relations (2)|
[Math Models: Relations (3.1)|
[Math Models: Relations (3.2)|
[Math Models: Relations (3.3)|
[Math Review: Functions (1)|
ath Review: Functions
[Math Review: Functions (3.1)]
ath Review: Functions (3.2

e

Index (1) :AssoNDE

[Motivating Problem: Complete Contracts|
[Motivating Problem: LIFO Stack (1)|
[Motivating Problem: LIFO Stack (2.1)|
[Motivating Problem: LIFO Stack (2.2)|
[Motivating Problem: LIFO Stack (2.3)|
[Motivating Problem: LIFO Stack (3))

[Math Models: Command vs Query]|
[Implementing an Abstraction Function (1)|
|[Abstracting ADTs as Math Models (1)|
[Implementing an Abstraction Function (2)|
|[Abstracting ADTs as Math Models (2)|
[Implementing an Abstraction Function (3)|
[Abstracting ADTs as Math Models (3)|
%ion: Abstracting ADTs as Math Models|

Index (3) Lassonoe

[Math Models: Command-Query Separation|

[Math Models: Example Test]|

|Case Study: A Birthday Book|

[Birthday Book: Decisions|

[Birthday Book: Design|

[Birthday Book: Implementation|

[Beyond this lecture . . .|

The State Design Pattern
Readings: OOSC2 Chapter 20

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

YORK

\
\

c|c
z|z
mim
D |0
wlwn
==
<lm

\wy

Motivating Problem

LASSONDE

ooooooooooooooooooo

Consider the reservation panel of an online booking system:

-- Enquiry on Flights --

Flight sought from: To:
Departure on or after:

Preferred airline (s):

On or before:

Special requirements:

AVAILABLE FLIGHTS: 1

FIt#AA 42 Dep 8:25 Arr 7:45 Thru: Chicago
Choose next action:

0 - Exit

1 - Help

2 - Further enquiry

3 - Reserve a seat

State Transition Diagram

Characterize interactive system as: 1) A set of states; and 2)
For each state, its list of applicable transitions (i.e., actions).
e.g., Above reservation system as a finite state machine :

ooooooooooooooooooo

3
P
Confirmation
3 ’
(3)

(4)
Seat Enquiry

Reservation

LASSONDE

ooooooooooooooooooo

Design Challenges

1. The state-transition graph may /arge and sophisticated.
A large number N of states has O(N?) transitions
2. The graph structure is subject to extensions/modifications.
e.g., To merge “(2) Flight Enquiry” and “(3) Seat Enquiry”:
Delete the state “(3) Seat Enquiry”.
Delete its 4 incoming/outgoing transitions.

e.g., Add a new state “Dietary Requirements”

3. A general solution is needed for such interactive systems .
e.g., taobao, |eBay, amazon, etc.

A First Attempt LASSONDE A Top-Down, Hierarchical Solution LASSONDE

oooooooooooooooooooooooooooooooooo

: : e | Separation of Concern |Declare the transition table as a
| 3-Seat_Enquiry.panel: |

feature the system, rather than its central control structure:

from
Display Seat Enquiry Panel transition (src: INTEGER; choice: INTEGER) :
until —-— Return state by taking tr ition ’“choice’ from ’src’ statg
2_Flight_Enquiry.pane not (wrong answer or wrong choice) require valid source_state: 1 < src < 6
Actions for La 2 do valid choice: 1 < choice < 3
Read user’s answer for current panel i .
3_Seat_Enquiry.panel: ! P ensure valid target_state: 1 < Result < 6
o o Read user’s choice for next step
if wrong answer or wrong choice then e We may Implement transitionviaa?2-D array.
Output error messages choice
end CHOICE] - /\ 1 2 3
end SRC STATE 1 6 5 2
Process user’s answer T (Initial) 61512 2 1 3
case in 2 (Flight Enquiry) -l1]3 5 2 2
2: goto 2. Flight_ Enquiry_panel 3 (Seat Enquiry) -1 214 state
3: goto 4_Reservation_panel 4 (Reservation) - 1315 4 3 5
5 (Confirmation) -4 |1 > 4 1
6 (Final) - | =1 - 6

7 of 29)

end
— e

A First Attempt: Good Design? LASSONDE Hierarchical Solution: Good Design? LASSONDE

oooooooooooooooooooooooooooooooooo

¢ Runtime execution ~ a “bowl of spaghetti”.
= The system’s behaviour is hard to predict, trace, and debug.

« Transitions hardwired as system’s central control structure. * This is a more general solution.
= The system is vulnerable to changes/additions of -+ State transitions are separated from the system’s central
states/transitions. control structure.

« All labelled blocks are largely similar in their code structures. = Reusable for another interactive system by making
= This design “smells” due to duplicates/repetitions! changes only to the transition feature.

« The branching structure of the design exactly corresponds to * How does the ceniral control structure look like in this design?

that of the specific transition graph.

= The design is application-specific and not reusable for
other interactive systems.

8 of 29

Hierarchical Solution:

ESONDE
Top-Down Functional Decomposition
Level 3 execute
session

Level 2

o o execute ic fi

initial transition state is_final
Level 1

display read correct message process

Modules of execute_session and execute_state are general
enough on their control structures. = reusable

e

Hierarchical Solution: System Control

LASSONDE

ooooooooooooooooo

All interactive sessions share the following control pattern:

o Start with some initial state.

o Repeatedly make state transitions (based on choices read from
the user) until the state is final (i.e., the user wants to exit).

execute_session

-— Execute a full 1 re
local
current_state , choice: INTEGER
do
from
current_state := initial
until
is_final (current_state)
do
choice := execute_state (current_state)
current_state := transition (current_state, choice)
end
end

E———

Hierarchical Solution: State Handling (1)

LASSONDE

ooooooooooooooooo

The following control pattern handles all states:

local

end

valid _answer :=
if not valid answer then message(current_state , answer)

execute_state (current_state

answer: ANSWER; valid_answer: BOOLEAN; choice: INTEGER
do
from
until
valid _answer
do
display(current_state)
answer := read answer(current_state)
choice := read choice(current_state)

process(current_state , answer)
Result := choice

correct (current_state , answer)

: INTEGER) : INTEGER

2t th t state

end
.,

Hierarchical Solution: State Handling (2)

LASSONDE

ooooooooooooooooo

FEATURE CALL

FUNCTIONALITY

display(s)

Display screen outputs associated with state s

read_answer(S)

Read user’s input for answers associated with state s

read _choice(S)

Read user’s input for exit choice associated with state s

correct(s, answer)

Is the user’s answer valid w.r.t. state s?

process(s, answer)

Given that user’s answer is valid w.r.t. state s,
process it accordingly.

message(s, answer)

Given that user’s answer is not valid w.r.t. state s,
display an error message accordingly.

Q: How similar are the code structures of the above
state-dependant commands or queries?

12 of 29|

Hierarchical Solution: State Handling (3)

A: Actions of all such state-dependant features must eprICItIy
discriminate on the input state argument.

display(current_state: INTEGER)
require
valid _state: 1 < current_state < 6
do
if current_state = 1 then

NDieplay Tnitial Panel
—— Display Initial Panel

elseif current_state =

Display Flight Enquiry Panel
else
Display

end
end

o Such design smells !
- Same list of conditional repeats for all state-dependant features.
o Such design violates the Single Choice Principle .

e.g., To add/delete a state = Add/delete a branch in all such features.

Hierarchical Solution: Visible Architecture

LASSONDE

ooooooooooooooooo

Level 3 execute_
session
Level 2
P iy execute_ . "
initial transition state is_final
Level 1 %
display read correct message process

14 of 29|

Hierarchical Solution: Pervasive States

Level 3 execute
session

Level 2 m
sy L execute . .
initial transition state is_final

state
Level 1 St siate state state
display read correct message process

Too much data transmission: current_state is passed
o From execute_session (Level 3) 1o execute_state (Level 2)

o From execute_state (Level 2) to all features at Level 1

LASSONDE

ooooooooooooooooo

Law of Inversion

If your routines exchange too many data, then
put your routines in your data.
e.g.,
execute_state (Level 2) and all features at Level 1:
e Pass around (as inputs) the notion of current _state
e Build upon (via discriminations) the notion of current state

(s: INTEGER)
(s: INTEGER)
read answer (s:INTEGER)
read_choice (s:INTEGER)
(
(

execute_state
display

s: INTEGER ; answer: ANSWER)

s: INTEGER ; answer: ANSWER)
message (s: INTEGER ; answer: ANSWER)

= Modularize the notion of state as class STATE.

= Encapsulate state-related information via a STATE interface.

