
Observer Design Pattern
Event-Driven Design

EECS3311 A: Software Design
Fall 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Problem

● A weather station maintains weather data such as temperature,
humidity , and pressure.

● Various kinds of applications on these weather data should
regularly update their displays:
○ Condition: temperature in celsius and humidity in percentages.
○ Forecast : if expecting for rainy weather due to reduced pressure.
○ Statistics: minimum/maximum/average measures of temperature.

2 of 35

First Design: Weather Station

Whenever the display feature is called, retrieve the current
values of temperature, humidity, and/or pressure via the
weather data reference.

3 of 35

Implementing the First Design (1)
class WEATHER_DATA create make
feature -- Data
temperature: REAL
humidity: REAL
pressure: REAL

feature -- Queries
correct_limits(t,p,h: REAL): BOOLEAN
ensure
Result implies -36 <=t and t <= 60
Result implies 50 <= p and p <= 110
Result implies 0.8 <= h and h <= 100

feature -- Commands
make (t, p, h: REAL)
require

correct limits(temperature, pressure, humidity)

ensure
temperature = t and pressure = p and humidity = h

invariant

correct limits(temperature, pressure, humidity)

end

4 of 35

Implementing the First Design (2.1)
class FORECAST create make
feature -- Attributes
current_pressure: REAL
last_pressure: REAL
weather_data: WEATHER_DATA

feature -- Commands
make(wd: WEATHER_DATA)

ensure weather data = wd
update
do last_pressure := current_pressure

current_pressure := weather_data.pressure
end

display

do update
if current_pressure > last_pressure then
print("Improving weather on the way!%N")

elseif current_pressure = last_pressure then
print("More of the same%N")

else print("Watch out for cooler, rainy weather%N") end
end

end
5 of 35

Implementing the First Design (2.2)
class CURRENT_CONDITIONS create make
feature -- Attributes
temperature: REAL
humidity: REAL
weather_data: WEATHER_DATA

feature -- Commands
make(wd: WEATHER_DATA)

ensure weather data = wd
update
do temperature := weather_data.temperature

humidity := weather_data.humidity
end

display

do update
io.put_string("Current Conditions: ")
io.put_real (temperature) ; io.put_string (" degrees C and ")
io.put_real (humidity) ; io.put_string (" percent humidity%N")

end
end

6 of 35

Implementing the First Design (2.3)

class STATISTICS create make
feature -- Attributes
weather_data: WEATHER_DATA
current_temp: REAL
max, min, sum_so_far: REAL
num_readings: INTEGER

feature -- Commands
make(wd: WEATHER_DATA)

ensure weather data = wd
update
do current_temp := weather_data.temperature

-- Update min, max if necessary.
end

display

do update
print("Avg/Max/Min temperature = ")
print(sum_so_far / num_readings + "/" + max + "/" min + "%N")

end
end

7 of 35

Implementing the First Design (3)

1 class WEATHER_STATION create make
2 feature -- Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 feature -- Commands
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9

10 wd.set_measurements (15, 60, 30.4)
11 cc.display ; fd.display ; sd.display
12 cc.display ; fd.display ; sd.display
13
14 wd.set_measurements (11, 90, 20)
15 cc.display ; fd.display ; sd.display
16 end
17 end

L14: Updates occur on cc, fd, sd even with the same data.

8 of 35

First Design: Good Design?

● Each application (CURRENT CONDITION, FORECAST,
STATISTICS) cannot know when the weather data change.
⇒ All applications have to periodically initiate updates in order
to keep the display results up to date.
∵ Each inquiry of current weather data values is a remote call .
∴ Waste of computing resources (e.g., network bandwidth)
when there are actually no changes on the weather data.

● To avoid such overhead, it is better to let:
○ Each application is subscribed/attached/registered to the

weather data.
○ The weather station publish/notify new changes.
⇒ Updates on the application side occur only when necessary .

9 of 35

Observer Pattern: Architecture

● Observer (publish-subscribe) pattern: one-to-many relation.
○ Observers (subscribers) are attached to a subject (publisher).
○ The subject notify its attached observers about changes.

