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Motivating Problem

● A weather station maintains weather data such as temperature,
humidity , and pressure.

● Various kinds of applications on these weather data should
regularly update their displays:
○ Condition: temperature in celsius and humidity in percentages.
○ Forecast : if expecting for rainy weather due to reduced pressure.
○ Statistics: minimum/maximum/average measures of temperature.

2 of 35



First Design: Weather Station

Whenever the display feature is called, retrieve the current
values of temperature, humidity, and/or pressure via the
weather data reference.
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Implementing the First Design (1)
class WEATHER_DATA create make
feature -- Data
temperature: REAL
humidity: REAL
pressure: REAL

feature -- Queries
correct_limits(t,p,h: REAL): BOOLEAN
ensure
Result implies -36 <=t and t <= 60
Result implies 50 <= p and p <= 110
Result implies 0.8 <= h and h <= 100

feature -- Commands
make (t, p, h: REAL)
require

correct limits(temperature, pressure, humidity)

ensure
temperature = t and pressure = p and humidity = h

invariant

correct limits(temperature, pressure, humidity)

end
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Implementing the First Design (2.1)
class FORECAST create make
feature -- Attributes
current_pressure: REAL
last_pressure: REAL
weather_data: WEATHER_DATA

feature -- Commands
make(wd: WEATHER_DATA)

ensure weather data = wd
update
do last_pressure := current_pressure

current_pressure := weather_data.pressure
end

display

do update
if current_pressure > last_pressure then
print("Improving weather on the way!%N")

elseif current_pressure = last_pressure then
print("More of the same%N")

else print("Watch out for cooler, rainy weather%N") end
end

end
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Implementing the First Design (2.2)
class CURRENT_CONDITIONS create make
feature -- Attributes
temperature: REAL
humidity: REAL
weather_data: WEATHER_DATA

feature -- Commands
make(wd: WEATHER_DATA)

ensure weather data = wd
update
do temperature := weather_data.temperature

humidity := weather_data.humidity
end

display

do update
io.put_string("Current Conditions: ")
io.put_real (temperature) ; io.put_string (" degrees C and ")
io.put_real (humidity) ; io.put_string (" percent humidity%N")

end
end
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Implementing the First Design (2.3)

class STATISTICS create make
feature -- Attributes
weather_data: WEATHER_DATA
current_temp: REAL
max, min, sum_so_far: REAL
num_readings: INTEGER

feature -- Commands
make(wd: WEATHER_DATA)

ensure weather data = wd
update
do current_temp := weather_data.temperature

-- Update min, max if necessary.
end

display

do update
print("Avg/Max/Min temperature = ")
print(sum_so_far / num_readings + "/" + max + "/" min + "%N")

end
end
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Implementing the First Design (3)

1 class WEATHER_STATION create make
2 feature -- Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 feature -- Commands
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9

10 wd.set_measurements (15, 60, 30.4)
11 cc.display ; fd.display ; sd.display
12 cc.display ; fd.display ; sd.display
13
14 wd.set_measurements (11, 90, 20)
15 cc.display ; fd.display ; sd.display
16 end
17 end

L14: Updates occur on cc, fd, sd even with the same data.
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First Design: Good Design?

● Each application (CURRENT CONDITION, FORECAST,
STATISTICS) cannot know when the weather data change.
⇒ All applications have to periodically initiate updates in order
to keep the display results up to date.
∵ Each inquiry of current weather data values is a remote call .
∴ Waste of computing resources (e.g., network bandwidth)
when there are actually no changes on the weather data.

● To avoid such overhead, it is better to let:
○ Each application is subscribed/attached/registered to the

weather data.
○ The weather station publish/notify new changes.
⇒ Updates on the application side occur only when necessary .
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Observer Pattern: Architecture

● Observer (publish-subscribe) pattern: one-to-many relation.
○ Observers (subscribers) are attached to a subject (publisher ).
○ The subject notify its attached observers about changes.