= Notion of current _state becomes implicit: the Current class.

correct

process

Grouping by Data Abstractions LASSONDE The STATE ADT LASSONDE
deferred class STATE
read execute
, local
Level 3 execute APPLICATION cer | | goodt: moomEA
session deferred end ofr o
: ANSWER on
o e ey until
. e good
h : INTEGER
Level 2 e Loop
~- Choice for next ster display
] o .o display . A
initial transition gl)‘;igute_ is_final __ Display current state —- set a d
deferred end ;iij .= correct
STATE correct: BOOLEAN - :
deferred end if not good then
Level 1 process enfr;essage
require correct
) end
display read correct message process deferred end process
message end
require not correct end
deferred end

17 of 29| 19 of 2

- == 00000

Architecture of the State Pattern LASSONDE The Template Design Pattern LASSONDE
executet Consider the following fragment of Eiffel code:
+ read*
— display 1 |s: STATE
process* 2 | create {SEAT ENQUIRY} s.make
message* 3 | s.execute
state_implementations 4 |create {CONFIRMATION} s.make
:'____________ _____________I 5 s.execute
! |
I
| i L2 and L4: the same version of effective feature execute
| ; ! (from the deferred class STATE) is called. [template]
[}
! i L2: specific version of effective features display, process,
| ! etc., (from the effective descendant class SEAT ENQUIRY) is
| . .
! | called. [template instantiated for SEAT ENQUIRY]
i ! L4: specific version of effective features display, process,
! | etc., (from the effective descendant class CONFIRMATION) is
[}
| ! called. [template instantiated for CONFIRMATION]

APPLICATION Class: Array of STATE APPLICATION Class (2)

(00L OF ENGINEERING

class APPLICATION

, (Chodee feature {NONE} ple 1tion of Transition Graph
6 5 Py transition: ARRAYZ[INTEGER]
1 3 states: ARRAY|[STATE]
2 2 feature
3 s put_state(s: STATE; index: INTEGER)
. a 1 require 1 < index < number_of_states
app TR p do stajﬁe;.forc‘e(s, index) end
P o AR RAYZIIRAECER] , 2 ; p A . ChOOSe._lnltlal.(lndGX: INTEGER)
states: ARRAY[STATE] app:states zzq‘;;jiiilg~in§li};ei ergber_of_states

put_transition(tar, src, choice: INTEGER)
require
1 £ src £ number_of_states
1 < tar < number_of_ states
INITIAL EF:"IQ%'::T, - FINAL 1 < choice < number._of_choices

do
transition.put(tar, src, choice)

end
end
21 0f 29 _ _

APPLICATION Class (1) LASSONDE Example Test: Non-Interactive Session LASSONDE

SCHOOL OF ENGINEERING.

class APPLICATION create make test_application: BOOLEAN
feature {NONE} —— on of Transition G >h local
transition: ARRAYZ[INTEGER] app: APPLICATION ; current_state: STATE ; index: INTEGER
—-— State tr itions: t it ate, choi] do
states: ARRAY[STATE] create app.make (6, 3)
—-— State for each index, constrained by size of ‘tr: i app.put_state (create {INITIAL}.make, 1)
feature -— Similarly for other 5 states.
initial: INTEGER app.choose_initial (1)
number._of states: INTEGER -—- T it to FINAL [1 s 1
number._of_choices: INTEGER app.put_transition
make (n, m: INTEGER) —= ilarly for other 10 transitions.
do number_of_states := n
number._of_choices := m index := app.initial
create transition.make filled(0, n, m) current_state := app.states [index]
create states.make_empty Result := attached {INITIAL} current_state
end check Result en
invariant -— Say 1 r’s choice is 3: it £
| transition.height = number_of.states index := app.transition.item (index, 3)
L. § X current_state := app.states [index]
enéransmlon‘wmth = pumber-of.choices Result :- attached {FLIGHT_ENQUIRY} current_state
end

|
APPLICATION Class (3): Interactive Session

LASSONDE

loc

class APPLICATION

feature {NONE} - Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

feature
execute_session

al

current_state: STATE
index: INTEGER

Top-Down, Hierarchical vs. OO Solutions |issonc:

¢ In the second (top-down, hierarchy) solution, it is required for
every state-related feature to explicitly and manually
discriminate on the argument value, via a a list of conditionals.

e.g., Given ’ display (current_state: INTEGER) |, the
calls | display(1)| and | display(2) | behave differently.

do ¢ The third (OO) solution, called the State Pattern, makes such

from conditional implicit and automatic, by making STATE as a
index := initial

until deferred class (whose descendants represent all types of

lol:;fl”al (1ndex) states), and by delegating such conditional actions to
current_state := states[index] -- polymorphism dynamlC blndlng .
current_state.execute -- dynamic binding . .
index := transition.item (index, current_state.choice) e'g" leen s: STATE " beha\/lour Of the Ca” S.dlSpIay

end depends on the dynamic type of s (such as INITIAL vs.

o end FLIGHT _ENQUIRY).

Building an Application

LSSoNDE

o Create instances of STATE.

sl: STATE
create {INITIAL} sl.make

o |

nitialize an APPLICATION.

’create app.make (number_of_states, number_of_choices)

o Perform polymorphic assignments on app.states.

’ app.put_state(initial, 1)

o Choose an initial state.

app.choose_initial(l)

o Build the transition table.

’app.put_transition(& 1, 1)

o Run the application.

app.execute_session
[26 of 28]

Index (1) fASSONDE
[Motivating Problem|

[State Transition Diagram|

[Design Challenges|

|A First Attempt|

|A First Attempt: Good Design?|

|A Top-Down, Hierarchical Solution|

Hierarchical Solution: Good Design?
Hierarchical Solution:
[Top-Down Functional Decomposition|

[Hierarchical Solution: System Control|

[Hierarchical Solution: State Handling (1)|
[Hierarchical Solution: State Handling (2)|
[Hierarchical Solution: State Handling (3)|

%‘ rchical Solution: Visible Architecture

|
Index (2) Lassonoe
Hierarchical Solution: Pervasive States
[Caw of Inversion]
|[Grouping by Data Abstractions]|
Architecture of the State Pattern
[The STATE ADT]

[The Template Design Pattern|
[APPLICATION Class: Array of STATE]|

[APPLICATION Class (1),
[APPLICATION Class (2)]

[Example Test: Non-Interactive Session|
[APPLICATION Class (3): Interactive Session|
[Building an Application|
own, Hierarchical vs. OO Solutions]|

129 of 29

Subcontracting
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

Aspects of Inheritance

LSSoNDE

e Code Reuse

¢ Substitutability
o Polymorphism and Dynamic Binding
[compile-time type checks]
o Sub-contracting
[runtime behaviour checks]

Background of Logic (1)

LSSoNDE

Given preconditions P; and P», we say that

’ P> requires less than P; ‘if
Ps is less strict on (thus allowing more) inputs than P; does.

{x[P10 }e{x|Pa(x) }

More concisely:
P1 = P2

e.g., Forcommand withdraw (amount: amount),
| P> : amount > 0 | requires less than | Py : amount > 0|

What is the precondition that requires the least?

[true]

Background of Logic (2) LASSONDE

ooooooooooooooooo

Given postconditions or invariants Qq and Q», we say that

’ Q> ensures more than Qq ‘if
Q» is stricter on (thus allowing less) outputs than Qy does.

{x[Q(x) pe{x[Qi(x)}

More concisely:
Qz = Q1

e.g., Forquery g (i: INTEGER): BOOLEAN,
’ Qo :Result = (i>0)A(imod2=0) ‘ ensures more than

|Qy:Result =(i>0)v(imod2=0)]
What is the postcondition that ensures the most? [false]

4 of 16]

Inheritance and Contracts (1) LASSONDE

e The fact that we allow polymorphism :

local my_phone: SMART PHONE
i_phone: IPHONE_11_PRO
samsung_phone: GALAXY S10_PLUS
htc_phone: HUAWEI_P30_PRO
do my_phone := i_phone
my_phone samsung_phone
my_phone := htc_phone

suggests that these instances may substitute for each other.
Intuitively, when expecting SMART PHONE, we can substitute it
by instances of any of its descendant classes.
- Descendants accumulate code from its ancestors and can thus
meet expectations on their ancestors.

Such substitutability can be reflected on contracts, where a

substitutable instance will:
o Not require more from clients for using the services.

o Not ensure less to clients for using the services.
of 16}

Inheritance and Contracts (2.1) LASSONDE

ooooooooooooooooo

(PHONE USER

) (SMART PHONE]

tny _phone: SMART PHONE

my_phone
get_reminders: LIST[EVENT]
require ??
) ensure ??