● Some interchangeable vocabulary:
○ subscribe ≈ attach ≈ register
○ unsubscribe ≈ detach ≈ unregister
○ publish ≈ notify
○ handle ≈ update

10 of 35

Observer Pattern: Weather Station

11 of 35

Implementing the Observer Pattern (1.1)
class SUBJECT create make
feature -- Attributes

observers : LIST[OBSERVER]
feature -- Commands
make
do create {LINKED_LIST[OBSERVER]} observers.make
ensure no observers: observers.count = 0 end

feature -- Invoked by an OBSERVER
attach (o: OBSERVER) -- Add ‘o’ to the observers
require not yet attached: not observers.has (o)
ensure is attached: observers.has (o) end

detach (o: OBSERVER) -- Add ‘o’ to the observers
require currently attached: observers.has (o)
ensure is attached: not observers.has (o) end

feature -- invoked by a SUBJECT
notify -- Notify each attached observer about the update.
do across observers as cursor loop cursor.item.update end
ensure all views updated:
across observers as o all o.item.up_to_date_with_subject end

end
end

12 of 35

Implementing the Observer Pattern (1.2)
class WEATHER_DATA
inherit SUBJECT rename make as make subject end
create make
feature -- data available to observers
temperature: REAL
humidity: REAL
pressure: REAL
correct_limits(t,p,h: REAL): BOOLEAN

feature -- Initialization
make (t, p, h: REAL)
do
make subject -- initialize empty observers
set_measurements (t, p, h)

end
feature -- Called by weather station
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)

invariant

correct limits(temperature, pressure, humidity)

end

13 of 35

Implementing the Observer Pattern (2.1)

deferred class
OBSERVER

feature -- To be effected by a descendant
up_to_date_with_subject: BOOLEAN

-- Is this observer up to date with its subject?
deferred
end

update
-- Update the observer’s view of ‘s’

deferred
ensure
up_to_date_with_subject: up_to_date_with_subject

end
end

Each effective descendant class of OBSERVER should:
○ Define what weather data are required to be up-to-date.
○ Define how to update the required weather data.

14 of 35

Implementing the Observer Pattern (2.2)
class FORECAST
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then
Result = current_pressure = weather_data.pressure

update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
15 of 35

Implementing the Observer Pattern (2.3)
class CURRENT_CONDITIONS
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then Result = temperature = weather_data.temperature and

humidity = weather_data.humidity
update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
16 of 35

Implementing the Observer Pattern (2.4)
class STATISTICS
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then
Result = current_temperature = weather_data.temperature

update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
17 of 35

Implementing the Observer Pattern (3)
1 class WEATHER_STATION create make
2 feature -- Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 feature -- Commands
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9

10 wd.set_measurements (15, 60, 30.4)

11 wd.notify

12 cc.display ; fd.display ; sd.display
13 cc.display ; fd.display ; sd.display
14
15 wd.set_measurements (11, 90, 20)

16 wd.notify

17 cc.display ; fd.display ; sd.display
18 end
19 end

L13: cc, fd, sd make use of “cached” data values.
18 of 35

Observer Pattern: Limitation? (1)

● The observer design pattern is a reasonable solution to building
a one-to-many relationship: one subject (publisher) and
multiple observers (subscribers).

● But what if a many-to-many relationship is required for the
application under development?
○ Multiple weather data are maintained by weather stations.

○ Each application observes all these weather data.
○ But, each application still stores the latest measure only.

e.g., the statistics app stores one copy of temperature
○ Whenever some weather station updates the temperature of its

associated weather data, all relevant subscribed applications (i.e.,
current conditions, statistics) should update their temperatures.

● How can the observer pattern solve this general problem?
○ Each weather data maintains a list of subscribed applications.
○ Each application is subscribed to multiple weather data.