● Some interchangeable vocabulary:
○ subscribe ≈ attach ≈ register
○ unsubscribe ≈ detach ≈ unregister
○ publish ≈ notify
○ handle ≈ update
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Observer Pattern: Weather Station
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Implementing the Observer Pattern (1.1)
class SUBJECT create make
feature -- Attributes

observers : LIST[OBSERVER]
feature -- Commands
make
do create {LINKED_LIST[OBSERVER]} observers.make
ensure no observers: observers.count = 0 end

feature -- Invoked by an OBSERVER
attach (o: OBSERVER) -- Add ‘o’ to the observers
require not yet attached: not observers.has (o)
ensure is attached: observers.has (o) end

detach (o: OBSERVER) -- Add ‘o’ to the observers
require currently attached: observers.has (o)
ensure is attached: not observers.has (o) end

feature -- invoked by a SUBJECT
notify -- Notify each attached observer about the update.
do across observers as cursor loop cursor.item.update end
ensure all views updated:
across observers as o all o.item.up_to_date_with_subject end

end
end
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Implementing the Observer Pattern (1.2)
class WEATHER_DATA
inherit SUBJECT rename make as make subject end
create make
feature -- data available to observers
temperature: REAL
humidity: REAL
pressure: REAL
correct_limits(t,p,h: REAL): BOOLEAN

feature -- Initialization
make (t, p, h: REAL)
do
make subject -- initialize empty observers
set_measurements (t, p, h)

end
feature -- Called by weather station
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)

invariant

correct limits(temperature, pressure, humidity)

end
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Implementing the Observer Pattern (2.1)

deferred class
OBSERVER

feature -- To be effected by a descendant
up_to_date_with_subject: BOOLEAN

-- Is this observer up to date with its subject?
deferred
end

update
-- Update the observer’s view of ‘s’

deferred
ensure
up_to_date_with_subject: up_to_date_with_subject

end
end

Each effective descendant class of OBSERVER should:
○ Define what weather data are required to be up-to-date.
○ Define how to update the required weather data.
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Implementing the Observer Pattern (2.2)
class FORECAST
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then
Result = current_pressure = weather_data.pressure

update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
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Implementing the Observer Pattern (2.3)
class CURRENT_CONDITIONS
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then Result = temperature = weather_data.temperature and

humidity = weather_data.humidity
update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
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Implementing the Observer Pattern (2.4)
class STATISTICS
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then
Result = current_temperature = weather_data.temperature

update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
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Implementing the Observer Pattern (3)
1 class WEATHER_STATION create make
2 feature -- Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 feature -- Commands
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9

10 wd.set_measurements (15, 60, 30.4)

11 wd.notify

12 cc.display ; fd.display ; sd.display
13 cc.display ; fd.display ; sd.display
14
15 wd.set_measurements (11, 90, 20)

16 wd.notify

17 cc.display ; fd.display ; sd.display
18 end
19 end

L13: cc, fd, sd make use of “cached” data values.
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Observer Pattern: Limitation? (1)

● The observer design pattern is a reasonable solution to building
a one-to-many relationship: one subject (publisher) and
multiple observers (subscribers).

● But what if a many-to-many relationship is required for the
application under development?
○ Multiple weather data are maintained by weather stations.

○ Each application observes all these weather data.
○ But, each application still stores the latest measure only.

e.g., the statistics app stores one copy of temperature
○ Whenever some weather station updates the temperature of its

associated weather data, all relevant subscribed applications (i.e.,
current conditions, statistics) should update their temperatures.

● How can the observer pattern solve this general problem?
○ Each weather data maintains a list of subscribed applications.
○ Each application is subscribed to multiple weather data.
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Observer Pattern: Limitation? (2)
What happens at runtime when building a many-to-many
relationship using the observer pattern?

wd1wd1: WEATHER_DATA 

wd2wd2: WEATHER_DATA 

wdmwdm: WEATHER_DATA 

wdm�1wdm�1: WEATHER_DATA

application1application1

application2application2

applicationnapplicationn

…
…

Graph complexity, with m subjects and n observers? [ O( m ⋅ n ) ]
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Event-Driven Design (1)
Here is what happens at runtime when building a many-to-many
relationship using the event-driven design.

wd1wd1: WEATHER_DATA

wd2wd2: WEATHER_DATA

wdnwdn: WEATHER_DATA

wdn�1wdn�1: WEATHER_DATA

application1application1

application2application2

applicationnapplicationn

… …change_on_temperature: EVENT

publish

applicationn�1applicationn�1

subscribe

Graph complexity, with m subjects and n observers? [O( m + n )]
Additional cost by adding a new subject? [O(1)]
Additional cost by adding a new observer? [O(1)]
Additional cost by adding a new event type? [O(m + n)]
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Event-Driven Design (2)

In an event-driven design :
● Each variable being observed (e.g., temperature,
humidity, pressure) is called a monitored variable.
e.g., A nuclear power plant (i.e., the subject) has its
temperature and pressure being monitored by a shutdown
system (i.e., an observer ): as soon as values of these
monitored variables exceed the normal threshold, the SDS will
be notified and react by shutting down the plant.