Inheritance and Contracts (2.2) LASSONDE

[1PHONE 65 PLUS)

get_reminders: LIST[EVENT]
require else ??
ensure then ??

6 of 16]

ooooooooooooooooo

class SMART_PHONE
get_reminders: LIST[EVENT]

end

require

a: battery_level > 0.1 10%
ensure

B: Ve:Result | e happens today

class IPHONE_11_PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]

end

require else

v: battery level > 0.15 —— 15%
ensure then

0: Ve:Result | e happens today or tomorrow

Contracts in descendant class rrrone_11_pro are not suitable.
(battery _level > 0.1 = battery_level > 0.15) is not a tautology.

e.g., A client able to get reminders on a smart_pHone, when battery
level is 12%, will fail to do so on an rreoNE_11_PRO.

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.3)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_11_PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.15 —— 15%
ensure then
0: Ve:Result | e happens today or tomorrow

end

Contracts in descendant class rrrone_11_pro are not suitable.
(e happens ty. or tw.)= (e happens ty.) nottautology.
e.g., A client receiving today’s reminders from smarT_prHoONE are

mshocked by tomorrow-only reminders from rpzonz_11_PRo.

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.4)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_11_PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.05 —- 5%
ensure then
0: Ve:Result | e happens today between 9am and 5pm

end

Contracts in descendant class rrrone_11_pro are suitable.

o Require the same or less o=
Clients satisfying the precondition for smarr_pronE are not shocked
by not being to use the same feature for rpronE_11_PRO.

Inheritance and Contracts (2.5)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_11_PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.05 —- 5%
ensure then
0: Ve:Result | e happens today between 9am and 5pm
end

Contracts in descendant class rrronz_11_pro are suitable.
o Ensure the same or more =7
Clients benefiting from smarr_pHONE are not shocked by failing to
ain at least those benefits from same feature in rpronE_11_PRO.

Contract Redeclaration Rule (1)

¢ |In the context of some feature in a descendant class:

o Use to redeclare its precondition.
o Use to redeclare its precondition.

e The resulting runtime assertions checks are:

o ’original_pre or else new_pre‘

= Clients able to satisfy original _pre will not be shocked.
.- true v new _pre = true
A precondition violation will not occur as long as clients are able
to satisfy what is required from the ancestor classes.
o ’original_post and then new_post‘
= Failing to gain original_post will be reported as an issue.
-+ false A new _post = false
A postcondition violation occurs (as expected) if clients do not
receive at least those benefits promised from the ancestor classes.

11 of 16|

Contract Redeclaration Rule (2.1) LASSONDE
1 FOO class BAR
¢ ;ss inherit FOO redefine f end
do f require else new_pre
end do ...
end end
end

e Unspecified original_pre is as if declaring

-+ true v new_pre = true

class BAR
class FOO inherit FOO redefine f end
£ £
do ... do ...
end ensure then new_post
end end
end

* Unspecified original_post is as if declaring

-+ true n new_post = new_post

Contract Redeclaration Rule (2.2) LASSONDE
class FOO class BAR
f require inherit FOO redefine f end
original pre f
do ... do ...
end end
end end

* Unspecified new_pre is as if declaring [require eise false|
-+ original_pre v false = original_pre

1
€ ;ss Foo class BAR
do inherit FOO redefine f end
. £
ensure
original_post do
- end
end end
end

* Unspecified new_post is as if declaring [ensure then true|
-+ original_post A true = original_post
[13 of 16]

Invariant Accumulation IAesoNb:

ooooooooooooooooo

e Every class inherits invariants from all its ancestor classes.
¢ Since invariants are like postconditions of all features, they are
“conjoined” to be checked at runtime.

class POLYGON
vertices: ARRAY[POINT]
invariant
vertices.count > 3
end

class RECTANGLE
inherit POLYGON
invariant

vertices.count = 4
end

e What is checked on a RECTANGLE instance at runtime:
(vertices.count > 3) A (vertices.count = 4) = (vertices.count = 4)
e Can PENTAGON be a descendant class of RECTANGLE?

(vertices.count = 5) A (vertices.count = 4) = false

Inheritance and Contracts (3) LASSONDE
class BAR
c{?ss FOO inherit FOO redefine f end
. f
require i
original pre re?i;::r:lse
ensu?e. ensure then
original post new_post
end .
ond end
end

(Static) Design Time :

(o]

original_pre = new,pre‘ should be proved as a tautology

o

new_posi = original,post‘ should be proved as a tautology

(Dynamic) Runtime :
original_pre v new,pre‘ is checked

o

o

original_post A new,post‘ is checked

15 of 16|

Index (1) Lassonoe
|[Aspects of Inheritance]
[Background of Logic (1)|
[Background of Logic (2)|
[Inheritance and Contracts (1)|
[Inheritance and Contracts (2.1)|
[Inheritance and Contracts (2.2)|
[Inheritance and Contracts (2.3)|
[Inheritance and Contracts (2.4)|
[Inheritance and Contracts (2.5)|
[Contract Redeclaration Rule (1)|
[Contract Redeclaration Rule (2.1)|
[Contract Redeclaration Rule (2.2)|
Invariant Accumulation
%itance and Contracts (3)|

Observer Design Pattern
Event-Driven Design

EECS3311 A: Software Design

' Fall 2019

£ CHEN-WEI WANG
Y

LSSoNDE

Motivating Problem

NNNNNNN

e A weather station maintains weather data such as temperature,
humidity, and pressure.

¢ Various kinds of applications on these weather data should
regularly update their displays:
o Condition: temperature in celsius and humidity in percentages.
o Forecast: if expecting for rainy weather due to reduced pressure.
o Statistics: minimum/maximum/average measures of temperature.

e

First Design: Weather Station

LASSONDE
SEHOOL OF ENGINEERING
r
FORECAST+
feature
display +
-- Retrieve and display the latest data.
current_pressure: REAL
weather_data
_last_pressure: REAL)

(WEATHER DATA+)

temperature: REAL
humidity: REAL
pressure: REAL
correct_limits (t, p, h): BOOLEAN
-- Are current data within legal limits?
invariant
correct_limits (temperature, humidity, pressuure)

([CURRENT_CONDITIONS+)

feature
display +
- Retrieve and display the latest data.
temperature: REAL
_ humidity: REAL)

weather_data

(STATISTICS+

weather_data
feature
display +
- Retrieve and display the latest data.
_remperanure: REAL

J

Whenever the display feature is called, retrieve the current
values of temperature, humidity, and/or pressure via the
weather_data reference.

Implementing the First Design (1) LASSONDE Implementing the First Design (2.2) LASSONDE

SCHOOL OF ENGINEERING.

\wy
\wy

class WEATHER _DATA create make
feature - — class CURRENT _CONDITIONS create make

ites

feature —— A

temperature: REAL femperature: REAL
humidity: REAL € }?e‘ ure:
humidity: REAL
pressure: REAL
weather_data: WEATHER DATA
feature - ies feature -
correct_limits(t,p,h: REAL): BOOLEAN e
make (wd: WEATHER_DATA)
ensure

Result implies -36 <=t and t <= 60 ensure ool

Result implies 50 <= p and p <= 110 update
Result implies 0.8 <= h and h <= 100 do temperature := weather_data.temperature
feature C humidity := weather_data.humidity
make (t, p, h: REAL) gnd
require display
correct_limits (temperature, pressure, humidity) do update
ensure io.put_string("Current Conditions: ")
temperature = t and pressure = p and humidity = h io.put_real (temperature) ; io.put_string (" degrees C and ")
invariant io.put_real (humidity) ; io.put_string (" percent humidity%sN"
end
correct_limits (temperature, pressure, humidity) end

end

——— e

Implementing the First Design (2.1) LASSONDE Implementing the First Design (2.3) LASSONDE

CHOOL OF ENGINEERING.

class STATISTICS create make
feature Attributes
weather _data: WEATHER_DATA

class FORECAST create make

feature - Attr
current_pressure: REAL
last_pressure: REAL

es

weather_data: WEATHER DATA current_temp: REAL
feature - C¢ s max, min, sum_so_far: REAL
make (wd: WEATHER_DATA) num_readings: INTEGER
ensure weather data = wd feature - 1s
update make (wd: WEATHER_DATA)
do last_pressure := current_pressure ensure weather_data = wd
current_pressure := weather_data.pressure update
end do current_temp weather_data.temperature
display - nax if necess
do update end
if current_pressure > last_pressure then display
do update

print ("Improving weather on the way!%N")
print ("Avg/Max/Min temperature = ")

elseif current_pressure = last_pressure then
print ("More of the same%N") print(sum_so_far / num_readings + "/" + max + "/" min + "%N")
else print("Watch out for cooler, rainy weather$N") end end
end end

end

Implementing the First Design (3)

LASSONDE

ooooooooooooooooo

©CoO~NOOT~WN =

class WEATHER_STATION create make

feature —— Attributes
cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
wd: WEATHER DATA

feature - Co is
make

do create wd.make (9, 75, 25)
create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd

wd.set_measurements (15, 60, 30.4)
cc.display ; fd.display ; sd.display
cc.display ; fd.display ; sd.display

wd.set_measurements (11, 90, 20)
cc.display ; fd.display ; sd.display

First Design: Good Design?