19 of 35

Observer Pattern: Limitation? (2)
What happens at runtime when building a many-to-many
relationship using the observer pattern?

wd1wd1: WEATHER_DATA

wd2wd2: WEATHER_DATA

wdmwdm: WEATHER_DATA

wdm�1wdm�1: WEATHER_DATA

application1application1

application2application2

applicationnapplicationn

…
…

Graph complexity, with m subjects and n observers? [O(m ⋅ n)]
20 of 35

Event-Driven Design (1)
Here is what happens at runtime when building a many-to-many
relationship using the event-driven design.

wd1wd1: WEATHER_DATA

wd2wd2: WEATHER_DATA

wdnwdn: WEATHER_DATA

wdn�1wdn�1: WEATHER_DATA

application1application1

application2application2

applicationnapplicationn

… …change_on_temperature: EVENT

publish

applicationn�1applicationn�1

subscribe

Graph complexity, with m subjects and n observers? [O(m + n)]
Additional cost by adding a new subject? [O(1)]
Additional cost by adding a new observer? [O(1)]
Additional cost by adding a new event type? [O(m + n)]

21 of 35

Event-Driven Design (2)

In an event-driven design :
● Each variable being observed (e.g., temperature,
humidity, pressure) is called a monitored variable.
e.g., A nuclear power plant (i.e., the subject) has its
temperature and pressure being monitored by a shutdown
system (i.e., an observer): as soon as values of these
monitored variables exceed the normal threshold, the SDS will
be notified and react by shutting down the plant.

● Each monitored variable is declared as an event :
○ An observer is attached /subscribed to the relevant events.
● CURRENT CONDITION attached to events for temperature, humidity.
● FORECAST only subscribed to the event for pressure.
● STATISTICS only subscribed to the event for temperature.

○ A subject notifies/publishes changes to the relevant events.
22 of 35

Event-Driven Design: Implementation

● Requirements for implementing an event-driven design are:
1. When an observer object is subscribed to an event , it attaches:

1.1 The reference/pointer to an update operation
Such reference/pointer is used for delayed executions.

1.2 Itself (i.e., the context object for invoking the update operation)
2. For the subject object to publish an update to the event , it:

2.1 Iterates through all its observers (or listeners)
2.2 Uses the operation reference/pointer (attached earlier) to update the

corresponding observer.

● Both requirements can be satisfied by Eiffel and Java.
● We will compare how an event-driven design for the weather

station problems is implemented in Eiffel and Java.
⇒ It’s much more convenient to do such design in Eiffel.

23 of 35

Event-Driven Design in Java (1)

1 public class Event {
2 Hashtable<Object, MethodHandle> listenersActions;
3 Event() { listenersActions = new Hashtable<>(); }
4 void subscribe(Object listener, MethodHandle action) {

5 listenersActions.put(listener , action);
6 }
7 void publish(Object arg) {
8 for (Object listener : listenersActions.keySet()) {
9 MethodHandle action = listenersActions.get(listener);

10 try {

11 action .invokeWithArguments(listener , arg);
12 } catch (Throwable e) { }
13 }
14 }
15 }

● L5: Both the delayed action reference and its context object (or call
target) listener are stored into the table.

● L11: An invocation is made from retrieved listener and action.
24 of 35

Event-Driven Design in Java (2)
1 public class WeatherData {
2 private double temperature;
3 private double pressure;
4 private double humidity;
5 public WeatherData(double t, double p, double h) {
6 setMeasurements(t, h, p);
7 }

8 public static Event changeOnTemperature = new Event();

9 public static Event changeOnHumidity = new Event();

10 public static Event changeOnPressure = new Event();

11 public void setMeasurements(double t, double h, double p) {
12 temperature = t;
13 humidity = h;
14 pressure = p;

15 changeOnTemperature .publish(temperature);

16 changeOnHumidity .publish(humidity);

17 changeOnPressure .publish(pressure);
18 }
19 }

25 of 35

Event-Driven Design in Java (3)

