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Algorithm and Data Structure
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e A data structure is:
o A systematic way to store and organize data in order to facilitate
access and modifications
o Never suitable for all purposes: it is important to know its sirengths
and limitations
e A well-specified computational problem precisely describes
the desired input/output relationship.
o Input: A sequence of nnumbers (ay, ao, ..., an)
o Output: A permutation (reordering) (&}, a,, ..., a,) of the input
sequence such that &) < a; <...< &),
o An instance of the problem: (3, 1, 2, 5, 4)
e An algorithm is:
o A solution to a well-specified computational problem
o A sequence of computational steps that takes value(s) as input
and produces value(s) as output
e Steps in an algorithm manipulate well-chosen data structure(s).

Measuring “Goodness” of an Algorithm
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1. Correctness :
o Does the algorithm produce the expected output?
o Use JUnit to ensure this.

2. Efficiency:
o Time Complexity: processor time required to complete
o Space Complexity: memory space required to store data

Correctness is always the priority.
How about efficiency? Is time or space more of a concern?
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Measuring Efficiency of an Algorithm

e Time is more of a concern than is storage.
Solutions that are meant to be run on a computer should run as
fast as possible.

Particularly, we are interested in how running time depends on
two input factors:

1. size
e.g., sorting an array of 10 elements vs. 1m elements
2. structure
e.g., sorting an already-sorted array vs. a hardly-sorted array
e How do you determine the running time of an algorithm?

1. Measure time via experiments
2. Characterize time as a mathematical function of the input size
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Measure Running Time via Experiments
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¢ Once the algorithm is implemented in Java:

o Execute the program on test inputs of various sizes and structures.
o For each test, record the elapsed time of the execution.

long startTime = System.currentTimeMillis();
/* run the algorithm */

long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;

o Visualize the result of each test.

e To make sound statistical claims about the algorithm’s running
fime, the set of input tests must be “reasonably” complete.

Example Experiment LASSONDE
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e Computational Problem:
o Input: A character ¢ and an integer n
o Output: A string consisting of n repetitions of character ¢
€.g., Given input “«’ and 15, OULPUL # s o % % % % & x % % *.

e Algorithm 1 using String Concatenations:

public static String repeatl (char c, int n) {
String answer = "";
for (int i = 0; i < n; i ++) { answer += c; }
return answer; }

Algorithm 2 using StringBuilder append’s:

public static String repeat2(char c, int n) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; 1 ++) { sb.append(c); } ‘

’ return sb.toString(); } ‘
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Example Experiment: Detailed Statistics

‘ n ‘ repeatl (in ms) ‘ repeat?2 (in ms) ‘

50,000 2,884 1

100,000 7,437 1

200,000 39,158 2

400,000 170,173 3

800,000 690,836 7
1,600,000 2,847,968 13
3,200,000 12,809,631 28
6,400,000 59,594,275 58
12,800,000 | 265,696,421 (~ 3 days) 135

e As input size is doubled, rates of increase for both algorithms
are linear:
o Running time of repeat1 increases by ~ 5 times.

o Running time of repeat?2 increases by ~ 2 times.

Example Experiment: Visualization LASSONDE
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Experimental Analysis: Challenges LASSONDE Counting Primitive Operations LASsONDE
1. An algorithm must be fully implemented (i.e., translated into
valid Java syntax) in order study its runtime behaviour A primitive operation corresponds to a low-level instruction with
experimentally. a constant execution time .
o What if our purpose is to choose among alternative data structures o Assignment [e.g., x = 5;]
or algorithms to implement? , . o Indexing into an array le.g.,alil]
o Can there be a higher-level analysis to determine that one o Arithmetic, relational, logical op. [e.g.,a + b,z > w,bl && b2]
algorithm or data structure is superior than others? o Accessing an attribute of an object [e.g., acc.balance]
2. Comparison of multiple algorithms is only meaningful when o Returning from a method [e.g., return result;]
experiments are conducted under the same environment of: Q: Why is a method call in general not a primitive operation?
o Hardware: CPU, running processes A: It may be a call to:
o Software: OS, JVM version e a “cheap” method (e.g., printing Hello World), or