LASSONDE

ooooooooooooooooo

Each application (CURRENT_CONDITION, FORECAST,
STATISTICS) cannot know when the weather data change.

= All applications have to periodically initiate updates in order
to keep the display results up to date.

-~ Each inquiry of current weather data values is a remote call.
.. Waste of computing resources (e.g., network bandwidth)
when there are actually no changes on the weather data.

To avoid such overhead, it is better to let:

o Each application is subscribed/attached/registered to the
weather data.
o The weather station publish/notify new changes.

= Updates on the application side occur only when necessary .

Observer Pattern: Architecture

LASSONDE

ooooooooooooooooo

Observer Pattern: Weather Station

(SUBJECT+

feature - { NONE }
s: LIST(OBSERVER]
{ OBSERVER }

OBSERVER*

feature - { SUBJECT }
u

attach, detach

OLEAN *
te with

e Observer (publish-subscribe) pattern: one-to-many relation.
o Observers (subscribers) are attached to a subject (publisher).
o The subject notify its attached observers about changes.
e Some interchangeable vocabulary:
o subscribe » attach ~ register
o unsubscribe ~ detach ~ unregister
o publish » notify
o handle ~ update

LASSONDE
ooooooooooooooooooo
subjects observers
pmEEEEEEEEEEEE - -~ aemmEmEEESEEsESsEsEEEEEEEEs- ~
’ ~ ’ ~
’ N , 4 N

1 \ \
C(SUBJECT+ , ; (OBSERVER*) s
1 1 1 1
1 feature -- { NONE } 1 1 feature -- { SUBJECT } 1
1 observers: LISTIOBSERVER] f ! update * 1
1 feature -- { OBSERVER } ' attach. detach : - React to a update. 1
1 notify + . . 1
1 "f)Noufy an update to observers 1 ! feature -- { SUBJECT } !
1 ensure . 1 up_to_date_with_subject: BOOLEAN * |
1 Yo : observers : o.update_to_date_with_subject 1 ! --Is current observer up to dmfy with 1
1 1 1 -- the latest state of the subject? 1
1 1 ! 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 ! 1

1 1
' [WEATHER DATA+ | ! ,
1 1 ! 1
' temperature: REAL 1 '
. humidity: REAL ! ' .
. pressure: REAL ! ' .
. correct_limits (t, p, h): BOOLEAN ! ' .
. — Are current data within legal limits? ! ' X

invariant ! \
\ . 1 1
N correct_limits (temperature, humidity, pressuure) ,
N v’
B 2 V. -
t wd
11 of 35|

I —
—

Implementing the Observer Pattern (1.1) o Implementing the Observer Pattern (2.1) e

HOOL OF ENGINEERING.

class SUBJECT create make
feature —— A es deferred class
observers LIST[OBSERVER] OBSERVER ‘
feature —— To be effe d by a descendal

up_to_ date w1th subject BOOLEAN

feature —— C
make L
do create {LINKED_ LIST|[OBSERVER]} observers.make 4
deferred
ensure no._observers: observers.count = 0 end
. g e N end
feature —— Invoked by an

hse

attach (o: OBSERVER) to 1€ obse dat
require not_yet_attached: not observers.has (o) upaa e“ L o,
ensure is attached: observers.has (o) end def - a S
detach (o: OBSERVER) ——- Add ‘o’ to the observers eterre
. ensure
require currently attached: observers.has (o) ro dat th baect: to dat h bect
ensure is_ attached not observers has (o) end up_to_date_with_subject: up_to_date_with _subjec
end
feature -) y a d
notify —— N 2bo the update en

do across observers as cursor loop cursor.item.update end

ensure all views updated: Each effective descendant class of OBSERVER should:
across observers as o all o.item.up_to_date_with_subject end o Define what weather data are required to be up-to-date.

d
enden o Define how to update the required weather data.
I ——,

|
—

Implementing the Observer Pattern (1.2) o Implementing the Observer Pattern (2.2) e

HOOL OF ENGINEERING.

c-:lass-WEATHERiDATA . class FORECAST
inherit SUBJECT rename make as make_subject end inherit OBSERVER
create make)
§) feature - C s
feature Lave ¢ to observe make (a_weather_data: WEATHER DATA)
tem}‘)el‘rature: REAL do weather _data := a_weather_data
humidity: REAL
pressure: REAL weather_data.attach (Current)
correct_limits(t,p,h: REAL): BOOLEAN ensure weather_data = a_weather_data
feature - ion weather_data.observers.has (Current)
make (t, end
do feature Queries
up_to_date_with _subject: BOOLEAN

make_subject ini
ensure then

set_measurements (t, p, h)
end Result = current_pressure = weather_data.pressure
feature Called by wea update
set_measurements(t, p, h: REAL) do —— S as lst desi o r on demand
require correct_limits(t,p,h) end
invariant display
correct_limits (temperature, pressure, humidity) do No 1 u in 1st de
end end
end
S|

. — E—

Implementing the Observer Pattern (2.3)

ESONDE
class CURRENT_CONDITIONS
inherit OBSERVER
feature —— C s
make (a_weather_data: WEATHER DATA)
do weather _data := a_weather_data
weather_data.attach (Current)
ensure weather_ data = a_weather data
weather_data.observers.has (Current)
end
feature Queries
up_to_date_with _subject: BOOLEAN
ensure then Result = temperature = weather_data.temperature and
humidity = weather_data.humidity
update
do —— S 1st on demand
end
display
do No need to t t
end
end

e

LASSONDE

ooooooooooooooooo

Implementing the Observer Pattern (2.4)

class STATISTICS
inherit OBSERVER

feature - C s
make (a_weather_data: WEATHER DATA)
do weather_data := a_weather_data

weather_data.attach (Current)
ensure weather_data = a_weather_data
weather_data.observers.has (Current)
end
feature
up_to_date_with _subject: BOOLEAN
ensure then
Result = current_temperature = weather_data.temperature
update
do —— S
end
display
do No need to
end
end

izt 38t

Queries

on demand

Implementing the Observer Pattern (3)

1 |class WEATHER _STATION create make
2 | feature —— Attributes
3 cc: CURRENT _CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 | feature —— ¢ is
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd
9
10 wd.set_measurements (15, 60, 30.4)
11 wd.notify |
12 cc.display ; fd.display ; sd.display
13 cc.display ; fd.display ; sd.display
14
15 wd.set_measurements (11, 90, 20)
16 ‘ wd.notify
17 cc.display ; fd.display ; sd.display
18 end
19 |end
L13: cc, £d, sd make use of “cached” data values.

18 of 35|

Observer Pattern: Limitation? (1)

e The observer design pattern is a reasonable solution to building
a one-to-many relationship: one subject (publisher) and
multiple observers (subscribers).

e But what if a many-to-many relationship is required for the
application under development?

o Multiple weather data are maintained by weather stations.

o Each application observes all these weather data.

o But, each application still stores the /atest measure only.
e.g., the statistics app stores one copy of temperature

o Whenever some weather station updates the temperature of its
associated weather data, all relevant subscribed applications (i.e.,
current conditions, statistics) should update their temperatures.

* How can the observer pattern solve this general problem?
o Each weather data maintains a list of subscribed applications.
o Each application is subscribed to multiple weather data.

Observer Pattern: Limitation? (2) LASSONDE

What happens at runtime when building a many-to-many
relationship using the observer pattern?