1 public class CurrentConditions {
2 private double temperature; private double humidity;
3 public void updateTemperature(double t) { temperature = t; }
4 public void updateHumidity(double h) { humidity = h; }
5 public CurrentConditions() {
6 MethodHandles.Lookup lookup = MethodHandles.lookup();
7 try {
8 MethodHandle ut = lookup.findVirtual(
9 this.getClass(), "updateTemperature",

10 MethodType.methodType(void.class, double.class));
11 WeatherData.changeOnTemperature.subscribe(this, ut);
12 MethodHandle uh = lookup.findVirtual(
13 this.getClass(), "updateHumidity",
14 MethodType.methodType(void.class, double.class));
15 WeatherData.changeOnHumidity.subscribe(this, uh);
16 } catch (Exception e) { e.printStackTrace(); }
17 }
18 public void display() {
19 System.out.println("Temperature: " + temperature);
20 System.out.println("Humidity: " + humidity); } }

26 of 35

Event-Driven Design in Java (4)

1 public class WeatherStation {
2 public static void main(String[] args) {
3 WeatherData wd = new WeatherData(9, 75, 25);
4 CurrentConditions cc = new CurrentConditions();
5 System.out.println("=======");
6 wd.setMeasurements(15, 60, 30.4);
7 cc.display();
8 System.out.println("=======");
9 wd.setMeasurements(11, 90, 20);

10 cc.display();
11 } }

L4 invokes
WeatherData.changeOnTemperature.subscribe(

cc, ‘‘updateTemperature handle’’)
L6 invokes

WeatherData.changeOnTemperature.publish(15)
which in turn invokes

‘‘updateTemperature handle’’.invokeWithArguments(cc, 15)
27 of 35

Event-Driven Design in Eiffel (1)
1 class EVENT [ARGUMENTS -> TUPLE]
2 create make
3 feature -- Initialization
4 actions: LINKED_LIST[PROCEDURE[ARGUMENTS]]
5 make do create actions.make end
6 feature
7 subscribe (an_action: PROCEDURE[ARGUMENTS])
8 require action_not_already_subscribed: not actions.has(an_action)
9 do actions.extend (an_action)

10 ensure action_subscribed: action.has(an_action) end
11 publish (args: ARGUMENTS)
12 do from actions.start until actions.after
13 loop actions.item.call (args) ; actions.forth end
14 end
15 end

● L1 constrains the generic parameter ARGUMENTS: any class that instantiates
ARGUMENTS must be a descendant of TUPLE.

● L4: The type PROCEDURE encapsulates both the context object and the
reference/pointer to some update operation.

28 of 35

Event-Driven Design in Eiffel (2)
1 class WEATHER_DATA
2 create make
3 feature -- Measurements
4 temperature: REAL ; humidity: REAL ; pressure: REAL
5 correct_limits(t,p,h: REAL): BOOLEAN do . . . end
6 make (t, p, h: REAL) do . . . end
7 feature -- Event for data changes

8 change on temperature : EVENT[TUPLE[REAL]]once create Result end

9 change on humidity : EVENT[TUPLE[REAL]]once create Result end

10 change on pressure : EVENT[TUPLE[REAL]]once create Result end
11 feature -- Command
12 set_measurements(t, p, h: REAL)
13 require correct_limits(t,p,h)
14 do temperature := t ; pressure := p ; humidity := h

15 change on temperature .publish ([t])

16 change on humidity .publish ([p])

17 change on pressure .publish ([h])

18 end
19 invariant correct_limits(temperature, pressure, humidity) end

29 of 35

Event-Driven Design in Eiffel (3)
1 class CURRENT_CONDITIONS
2 create make
3 feature -- Initialization
4 make(wd: WEATHER_DATA)
5 do
6 wd.change on temperature.subscribe (agent update_temperature)
7 wd.change on humidity.subscribe (agent update_humidity)
8 end
9 feature

10 temperature: REAL
11 humidity: REAL
12 update_temperature (t: REAL) do temperature := t end
13 update_humidity (h: REAL) do humidity := h end
14 display do . . . end
15 end

● agent cmd retrieves the pointer to cmd and its context object.