. . . e an “expensive” method (e.g., sorting an array of integers
3. Experiments can be done only on a limited set of test inputs. b (€ g Y gers)

o What if “important” inputs were not included in the experiments?

e
. .. |
Moving Beyond Experimental Analysis o Example: Counting Primitive Operations  |ssono:
1 | findMax (int[] a, int n) {
2 currentMax = al[0];
¢ A better approach to analyzing the efficiency (e.g., running 3| for (int i=1; i< n; ) (
times) of algorithms should be one that: g 1fcu<jr[;£t;axciffa e[nit]p@f}) {
o Allows us to calculate the relative efficiency (rather than absolute 6 it )
elapsed time) of algorithms in a ways that is independent of the 7 | xeturn currentMax; }
hardware and software environment. _ #of times i < n in Line 3 is executed? [n]
o Can be applied using a high-level description of the algorithm # of imes the loop body (Line 4 to Line 6) is executed? [ n—1 |
gv'th(_);t fully;lmplemsrt|pg 'tz' e Line2: 2 [1 indexing + 1 assignment]
° or_15| ers fall possible INpus. _ _ _ e Line3: n+1 [1 assignment + n comparisons]
¢ We will learn a better approach that contains 3 ingredients: e Lined: (n-1)-2 [1 indexing + 1 comparison]
1. COU”‘”?Q primitive operations ) . . e Line5: (n-1)-2 [1 indexing + 1 assignment]
2. Approximating running time as a function of input size Line 6: 1).2 1 additi 1 . i
3. Focusing on the worst-case input (requiring the most running time) * Lineb: (n-1)- [1 addition + 1 assignment]
e Line7: 1 [1 return]
o Total # of Primitive Operations: 7n-2



From Absolute RT to Relative RT e

e Each primitive operation (PO) takes approximately the same,
constant amount of time to execute. [say t]
e The number of primitive operations required by an algorithm
should be proportional to its actual running time on a specific
environment.
e.g., findMax (int[] a, int n) has7n-2POs

RT =(7n-2)-t

Say two algorithms with RT (7n - 2) - tand RT (70n + 3) - t.
= It suffices to compare their relative running time:
/n-2vs. 10n + 3.
¢ To determine the time efficiency of an algorithm, we only

focus on their number of POs .

|
Example: Approx. # of Primitive Operations|soxo:

e Given # of primitive operations counted precisely as 7n -2,
we view it as

7-n'-2.n°
e We say
o nis the highest power
o 7 and 2 are the multiplicative constants
o 2isthe lower term
¢ When approximating a function (considering that input size may
be very large):
o Only the highest power matters.
o multiplicative constants and lower terms can be dropped.
= 7n -2 is approximately n
Exercise: Consider 7n+2n-log n + 3n?:
o highest power? [n?]
o multiplicative constants? [7,2,3]

o lower terms? [7n+2n-log n]

Approximating Running Time LASSONDE
as a Function of Input Size

Given the high-level description of an algorithm, we associate it
with a function f, such that f(n) returns the number of
primitive operations that are performed on an input of size n.

o f(n)=5 [constant]
o f(n)=log>n [logarithmic]
o f(n)=4-n [linear]
o f(n)=n? [quadratic]
o f(n)=n° [cubic]
o f(n)=2" [exponential]

Focusing on the Worst-Case Input e
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e Average-case analysis calculates the expected running times
based on the probability distribution of input values.

e worst-case analysis or best-case analysis?
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What is Asymptotic Analysis?

Asymptotic analysis
¢ |Is a method of describing behaviour in the limit:
o How the running time of the algorithm under analysis changes as
the input size changes without bound
o e.g., contrast RT(n) = nwith RT>(n) = n?
¢ Allows us to compare the relative performance of alternative
algorithms:
o For large enough inputs, the multiplicative constants and
lower-order terms of an exact running time can be disregarded.
o e.g., RTy(n) =3n? + 7n+18 and RT;(n) = 100n° + 3n— 100 are
considered equally efficient, asymptotically.
o e.g., RT1(n) = n®+ 7n+ 18 is considered less efficient than
RT;(n) = 100n? + 100n + 2000, asymptotically.
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Three Notions of Asymptotic Bounds