‘ wdi: WEATHER_DATA application; \

‘ wda: WEATHER_DATA

applications \

| wdm-—1: WEATHER_DATA

‘ wdm: WEATHER_DATA application,, \

. : . " .
Gra:h complexity, with m subjects and n observers? [O(m-n)]

Event-Driven Design (1) LASSONDE

ooooooooooooooooo

Here is what happens at runtime when building a many-to-many

relationship using the event-driven design.

application,—q
application,,

wdi: WEATHER_DATA

wd2: WEATHER_DATA
wdn_1: WEATHER_DATA

wdn: WEATHER_DATA

publish subscribe

change_on_temperature: EVENT

Graph complexity, with m subjects and n observers? [O(m+n)]
Additional cost by adding a new subject? [O(1)]
Additional cost by adding a new observer? [O(1)]
Additional cost by adding a new event type? [O(m+ n)]

21 of 35|

Event-Driven Design (2) LASSONDE

ooooooooooooooooo

In an event-driven design :

e Each variable being observed (e.g., temperature,
humidity, pressure) is called a monitored variable.

e.g., A nuclear power plant (i.e., the subject) has its
temperature and pressure being monitored by a shutdown
system (i.e., an observer): as soon as values of these
monitored variables exceed the normal threshold, the SDS will
be notified and react by shutting down the plant.

e Each monitored variable is declared as an event :
o An observer is attached/subscribed to the relevant events.

e CURRENT_CONDITION attached to events for temperature, humidity.
e FORECAST only subscribed to the event for pressure.
e STATISTICS only subscribed to the event for temperature.

o A subject notifies/publishes changes to the relevant events.

e

LASSONDE

ooooooooooooooooo

Event-Driven Design: Implementation

¢ Requirements for implementing an event-driven design are:
1. When an observer object is subscribed to an event, it attaches:
1.1 The reference/pointer to an update operation
Such reference/pointer is used for executions.
1.2 ltself (i.e., the context object for invoking the update operation)
2. For the subject object to publish an update to the event, it:

2.1 lterates through all its observers (or listeners)
2.2 Uses the operation reference/pointer (attached earlier) to update the
corresponding observer.

¢ Both requirements can be satisfied by Eiffel and Java.

* We will compare how an event-driven design for the weather
station problems is implemented in Eiffel and Java.

= It's much more convenient to do such design in Eiffel.

Event-Driven Design in Java (1)

©CoO~NOO O hWN =

:
<

:
<

public class Event {
Hashtable<Object, MethodHandle> listenersActions;
Event () { listenersActions = new Hashtable<>(); }
void subscribe (Object listener, MethodHandle action) {
listenersActions.put(listener , action);
}
void publish(Object arg) {
for (Object listener : listenersActions.keySet()) {
MethodHandle action = listenersActions.get(listener);
try {
action .invokeWithArguments(listener , arg);
} catch (Throwable e) { }

}

e L5: Both the delayed action reference and its context object (or call
target) 1istener are stored into the table.

e L11: Aninvocation is made from retrieved 1istener and action.

Event-Driven Design in Java (2)

0 N O WN =

public class WeatherData {
private double temperature;
private double pressure;
private double humidity;
public WeatherData(double t, double p, double h) {
setMeasurements(t, h, p);

}

public static Event changeOnTemperature = new Event();
‘ public static Event changeOnHumidity = new Event();
public static Event changeOnPressure = new Event();

public void setMeasurements(double t, double h, double p) {
temperature = t;
humidity = h;
pressure = p;

‘ changeOnTemperature .publish(temperature);

‘ changeOnHumidity .publish(humidity) ;

changeOnPressure .publish(pressure);

Event-Driven Design in Java (3)

1 |public class CurrentConditions {

2 private double temperature; private double humidity;

3 public void updateTemperature(double t) { temperature = t; }
4 public void updateHumidity(double h) { humidity = h; }
5 public CurrentConditions() {

6 MethodHandles.Lookup lookup = MethodHandles.lookup();
7 try {

8 MethodHandle ut = lookup.findVirtual/(

9 this.getClass (), "updateTemperature",

10 MethodType.methodType (void.class, double.class));
11 WeatherData.changeOnTemperature. subscribe (this, ut);
12 MethodHandle uh = lookup.findVirtual (

13 this.getClass(), "updateHumidity",

14 MethodType.methodType (void.class, double.class));
15 WeatherData.changeOnHumidity. subscribe (this, uh);

16 } catch (Exception e) { e.printStackTrace(); }

17 }

18 public void display() {

19 System.out.println("Temperature: " + temperature);
20 System.out.println("Humidity: " + humidity); } }

Event-Driven Design in Java (4) LASSONDE

1 |public class WeatherStation {
2 public static void main(String[] args) {
3 WeatherData wd = new WeatherData(9, 75, 25);
4 CurrentConditions cc = new CurrentConditions();
5 System.out.println("=======");
6 wd.setMeasurements (15, 60, 30.4);
7 cc.display();
8 System.out.println("=======");
9 wd.setMeasurements (11, 90, 20);
10 cc.display();
11 b}

L4 invokes

WeatherData.changeOnTemperature. subscribe (
cc, ‘‘updateTemperature handle’’)
L6 invokes
WeatherData.changeOnTemperature.publish(15)
which in turn invokes
‘‘updateTemperature handle’’ .invokeWithArguments (cc, 15)

27 of 35|

g\

Event-Driven Design in Eiffel (1)

E:

HooL

SSCnDE

O©oOoO~NOO~WN =

:
<

:
<

class EVENT [ARGUMENTS -> TUPLE]
create make
feature - Initializa on
actions: LINKED_LIST [PROCEDURE [ARGUMENTS]]
make do create actions.make end
feature
subscribe (an_action: PROCEDURE [ARGUMENTS])
require action_not_already subscribed: not actions.has(an_action
do actions.extend (an_action)
ensure action_subscribed: action.has(an_action) end
publish (args: ARGUMENTS)
do from actions.start until actions.after
loop actions.item.call (args) ; actions.forth end
end
end

® L1 constrains the generic parameter ARGUMENTS: any class that instantiates
ARGUMENTS must be a descendant of TUPLE.

® L4: The type PROCEDURE encapsulates both the context object and the
reference/pointer to some update operation.

Event-Driven Design in Eiffel (2)

0 N O WN =

class WEATHER DATA
create make

feature - Measure ts
temperature: REAL ; humidity: REAL ; pressure: REAL
correct_limits(t,p, h: REAL): BOOLEAN do ... end
make (t, p, h: REAL) do ... end

feature - Event for data changes

change_on_-temperature : EVENT[TUPLE [REAL] Jonce create Result end
EVENT[TUPLE [REAL] Jonce create Result end

EVENT|[TUPLE [REAL] Jonce create Result end

change_on_humidity :

change_on_pressure
feature - Cc
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)
do temperature := t ; pressure := p ; humidity := h
change_on_temperature .publish ([t])
)

1d

change_on_humidity .publish ([p]

change_on_-pressure .publish ([h])
end
invariant correct_limits(temperature, pressure, humidity) end

Event-Driven Design in Eiffel (3)

1 class CURRENT_CONDITIONS

2 | create make

3 | feature - Initialization

4 make (wd: WEATHER_DATA)

5 do

6 wd.change_on_temperature.subscribe (agent update_ temperature)
7 wd.change_on_humidity.subscribe (agent update humidity)
8 end

9 | feature

10 temperature: REAL

11 humidity: REAL

12 update_temperature (t: REAL) do temperature := t end

13 update_humidity (h: REAL) do humidity := h end

14 display do ... end

15 | end

o retrieves the pointer to cmd and its context object.

° L6~ ’ ... (agent Current.update,temperature)‘

e Contrast L6 with L8—-11 in Java class CurrentConditions.

Event-Driven Design in Eiffel (4)

1 |class WEATHER _STATION create make
2 | feature
3 cc: CURRENT_CONDITIONS
4 make
5 do create wd.make (9, 75, 25)
6 create cc.make (wd)
7 wd.set_measurements (15, 60, 30.4)
8 cc.display
9 wd.set_measurements (11, 90, 20)
10 cc.display
11 end
12 | end
L6 invokes

wd.change_on_temperature. subscribe (
agent cc.update_temperature)
L7 invokes
wd.change on_temperature.publish([15])

which in turn invokes ’ cc.update_temperature (15) ‘
131 of 35

Event-Driven Design: Eiffel vs. Java o T

e Storing observers/listeners of an event
o Java, in the Event class:

’Hashtable<0bject, MethodHandle> listenersActions; ‘

o Eiffel, in the EVENT class:

actions: LINKED_LIST[PROCEDURE [ARGUMENTS]]

e Creating and passing function pointers
o Java, in the CurrentConditions class constructor:

MethodHandle ut = lookup.findVirtual(
this.getClass (), "updateTemperature",
MethodType.methodType (void.class, double.class));

WeatherData.changeOnTemperature.subscribe (this, ut);

o Eiffel, in the CURRENT_CONDITIONS class construction:

’ wd. change_on_temperature.subscribe (agent updateﬁtemperature)‘

= Eiffel's type system has been better thought-out for design .

e

Index (1) :AssoNDE

[Motivating Problem|

[First Design: Weather Station|
[Implementing the First Design (1))
[Implementing the First Design (2.1)|
[Implementing the First Design (2.2)|
[Implementing the First Design (2.3)|
[Implementing the First Design (3)|