● Each monitored variable is declared as an event :
○ An observer is attached /subscribed to the relevant events.
● CURRENT CONDITION attached to events for temperature, humidity.
● FORECAST only subscribed to the event for pressure.
● STATISTICS only subscribed to the event for temperature.

○ A subject notifies/publishes changes to the relevant events.
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Event-Driven Design: Implementation

● Requirements for implementing an event-driven design are:
1. When an observer object is subscribed to an event , it attaches:

1.1 The reference/pointer to an update operation
Such reference/pointer is used for delayed executions.

1.2 Itself (i.e., the context object for invoking the update operation)
2. For the subject object to publish an update to the event , it:

2.1 Iterates through all its observers (or listeners)
2.2 Uses the operation reference/pointer (attached earlier) to update the

corresponding observer.

● Both requirements can be satisfied by Eiffel and Java.
● We will compare how an event-driven design for the weather

station problems is implemented in Eiffel and Java.
⇒ It’s much more convenient to do such design in Eiffel.
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Event-Driven Design in Java (1)

1 public class Event {
2 Hashtable<Object, MethodHandle> listenersActions;
3 Event() { listenersActions = new Hashtable<>(); }
4 void subscribe(Object listener, MethodHandle action) {

5 listenersActions.put( listener , action );
6 }
7 void publish(Object arg) {
8 for (Object listener : listenersActions.keySet()) {
9 MethodHandle action = listenersActions.get(listener);

10 try {

11 action .invokeWithArguments( listener , arg);
12 } catch (Throwable e) { }
13 }
14 }
15 }

● L5: Both the delayed action reference and its context object (or call
target) listener are stored into the table.

● L11: An invocation is made from retrieved listener and action.
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Event-Driven Design in Java (2)
1 public class WeatherData {
2 private double temperature;
3 private double pressure;
4 private double humidity;
5 public WeatherData(double t, double p, double h) {
6 setMeasurements(t, h, p);
7 }

8 public static Event changeOnTemperature = new Event();

9 public static Event changeOnHumidity = new Event();

10 public static Event changeOnPressure = new Event();

11 public void setMeasurements(double t, double h, double p) {
12 temperature = t;
13 humidity = h;
14 pressure = p;

15 changeOnTemperature .publish(temperature);

16 changeOnHumidity .publish(humidity);

17 changeOnPressure .publish(pressure);
18 }
19 }
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Event-Driven Design in Java (3)

1 public class CurrentConditions {
2 private double temperature; private double humidity;
3 public void updateTemperature(double t) { temperature = t; }
4 public void updateHumidity(double h) { humidity = h; }
5 public CurrentConditions() {
6 MethodHandles.Lookup lookup = MethodHandles.lookup();
7 try {
8 MethodHandle ut = lookup.findVirtual(
9 this.getClass(), "updateTemperature",

10 MethodType.methodType(void.class, double.class));
11 WeatherData.changeOnTemperature.subscribe(this, ut);
12 MethodHandle uh = lookup.findVirtual(
13 this.getClass(), "updateHumidity",
14 MethodType.methodType(void.class, double.class));
15 WeatherData.changeOnHumidity.subscribe(this, uh);
16 } catch (Exception e) { e.printStackTrace(); }
17 }
18 public void display() {
19 System.out.println("Temperature: " + temperature);
20 System.out.println("Humidity: " + humidity); } }
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Event-Driven Design in Java (4)

1 public class WeatherStation {
2 public static void main(String[] args) {
3 WeatherData wd = new WeatherData(9, 75, 25);
4 CurrentConditions cc = new CurrentConditions();
5 System.out.println("=======");
6 wd.setMeasurements(15, 60, 30.4);
7 cc.display();
8 System.out.println("=======");
9 wd.setMeasurements(11, 90, 20);

