EECS2030 Fall 2019
Additional Notes
Solving Problems Recursively

Chen-Wei Wang

Given a problem of size n (e.g., an integer of value n, an array of n elements, etc.), adopt the following steps to solve
the problem recursively:

| Step 1: Understand the Problem | We denote the original problem to be solved as P,

(i.e,. a problem P, where the subscript n denotes its size). For example:

Example 1. Compute the factorial of n.

Ezample 2. Compute the n' number in the Fibonacci sequence.

Ezxample 3. Compute if a string s of length n is a palindrome.

Ezample 4. Compute the reverse of a string s of length n.

Ezxample 5. Compute the number of occurrences of a character ¢ in a string s of length n.

Ezample 6. Compute if elements in index range [from, to] of an array a are all positive.

Ezample 7. Compute if elements in index range [from, to] of an array a are sorted in a non-descending order.

Ezample 8. Compute if elements in index range [from, to] of a sorted array a contain a value k.

Step 2: Define the Base Cases | We first define the solutions to the same problem whose sizes are small so that

they can be solved immediately: Py, P;, Ps, etc. For example:

Ezample 1. Factorial 0 is just 1.

Ezample 2. The first and second Fibonacci numbers are both 1.

Example 3. An empty string and a string of length one are both palindromes.

Example 4. The reverse of an empty string or of a string of length one is simply the string itself.
Ezxample 5. The number of occurrences of any character in an empty string is 0.

1. If index range [from, to] is such that from > to, e.g., [3,2], then there is an empty collection of elements to
be considered.
FEzample 6. Since you cannot find a counter-example (i.e., a number which is not positive) from an empty
collection, the result of determining all numbers being positive is simply true.
Ezample 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted
in a non-descending order) from an empty collection, the result of determining all numbers in an empty
collection being sorted in a non-descending order is simply true.
Ezample 8. Since an empty collection contains nothing, the result of determining if any value k exists in
an empty collection is simply false.
2. If index range [from, to] is such that from == to, e.g., [3, 3], then there is a collection of exactly one element
to be considered. We call such a collection a singleton collection. Say e is such an element that a singleton
collection contains.

Ezample 6. The result of determining all numbers being positive is simply e > 0.

Ezample 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted
in a non-descending order) from a collection of just one number, the result of determining all numbers in
a singleton collection being sorted in a non-descending order is simply true.

Ezample 8. The result of determining if any value k exists in a singleton collection is simply k == e.

Step 3: Assume that Solutions to Smaller Problems Exist | We then assume that there exist solutions to

sub-problems whose sizes are strictly smaller than the original problem: e.g., P,_1, P,_2, etc. For example:

Ezample 1. Assume the factorial of n — 1 already exists (where n > 0). We denote this solution as P,,_; as its
input size (i.e., value of number) is exactly one less than the original problem.

Ezample 2. Assume the (n—1)*" and (n—2)*" numbers in the Fibonacci sequence already exist (where n > 2).
We denote these solutions as P,_; and P, _o as their input sizes (i.e., position in the Fibonacci sequence) are
exactly, respectively, one and two less than the original problem.

Ezample 3. Assume we already know if a smaller substring of s (where s.length() > 1), with the first and last
characters of s taken out, is a palindrome. We denote this solution as P,_s as its input size (i.e., length of
string) is two less than the original problem.

Ezample J. Assume we already know the reverse of a smaller substring of s (where s.length() > 1), with the
first character of s taken out. We denote this solution as P, _; as its input size (i.e., length of string) is one
less than the original problem.

Ezample 5. Assume we already know the the number of occurrences of a character ¢ in a smaller substring of
s (where s.length() > 0), with the first character of s taken out. We denote this solution as P,_1 as its input
size (i.e., length of string) is one less than the original problem.

We assume we already know the solution for elements in a smaller index range [from + 1, to] of an array a:
Ezample 6. We denote P,,_; as the solution for if the n — 1 elements are all positive.

Ezxample 7. We denote P,,_; as the solution for if the n — 1 elements are sorted in a non-descending order.
Ezample 8. We denote Pyef; as the solution for if the left half (of roughly % elements) of a sorted array contains
a value k. Similarly, we denote Py as the solution for if the right half (of roughly § elements) of a sorted
array contains a value k.

Step 4: Define the Recursive Cases

We finally define the solution to the original problem P, in terms of the

solutions to other strictly smaller sub-problems: P, = f(P,_1, Pn,—2, ...). That is, P, is defined as a function
f that combines solutions to strictly smaller problems P,,_1, P,_o, etc. via some simple calculations. Informally
speaking, we “massage” solutions to smaller problems into the solution to a bigger problem. For example:

Ezample 1. We define P, =n x P,_1.
Example 2. We define P, = P,,_1 4+ P,,_».
Ezample 3. We define P,, = (¢l == ¢2 & P,,_2) (where ¢l and ¢2 are, respectively, the first and the last

characters of s). For example, abcbe is a palindrome because a == ¢ and beb is a palindrome. However, abcee
is not a palindrome because bcc is not a palindrome, even though a == c.