[First Design: Good Design?|

Observer Pattern: Architecture
[Observer Pattern: Weather Station|
[Implementing the Observer Pattern (1.1)|
[Implementing the Observer Pattern (1.2)|
[Implementing the Observer Pattern (2.1)|
U%Iementing the Observer Pattern (2.2)|

Index (2) Lassonoe

[Implementing the Observer Pattern (2.3)|
[Implementing the Observer Pattern (2.4)|
[Implementing the Observer Pattern (3)|
[Observer Pattern: Limitation? (1)|
[Observer Pattern: Limitation? (2)|
[Event-Driven Design (1))

[Event-Driven Design (2)|

[Event-Driven Design: Implementation|
[Event-Driven Design in Java (1)
[Event-Driven Design in Java (2)|
[Event-Driven Design in Java (3)|
[Event-Driven Design in Java (4)|
[Event-Driven Design in Eiffel (1)|
l_%t-miven Design in Eiffel (2)|

Index (3) Sssonee

vent-Driven Design in Eiffel (3

|[Event-Driven Design in Eiffel (4)|

[Event-Driven Design: Eiffel vs. Java|

Program Correctness
OO0SC2 Chapter 11

EECS3311 A: Software Design

YORK ' Fall 2019

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Weak vs. Strong Assertions e

¢ Describe each assertion as a set of satisfying value.
x >3 has satisfying values { x | x>3 }={4,5,6,7,... }
X >4 has satisfying values { x | x>4 } ={5,6,7,... }
e An assertion p is stronger than an assertion q |if | p’s set of
satisfying values is a subset of g’s set of satisfying values.
o Logically speaking, p being stronger than g (or, g being weaker
than p) means p = q.
oceg,x>4=x>3
What'’s the weakest assertion? [TRUE]
What'’s the strongest assertion? [FALSE]

¢ In Design by Contract :

o A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

o A weaker precondition has more acceptable input values

o A weaker postcondition has more acceptable output values

Motivating Examples (1) LASSONDE

ooooooooooooooooooo

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i =1+ 9
ensure
i > 13
end
end

Q: Is i > 3 is too weak or too strong?
A: Too weak
- assertion i > 3 allows value 4 which would fail postcondition.

Motivating Examples (2) LASSONDE

ooooooooooooooooooo

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i:=1+ 9
ensure
i > 13
end
end

Q: Is /i > 5 too weak or too strong?
A: Maybe too strong

- assertion /i > 5 disallows 5 which would not fail postcondition.
Whether 5 should be allowed depends on the requirements.

Software Correctness A cono:

ooooooooooooooooo

e Correctness is a relative notion:

consistency of implementation with respect to specification.
= This assumes there is a specification!

¢ We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : | {Q} s {R}

oeg.,{i>3}i =1+ 9{i>13}

oeg.,{i>5}i :=1i + 9{i>13}

o If @ be proved TRUE, then the S is correct.
eg., {i>5}1 := i + 9 {i>13} can be proved TRUE.

o If cannot be proved TRUE, then the S is incorrect.
eg., {i>3}1 := 1 + 9 {i>13} cannot be proved TRUE.

Hoare Logic s

ooooooooooooooooo

e Consider a program S with precondition @ and postcondition R.

o {Q} s {R} is a correctness predicate for program S

o {Q} s {R} is TRUE if program S starts executing in a state
satisfying the precondition Q, and then:
(a) The program S terminates.

(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

e Separation of concerns
(a) requires a proof of termination .
(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

|
Hoare Logic and Software Correctness ;

Consider the contract view of a feature f (whose body of

implementation is S) as a | Hoare Triple |:
{Q} s {R}

Qs the precondition of f.
S is the implementation of f.
Ris the postcondition of f.
o {true} s {R}

All input values are valid
o {false} s {R}

All input values are invalid
o {Q} s {true}

All output values are valid [Most risky for clients; Easiest for suppliers]
o {Q} s {false}

All output values are invalid
o {true} s {true}
All inputs/outputs are valid (No contracts)

LASSONDE

ooooooooooooooooo

[Most-user friendly]

[Most useless for clients]

[Most challenging coding task]

[Least informative]
o

Proof of Hoare Triple using wp Mot

ooooooooooooooooo

{@} s {R} = Q= wp(S,R)

e wp(S, R) isthe weakest precondition for S to establish R .

e Scan be:
o Assignments (x := y)
o Alternations (if ... then ... else ... end)
o Sequential compositions (S ; S»)
o Loops (from ... until ... loop ... end)

¢ We will learn how to calculate the wp for the above
programming constructs.

8 of 43

LASSONDE

ooooooooooooooooo

Hoare Logic A Simple Example

Given {??}n:=n+9{n>13}:

. is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

¢ Any precondition that is equal to or stronger than the wp
(n>4) will result in a correct program.

e.g., {n>5}n:=n+9{n> 13} can be proved TRUE.

¢ Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n>3}n:=n+9{n> 13} cannot be proved TRUE.

Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n> 13.

LASSONDE

ooooooooooooooooo

Denoting New and Old Values

In the postcondition , for a program variable x:

o We write to denote its pre-state (old) value.

o We write to denote its post-state (new) value.
Implicitly, in the precondition , all program variables have their
pre-state values.

eg.,{bp>atb := b - a{b=by-a}

¢ Notice that:

o We may choose to write “b” rather than “by” in preconditions
- All variables are pre-state values in preconditions

o We don’t write “by” in program
-+ there might be multiple intermediate values of a variable due to
sequential composition

10 of 43|

LASSONDE

ooooooooooooooooo

wp Rule: Assignments (1)

wp(x := e, R)=R[x:=¢]

R[x := e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

[11 of 43

LASSONDE

ooooooooooooooooo

wp Rule: Assignments (2)

Recall:
{@} s {R} = Q= wp(S.R)

How do we prove {Q} x := e {R}?

{Q} x := e{R} — Q= R[x:=¢€]
—_—
wp(x := e,R)

12 of 43|

wp Rule: Assignments (3) Exercise LASSONDE

ooooooooooooooooo

What is the weakest precondition for a program x := x + 110
establish the postcondition x > xo?
{7} x = x + 1{x>Xx0}

For the above Hoare triple to be TRUE, it must be that
M=>wp(x := x + 1,X>Xp)-

wp(x := x + 1,X>Xp)

= {Rule of Wp: Assignments}
X > Xo[X:=Xp+1]

= {Replacing X by Xo+1}

X0+1 > X0
= {1>0 always true}
True

Any precondition is OK. False is valid but not useful.

13 of 43|

wp Rule: Assignments (4) Exercise LASSONDE

ooooooooooooooooo

What is the weakest precondition for a program x := x + 110
establish the postcondition x > x?

{7} x := x + 1{x=23}

For the above Hoare triple to be TRUE, it must be that
=>wp(x := x + 1,x=23).

wp(x := x + 1,x=23)

= {Rule of Wp: Assignments}
x=23[x:=xp+1]

= {Replacing X by Xo+1}
Xo+1=23

= {arithmetic}

Xg = 22

Any precondition weaker than x = 22 is not OK.

wp Rule: Alternations (1) LASSONDE

B = wp(S1, R)
wp(if B then S; else S; end, R)=| A
- B = wp(S,, R)

The wp of an alternation is such that all branches are able to
establish the postcondition R.

wp Rule: Alternations (2) LASSONDE
Recall: {@} s {R} = Q= wp(S,R)
How do we prove that {Q} if B then S; else S; end {R}?
{0}
if B then

{on' B} Si (R}

else

{for-B} S {R}

end

{r}

{@Q} if B then S; else S, end {R}
{QrnB }Si{R} (@ B) = wp(Sy, R)
| A | A

{Qr-B } S {R} (Qn-B) = wp(S:, R)

wp Rule: Alternations (3) Exercise LASSONDE
Is this program correct?
{x>0Any>0}
if x > y then
bigger := x ; smaller :=y
else
bigger := y ; smaller := x
end
{bigger > smaller}
{(x>0Ay>0)A(x>Yy)}
bigger := x ; smaller :=y
{bigger > smaller}
AN
{(x>0Ay>0)A=(x>Yy)}
bigger := vy ; smaller := x
{bigger > smaller}

17 of 4.

wp Rule: Sequential Composition (1) LASSONDE

ooooooooooooooooo

Wp(S'I 7 827 R) = Wp(S17 Wp(S27 R))

The wp of a sequential composition is such that the |first phase

establishes the wp for the ’ second phase ‘ to establish the
postcondition R.

18 of 43|

wp Rule: Sequential Composition (2) LASSONDE

ooooooooooooooooo

Recall:
{@Q} s{R} = Q= wp(S,R)

How do we prove {Q} Sy ; S {R}?