● L6 ≈ . . . (agent Current .update temperature)

● Contrast L6 with L8–11 in Java class CurrentConditions.
30 of 35

Event-Driven Design in Eiffel (4)
1 class WEATHER_STATION create make
2 feature
3 cc: CURRENT_CONDITIONS
4 make
5 do create wd.make (9, 75, 25)
6 create cc.make (wd)
7 wd.set measurements (15, 60, 30.4)
8 cc.display
9 wd.set measurements (11, 90, 20)

10 cc.display
11 end
12 end

L6 invokes
wd.change on temperature.subscribe(

agent cc.update temperature)

L7 invokes
wd.change on temperature.publish([15])

which in turn invokes cc.update temperature(15)
31 of 35

Event-Driven Design: Eiffel vs. Java
● Storing observers/listeners of an event

○ Java, in the Event class:
Hashtable<Object, MethodHandle> listenersActions;

○ Eiffel, in the EVENT class:
actions: LINKED_LIST[PROCEDURE[ARGUMENTS]]

● Creating and passing function pointers
○ Java, in the CurrentConditions class constructor:

MethodHandle ut = lookup.findVirtual(
this.getClass(), "updateTemperature",
MethodType.methodType(void.class, double.class));

WeatherData.changeOnTemperature.subscribe(this, ut);

○ Eiffel, in the CURRENT CONDITIONS class construction:
wd.change on temperature.subscribe (agent update_temperature)

⇒ Eiffel’s type system has been better thought-out for design .
32 of 35

Index (1)
Motivating Problem
First Design: Weather Station
Implementing the First Design (1)
Implementing the First Design (2.1)
Implementing the First Design (2.2)
Implementing the First Design (2.3)
Implementing the First Design (3)
First Design: Good Design?
Observer Pattern: Architecture
Observer Pattern: Weather Station
Implementing the Observer Pattern (1.1)
Implementing the Observer Pattern (1.2)
Implementing the Observer Pattern (2.1)
Implementing the Observer Pattern (2.2)

33 of 35

Index (2)
Implementing the Observer Pattern (2.3)
Implementing the Observer Pattern (2.4)
Implementing the Observer Pattern (3)
Observer Pattern: Limitation? (1)
Observer Pattern: Limitation? (2)
Event-Driven Design (1)
Event-Driven Design (2)
Event-Driven Design: Implementation
Event-Driven Design in Java (1)
Event-Driven Design in Java (2)
Event-Driven Design in Java (3)
Event-Driven Design in Java (4)
Event-Driven Design in Eiffel (1)
Event-Driven Design in Eiffel (2)

34 of 35

Index (3)
Event-Driven Design in Eiffel (3)

Event-Driven Design in Eiffel (4)

Event-Driven Design: Eiffel vs. Java

35 of 35

	Motivating Problem
	First Design: Weather Station
	Implementing the First Design (1)
	Implementing the First Design (2.1)
	Implementing the First Design (2.2)
	Implementing the First Design (2.3)
	Implementing the First Design (3)
	First Design: Good Design?
	Observer Pattern: Architecture
	Observer Pattern: Weather Station
	Implementing the Observer Pattern (1.1)
	Implementing the Observer Pattern (1.2)
	Implementing the Observer Pattern (2.1)
	Implementing the Observer Pattern (2.2)
	Implementing the Observer Pattern (2.3)
	Implementing the Observer Pattern (2.4)
	Implementing the Observer Pattern (3)
	Observer Pattern: Limitation? (1)
	Observer Pattern: Limitation? (2)
	Event-Driven Design (1)
	Event-Driven Design (2)
	Event-Driven Design: Implementation
	Event-Driven Design in Java (1)
	Event-Driven Design in Java (2)
	Event-Driven Design in Java (3)
	Event-Driven Design in Java (4)
	Event-Driven Design in Eiffel (1)
	Event-Driven Design in Eiffel (2)
	Event-Driven Design in Eiffel (3)
	Event-Driven Design in Eiffel (4)
	Event-Driven Design: Eiffel vs. Java