10 cc.display();
11 } }

L4 invokes
WeatherData.changeOnTemperature.subscribe(

cc, ‘‘updateTemperature handle’’)
L6 invokes

WeatherData.changeOnTemperature.publish(15)
which in turn invokes

‘‘updateTemperature handle’’.invokeWithArguments(cc, 15)
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Event-Driven Design in Eiffel (1)
1 class EVENT [ARGUMENTS -> TUPLE ]
2 create make
3 feature -- Initialization
4 actions: LINKED_LIST[PROCEDURE[ARGUMENTS]]
5 make do create actions.make end
6 feature
7 subscribe (an_action: PROCEDURE[ARGUMENTS])
8 require action_not_already_subscribed: not actions.has(an_action)
9 do actions.extend (an_action)

10 ensure action_subscribed: action.has(an_action) end
11 publish (args: ARGUMENTS)
12 do from actions.start until actions.after
13 loop actions.item.call (args) ; actions.forth end
14 end
15 end

● L1 constrains the generic parameter ARGUMENTS: any class that instantiates
ARGUMENTS must be a descendant of TUPLE.

● L4: The type PROCEDURE encapsulates both the context object and the
reference/pointer to some update operation.
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Event-Driven Design in Eiffel (2)
1 class WEATHER_DATA
2 create make
3 feature -- Measurements
4 temperature: REAL ; humidity: REAL ; pressure: REAL
5 correct_limits(t,p,h: REAL): BOOLEAN do . . . end
6 make (t, p, h: REAL) do . . . end
7 feature -- Event for data changes

8 change on temperature : EVENT[TUPLE[REAL]]once create Result end

9 change on humidity : EVENT[TUPLE[REAL]]once create Result end

10 change on pressure : EVENT[TUPLE[REAL]]once create Result end
11 feature -- Command
12 set_measurements(t, p, h: REAL)
13 require correct_limits(t,p,h)
14 do temperature := t ; pressure := p ; humidity := h

15 change on temperature .publish ([t])

16 change on humidity .publish ([p])

17 change on pressure .publish ([h])

18 end
19 invariant correct_limits(temperature, pressure, humidity) end
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Event-Driven Design in Eiffel (3)
1 class CURRENT_CONDITIONS
2 create make
3 feature -- Initialization
4 make(wd: WEATHER_DATA)
5 do
6 wd.change on temperature.subscribe (agent update_temperature)
7 wd.change on humidity.subscribe (agent update_humidity)
8 end
9 feature

10 temperature: REAL
11 humidity: REAL
12 update_temperature (t: REAL) do temperature := t end
13 update_humidity (h: REAL) do humidity := h end
14 display do . . . end
15 end

● agent cmd retrieves the pointer to cmd and its context object.

● L6 ≈ . . . (agent Current .update temperature)

● Contrast L6 with L8–11 in Java class CurrentConditions.
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Event-Driven Design in Eiffel (4)
1 class WEATHER_STATION create make
2 feature
3 cc: CURRENT_CONDITIONS
4 make
5 do create wd.make (9, 75, 25)
6 create cc.make (wd)
7 wd.set measurements (15, 60, 30.4)
8 cc.display
9 wd.set measurements (11, 90, 20)

10 cc.display
11 end
12 end

L6 invokes
wd.change on temperature.subscribe(

agent cc.update temperature)

L7 invokes
wd.change on temperature.publish([15])

which in turn invokes cc.update temperature(15)
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Event-Driven Design: Eiffel vs. Java
● Storing observers/listeners of an event

○ Java, in the Event class:
Hashtable<Object, MethodHandle> listenersActions;

○ Eiffel, in the EVENT class:
actions: LINKED_LIST[PROCEDURE[ARGUMENTS]]

● Creating and passing function pointers
○ Java, in the CurrentConditions class constructor:

MethodHandle ut = lookup.findVirtual(
this.getClass(), "updateTemperature",
MethodType.methodType(void.class, double.class));

WeatherData.changeOnTemperature.subscribe(this, ut);

○ Eiffel, in the CURRENT CONDITIONS class construction:
wd.change on temperature.subscribe (agent update_temperature)

⇒ Eiffel’s type system has been better thought-out for design .
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