{@Q}S1 i S2{R} < Q= wp(Ss, wp(Sz, R))

wp(Sy ; S, R)

19 of 43|

wp Rule: Sequential Composition (3) Exerci:sgsom

ooooooooooooooooo

Is{ True } tmp := x; x := y; y := tmp{ x>y } correct?
If and only if True = wp(tmp := x ; x =y ; y := tmp, X> V)
wp(tmp := x ; |X =y ; y := tmp|, X>Yy)

= {wp rule for seg. comp.}

wp(tmp := x, Wp(x := vy ; ,x>y))
= {wp rule for seg. comp.}

wp(tmp := x, wp(x := y, wp(y := tmp,X>)))
= {wp rule for assignment}

wp(tmp := x, wp(x := y,[x]|>tmp))

= {wp rule for assignment}

wp(tmp := x, y>)

= {wp rule for assignment}
y>x
-+ True = y > x does not hold in general.

.. The above program is not correct.

Loops s

ooooooooooooooooo

Correctness of Loops

LASSONDE

ooooooooooooooooo

How do we prove that the following loops are correct?

e Aloop is a way to compute a certain result by successive é fim

approximations. S {s Q}

e.g. computing the maximum value of an array of integers untid w}%le(—\ B) |
* Loops are needed and powerful 105;) e
« But loops very hard to get right: end (R}

o Infinite loops [termination] "

o “off-by-one” error
o Improper handling of borderline cases
o Not establishing the desired condition

[partial correctness |
[partial correctness |

* In case of C/Java, denotes the stay condition.
[partial correctness]

e In case of Eiffel, E denotes the exit condition.

There is native, syntactic support for checking/proving the

total correctness of loops.

210143
— e
. __--. |

Loops: Binary Search Mot Contracts for Loops: Syntax

ooooooooooooooooo LASSONDE

ooooooooooooooooo

trom R 4 implementations for
unt 1= and binary search: published,
but wrong!

©then from
i und = tru Sinit
end else invariant
invariant_tag: | -- Boolean expression for partial correc
until
B
BS3 BS4
1
from ©oP
o) Shody
loop variant

Variant_tag: vV —— Integer expression for term
, ! end

See page 381 in Object Oriented
false ‘ Software Construction

LSSoNDE

Contracts for Loops

¢ Use of loop invariants (LI) and loop variants (LV).

o Invariants: | Boolean | expressions for partial correctness.

o Typically a special case of the postcondition.
e.g., Given postcondition “ Result is maximum of the array ”:

LI can be “ Result is maximum of the part of array scanned so far ”.
o Established before the very first iteration.
« Maintained TRUE after each iteration.
o Variants: expressions for termination

e Denotes the number of iterations remaining

e Decreased at the end of each subsequent iteration

e Maintained non-negative at the end of each iteration.

e As soon as value of LV reaches zero, meaning that no more iterations
remaining, the loop must exit.

e Remember:

total correctness = partial correctness + termination

Contracts for Loops: Runtime Checks (1)

LSSoNDE

Loop
Invariant
Violation

Loop
Variant
Violation

Contracts for Loops: Runtime Checks (2)

EaSONDE

1 | test
2 local
3 i: INTEGER
4 do
5 from
6 i =1
7 invariant
8 1 <=1 and i <= 6
9 until
10 i>5
11 loop
12 io.put_string ("iteration " + i.out + "%N")
13 i =1+ 1
14 variant
15 6 - 1
16 end
17 | end

L8: Changeto 1 <= i and i <= 5 fora Loop Invariant Violation.

L10: Changeto i > 0 to bypass the body of loop.

L15: Changeto 5 - i fora Loop Variant Violation.

27 of 43|
Contracts for Loops: Visualization LASSONDE

Exit condition

Previous state

Initialization Invariant Postcondition

/
7
Bod
Body y Body
;
U

\
\

5o Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
O

\wy

—

ASSONDE

ooooooooooooooooo

Contracts for Loops: Example 1.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]
invariant
loop_invariant: -- Vj|alower<j<i e Result> a[j]
across a.lower |..| i as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant
loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

e

Contracts for LOOpS: Example 1.2 LASSONDE

ooooooooooooooooo

Consider the feature call ’find,max(((20, 10, 40, 30))) ‘ given:
* Loop Invariant: Vj | a.lower <j<i e Result > a[j]
e Loop Variant: a.upper — i + 1

| AFTeR ITERATION | i | Result | LI | EXIT (i> auppen? | LV |

Initialization 1 20 v X -
1st 2 20 v X 3
2nd 3 20 X - —

Loop invariant violation at the end of the 2nd iteration:

Vj|alower <j<[3] e [20]> a[j]

evaluates to false -- 20 # a[3] = 40

\wy

Contracts for Loops: Example 2.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]
invariant
loop_invariant: —- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant
loop_variant: a.upper - i
end
ensure
correct_result: Vj| a.lower < j < a.upper e Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

—

ASSONDE

ooooooooooooooooo

31 of 43|

Contracts for LOOpS: Example 2.2 LASSONDE

ooooooooooooooooo

Consider the feature call ’find,max(({20, 10, 40, 30))) ‘ given:

e Loop Invariant: Vj | a.lower < j<i e Result > a[j]
e Loop Variant: a.upper — i

| AFTer ITERATION | i | Result || LI | ExiT (i> auppen? | LV |

Initialization 1 20 v x -
1st 2 20 v X 2
2nd 3 20 v x 1
3rd 4 40 v X 0
4th 5 40 v v -1

Loop variant violation at the end of the 2nd iteration

- a.upper - i =4 -5 evaluates to non-zero.

Contracts for Loops: Example 3.1

LASSONDE

sC

oooooooooooooooo

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]
invariant
loop_invariant: —- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item]
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant
loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end

Contracts for Loops: Example 3.2

LASSONDE

ooooooooooooooooo

Consider the feature call ’find,max(((20, 10, 40, 30))) ‘ given:
e Loop Invariant: Vj | a.lower < j<i e Result > a[j]

e Loop Variant: a.upper — i+ 1

e Postcondition : Vj | a.lower < j < a.upper e Result > a[j]

AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X -
1st 2 20 v X 3
2nd 3 20 v X 2
3rd 4 40 v X 1
4th 5 40 v v 0

Contracts for Loops: Exercise LASSONDE

ooooooooooooooooo

class DICTIONARY[V, K]

feature {NONE} - Imp
values: ARRAY[K]
keys: ARRAY K]

feature - Abstraction
model: FUN[K, V]
feature - Queriec

get_keys(v: V): ITERABLE|[K]
local i: INTEGER; ks: LINKED_ LIST[K]
do
from i := keys.lower ; create ks.make_empty

invariant

until 1 > keys.upper

do if values[i] ~ v then ks.extend(keys[i]) end

end

Result := ks.new_cursor
ensure

result valid: VK| Kk eResult e model.item(k) ~ v

nomissing keys: Vk |k e model.domain e model.item(k) ~ v = k € Result
end

35 of 43|

Proving Correctness of Loops (1) LASSONDE

ooooooooooooooooo

{0} from
Sinit
invariant
i
until
B
loop

Sbmw
variant

%4
end {R}

o Aloopis partially correct if:
o Given precondition Q, the initialization step Sjy; establishes L/ /.
o At the end of Sy, if Not yet to exit, L/ / is maintained.
« If ready to exit and L/ | maintained, postcondition R is established.
o Aloop terminates if:
¢ Given LI /, and not yet to exit, Spoqy Maintains LV V as non-negative.
e Given LI I, and not yet to exit, Spoq, decrements LV V.