Ezample J. We define P, = P,_1 + ¢l (where cl is the first character of s, and the operator + means string
concatenation). For example, the reverse of abed is the reverse of abe (which is deb) concatenated with a.

Example 5. We define P, = 1+ P,,_1 if the first character of s matches ¢, and in case they do not match, we
define P, = 0+ P,,_1. For example, the number of occurrences of character a in string ababa is 1 (. a matches
the first character in the string) plus the number of occurrences of a in baba (which is 2). But, the number of
occurrences of character b in string ababa is 0 (" b does not the first character a in the string) plus the number
of occurrences of b in baba (which is 2).

Ezample 6. We define P, = a[from| > 0 & P,,_1. For example, numbers in {1,2,3,4,5} are all positive
because 1 > 0 and numbers in {2,3,4,5} are all positive. But, numbers in {—1,2,3,4,5} are not all positive
because —1 > 0 is false, even though and numbers in {2, 3,4, 5} are all positive. Also, numbers in {1,2,—3,4,5}
are not all positive because numbers in {2, —3,4,5} are not all positive, even though 1 > 0 is true.

Ezample 7. We define P, = a[from] < a[from + 1] & P,_;. For example, say from is 0, then numbers in
{1,2,2,3,4} are sorted because 1 < 2 and numbers in {2,2,3,4} are sorted. But, numbers in {1,-1,2,3,4}
are not sorted because 1 < —1 is false, even though numbers in {—1,2,3,4} are sorted. Also, numbers in
{1,2,2,—1,4} are not sorted because numbers in {2,2, —1,4} are not sorted, even though 2 < 2 is true.

Ezample 8. We exploit the fact that array a is sorted: for each element in a, all elements to its left are smaller,
whereas all elements to its right are larger. We calculate a middle index m = W (where we have an
integer division in Java, and this is mathematically equivalent to the calculation of its floor LWJ), and
compare a[m] against the value k being searched. We define P, = true if a[m] == k (i.e., it is found). If k is
not found immediately but k£ < a[m], then we know that if k exists, it must be to the left of a[m]: P, = Pjep.
Symmetrically, if k is not found immediately but k > a[m], then we know that if k exists, it must be to the
right of a[m]: P,, = Prigns.

:g:d == on.g
0] == wouf J
4 614 ‘ ¢ 4 ¢ — ybu o == T:QL.\.TQ =
([57+ moay 110 <4 31 MO || (o f0r T+ [y meny | D)HYPADIGUIG = HO (3 ‘0 ‘wouf ‘D)gyouvagurq = 14
07 < wo.uf It
14 2 3 14 [P 3 __ 1/ QWN@.\ = 3 3 3
ooy 110 >4 31 wig (o T — [o7Smoy | ‘0 ‘D)HY2waG5UY = Wi (4 ‘01 ‘wioif ‘D)yowoguiq = O (y ‘o3 ‘wouf ‘D)fyouvaGULY
03 == wouf JI
onay = . .
(03 ‘wiosf ‘D)gpepiogs = iy (01 ‘wouf ‘v)[parsogs
03 < wouf Ju
—u - ¢ ¢ _ T—u Uz = ¢ ¢
1=t 3% (1 + wourf]p S [wo.f]v (01 ‘T4 wouf ‘D)fpariogst = TV (03 “wouf ‘D)gporiogsr = of (01 ‘wouf ‘v)fpariogs:
07 == wouf JI
0< [woiflp =
(01 ‘wouf ‘)gsoqyp = 14
07 < wouf It
T-u ¢ ¢ —u ondy = ¢ ¢
3 0 < [0]» (01 ‘T +wouf D)fsoqp = rq (07 “wouf ‘D)gsoqy = OF (01 ‘wouf ‘v)psodyw
2 =i (0)1V40y2's JL IV +0 (24s)900
== (0IV40Yy2's JL 1 + 1 (@ (Quabuaps ‘T)burigsqnss)o00 = 1" 0=(2'un)20 =g _
LB = (LB)00 =Tg
(0)Burigsqns's + 1 (Oyrbuoy's ‘T)burigsqns s = =iy e = ()00t = O (s)aas
Nlim
P oy = (,e.)dst = 'd (s)dst
(1 — Qubuay s)3y wyo == (0)2y 4vYy2's ((1 = Qyabuaps ‘1)burnysqnss)gst = ="d oty = (wu)dst = °d
(@ —u)py =g 1= ()Y = (Way
S Gl | (I—wef =1"q 1= =14d
T xu (1 — u)uiogonf = 1-vg I = (0)priogonf = of (u)rsogonf
) (% “'d ‘o) (“d)
uornjog || (s)we[qoig-qng 03 (s)uolnjog aAISINIIY (s)asep aseg wa[qoIg