Proving Correctness of Loops (2) LASSONDE Proving Correctness of Loops: Exercise (1.2}

ooooooooooooooooo

Prove that each of the following Hoare Triples is TRUE.
1. Establishment of Loop Invariant:

o Aloopis partially correct if: { True }
« Given precondition Q, the initialization step S;,; establishes LI /. 1 := a.lower
Result := a[i]
{@} Sipit {1} { Vj|alower<j<ie Result>a[j] }
o At the end of Spoqy, if Not yet to exit, L/ [is maintained.
| {17 =B} Swoay {1} |

{Q} from Sj;; invariant |/ until B loop Spoqy variant V end {R}

2. Maintenance of Loop Invariant:

« If ready to exit and L/ | maintained, postcondition R is established. { (Vjlalower<j<i e Result>a[j]) n=(i>a.upper) }
if a [i] > Result then Result := a [i] end
i =1+ 1
o Aloop terminates if: { (Vilalower<j<ie Result>a[j]) }

e Given L/ I, and not yet to exit, Spoqy maintains LV V as non-negative.
] {I'A~B} Spoqy {V >0} \

o Given LI I, and not yet to exit, Spoqy decrements LV V. (Vj|a.lower <j<i e Result>alj])Ani>a.upper
] {IAn =B} Spogy {V < Vo} \ = Vj| a.lower < j < a.upper o Result > a[j]

3. Establishment of Postcondition upon Termination:

Proving Correctness of Loops: Exercise (1.3}

Proving Correctness of Loops: Exercise (1.1 '
Prove that the following program is correct:

find_max (a: ARRAY [INTEGER]): INTEGER Prove that each of the fO”OWing Hoare TI‘IpIeS is TRUE.
local i: INTEGER . . .
do 4. Loop Variant Stays Non-Negative Before Exit:
from
i := a.lower ; Result := a[i] { (Vj|alower <j<i e Result>alj|) n-(i>a.upper) }
invariant if a [i] > Result then Result := a [i] end
loop_invariant: Vj|a.lower <j<i e Result> a[j] i:=1+1
until { a.upper-i+1>0 }
i > a.upper
loop , 5. Loop Variant Keeps Decrementing before Exit:
if a [i] > Result then Result := a [i] end
i:=1+1 { (Vj|a.lower<j<i e Result>alj]) n-(i>a.upper) }
variant if a [i] > Result then Result := a [i] end
loop_variant: a.upper — 1 + 1 i =1+ 1
end { a.upper-i+1<(aupper—i+1)y }
ensure
correct_result: Vj|a.lower <j< a.upper e Result> a[j] i i
end where (a.upper —i+1)o = a.uppery — ip + 1
end

Proof Tips (1) Lassono

{@Q}s{R}={QAP}s{R}

In order to prove {Q A P} s {R}, it is sufficient to prove a version
with a weaker precondition: {Q} s {R}.

Proof:
o Assume: {Q} s {R}

It's equivalent to assuming: @ = wp(s, R) (A1)
o Toprove: {QA P} s {R}

¢ It's equivalent to proving: Q A P = wp(s, R)

e Assume: Q A P, which implies

o According to (A1), we have wp(s, R). m

Proof Tips (2) Sesone

When calculating wp(s, R), if either program s or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(s, a[i] > 0), augment it as

wp(s, a.lower < i < a.upper A a[i] > 0)

e.g., Before calculating wp(x := a[il, R), augmentit as

wp(x := alil, a.lower <i<a.uppernR)

Index (1) Lassonoe

|Weak vs. Strong Assertions|
[Motivating Examples (1)|
[Motivating Examples (2)|

[Software Correctness]

|[Hoare Logic and Software Correctness|
[Proof of Hoare Triple using wp|
[Hoare Logic: A Simple Example]
[Denoting New and Old Values|

[wp Rule: Assignments (1)|

[wp Rule: Assignments (2)|

[wp Rule: Assignments (3) Exercise|
[wp Rule: Assignments (4) Exercise|
[wp Rule: Alternations (1)

|45 O1 49

Index (2) :AssoNDE

(wp Rule: Alternations (2)|

[wp Rule: Alternations (3) Exercise|

[wp Rule: Sequential Composition (1)|

[wp Rule: Sequential Composition (2)|

[wp Rule: Sequential Composition (3) Exercise
[Loops: Binary Search|

|[Correctness of Loops|

[Contracts for Loops: Syntax]

[Contracts for Loops|

[Contracts for Loops: Runtime Checks (1)
[Contracts for Loops: Runtime Checks (2)|
[Contracts for Loops: Visualization|
I_Cp@njracts for Loops: Example 1.1|

Index (3) LASsONDE What You Learned LassoNpE
|[Contracts for Loops: Example 1.2| ¢ Design Principles:
[Contracts for Loops: Example 2.1] o Abstraction [contracts, architecture, math models]

Think above the code level
o Information Hiding

[Contracts for Loops: Example 2.2]

[Contracts for Loops: Example 3.1| o Single Choice Principle
[Contracts for Loops: Example 3.2| o Open-Closed Principle
Contracts for L E . o Uniform Access Principle
[Contracts for Loops: Exercise| « Design Patterns:
[Proving Correctness of Loops (1)| o Singleton
[Proving Correctness of Loops (2) o lterator
Provina C i T E . 17 o State/Template
[Proving Correctness of Loops: Exercise (1.1)| o Composite
[Proving Correctness of Loops: Exercise (1.2)| o Visitor
[Proving Correctness of Loops: Exercise (1.3)] o Observer _
Proof Ti 3 o Event-Driven Design
roof Tips (1) o Undo/Redo, Command [lab 4]
Proof Tips (2) o Model-View-Controller [project]
[2of11]

——— e

Why Java Interfaces Unacceptable ADTs (1)|.assonce

Interface List<E>
Wrap-Up ‘E - the type of elements in this list'

All Superinterfaces:

Collection<E>, Iterable<E>

All Known Implementing Classes:
AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArraylList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

public interface List<E>
extends Collection<E>

EECS3311 A: Software Design

‘An ordered collection (also known as a sequence].’ he user of this interface has precise control over where in the list each element is
F | I 20 1 9 nserted. The user can access elements by their integer index (position in the list), and search for elements in the list.
UNIVERSITE CHEN-WEI WANG It is useful to have:
UNIVERSITY

e A generic collection class where the homogeneous type of
elements are parameterized as E.
¢ A reasonably intuitive overview of the ADT.

Java 8 List API

Why Java Interfaces Unacceptable ADTs (2) LSSONDE

Methods described in a natural language can be ambiguous:

E set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation).)

Parameters:
index - index of the element to replace

element - element to be stored at the specified position

Returns:
the element previously at the specified position

Throws:
UnsupportedOperationException - if the set operation is not supported by this list

ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOfBoundsException - if the index is out of range (index < @ || index >= slze[)))

4 of 11

Why Eiffel Contract Views are ADTs (1)

class interface ARRAYED CONTAINER
feature)
assign_at (i:

INTEGER; s: STRING)

ue at position

ri7 to s’

-— C

require
valid index: 1 <= 1 and 1 <= count
ensure
size_unchanged:
imp.count = (old imp.twin) .count

item _assigned:
imp [i] ~ s
others_unchanged:
across
1 |..| imp.count as j
all
j.item /= i implies imp [j.item] ~ (old imp.twin) [j.item]
end
count: INTEGER
invariant
consistency:
end —— class Al

Why Eiffel Contract Views are ADTs (2)

Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

[ARRAYED CONTAINER R

feature -- Commands
assign_at (i: INTEGER; s: STRING)
-- Change the value at position 'i' to 's'.

require
valid_index{ 1 < i < count
ensure

size_unchanged: imp.count = (old imp.twin).count
item_assigned: imp[il =5
others_unchanged{(¥j : 1 < j < imp.count : j # i =>imp|j] ~ (old imp.twin) [j])

feature -- { NONE }
-- Implementation of an arrayed-container
imp: ARRAY[STRING]

invariant
consistency: imp.count = count

_ _J

LSSoNDE

Beyond this course... (1)

e How do | program in a language not supporting DbC natively?
o Document your contracts (e.g., JavaDoc)
o But, it’s critical to ensure (manually) that contracts are in sync
with your latest implementations.
o Incorporate contracts into your Unit and Regression tests
e How do | program in a language without a math library ?
o Again, before diving into coding, always start by
thinking above the code level .
o Plan ahead how you intend for your system to behaviour at
runtime, in terms of interactions among mathematical objects .

o Use efficient data structures to support the math operations.
e SEQ refined to ARRAY Or LINKED_LIST
e FUN refined to HASH_TABLE
e REL refined to a graph

o Document your code with contracts specified in terms of the
math models.

Beyond this course... (2) o T

Software Fundamentals
Collected Papers by
David L. Parnas

e Software fundamentals:
collected papers by David L.
Parnas

¢ Design Techniques:

o Tabular Expressions
o Information Hiding

Wish You All the Best

¢ | hope you learned something from this course.
¢ Feel free to get in touch and let me know how you’re doing :D

e Exam Review Sessions:
3pm to 5pm Monday December 9
1pmto 3pm Wednesday December 11
3pm to 5pm Thursday December 12

Course Evaluation

LSSoNDE

Compliments or Complaints on my teaching?

http://courseevaluations.yorku.ca/

Index (1) :AssoNDE

[What You Learned]

[Why Java Interfaces Unacceptable ADTs (1)

[Why Java Interfaces Unacceptable ADTs (2)|

[Why Eiffel Contract Views are ADTs (1)

[Why Eiffel Contract Views are ADTs (2))

[Beyond this course... (1)

[Beyond this course... (2)|
Wish You All the Best
[Course Evaluation|