We may consider three kinds of asymptotic bounds for the running
fime of an algorithm:

e Asymptotic upper bound [O]
¢ Asymptotic lower bound €]
¢ Asymptotic tight bound [©]

Asymptotic Upper Bound: Definition LASSONDE
e Let 7(n) and g(n) be functions mapping positive integers (input
size) to positive real numbers (running time).
o f(n) characterizes the running time of some algorithm.

o O(g(n)) denotes a collection of functions.

e O(g(n)) consists of all functions that can be upper bounded
by g(n), starting at some point, using some constant factor.
e f(n)e O(g(n)) if there are:
o Areal constantc >0
o An integer constant ng > 1
such that:
f(n)<c-g(n) forn>ng

e For each member function f(n) in O(g(n)) , we say that:
o f(n)e O(g(n)) [f(n) is a member of “big-Oh of g(n)
o f(n)is O(g(n)) [f(n) is “big-Oh of g(n)

o f(n) is order of g(n)

]
]
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Asymptotic Upper Bound: Visualization

cg(n)

fin)

Running Time

Sk — —

0 Input Size

From ng, f(n) is upper bounded by c¢- g(n), so f(n) is O(g(n)) .
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Asymptotic Upper Bound: Example (1)

Prove: The function 8n+5is O(n).
Strategy: Choose a real constant ¢ > 0 and an integer constant
no > 1, such that for every integer n > ny:

8n+5<c-n
Can we choose ¢ = 9?7 What should the corresponding ng be?
n 8n+5 | 9n
1 13 9
2 21 18
3 29 |27
4 37 |36
5 45 | 45
6 53 | 54

Therefore, we prove it by choosing ¢ =9 and ng = 5.

We may also prove it by choosing ¢ =13 and ng = 1. Why?

LASSONDE
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Asymptotic Upper Bound: Example (2)

Prove: The function f(n) =5n* +3n® + 2 + 4n+1is O(n*).

Strategy: Choose a real constant ¢ > 0 and an integer constant
no > 1, such that for every integer n > ny:

5n* +3n° + 2 +4n+1<c-n*

f(1)=5+3+2+4+1=15
Choose c=15and ng = 1!

Asymptotic Upper Bound: Proposition (1)

If f(n) is a polynomial of degree d, i.e.,

LASSONDE
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f(ny=ap-n"’+ay-n' +---+ag-n?

and ag, a1, . .., ay are integers, then f(n) is O(n%) .
o We prove by choosing

c
No

lao| + |ar| +--- + |ag]

mM<n'<mP<---<n?
[F(1) < (|ao| +|a1] + -+ +]aql) - 19]

ap-1%+a -1+ vag-19<|apl- 19+ |ay|- 19 +---+]ag| - 1¢

o We know that for n> 1:
o Upper-bound effect: ng=17?

o Upper-bound effect holds? [f(n) < (|ao| + |a1] + -~ + |ag]) - n°]

a-n’+a;-n'+---+ag-n?<|ag|-n?+|as|-n% +---+|ag|-n°

e

Asymptotic Upper Bound: Proposition (2) |.assonoe
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o(n®) c O(n"yc O(MP)c...

If a function f(n) is upper bounded by another function g(n) of
degree d, d > 0, then f(n) is also upper bounded by all other
functions of a strictly higher degree (i.e., d + 1, d + 2, etfc.).
e.g., Family of O(n) contains:

n°,2n°,3n°, ... [functions with degree 0]

n,2n,3n, ... [functions with degree 1]
e.g., Family of O(n?) contains:

n°, 2n°, 3n°, ... [functions with degree 0]

n,2n,3n, ... [functions with degree 1]

m, 2, 3r?, ... [functions with degree 2]
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Asymptotic Upper Bound: More Examples

e 502 +3n-logn+2n+5is O(n?) [c=15, ng =1]
e 20 +10n-logn +5is O(n%) [c=35,ny=1]
e 3-logn+2is O(logn) [c=5,n= 2]

o Why can’t ng be 1?
o Choosing ny = 1 means = f() is upper-bounded by ¢ - Iog:
¢ We have f() =3-log1 +2, which is 2.
¢ We have c- lo, which is 0.
= f() is not upper-bounded by c - /o
2M2 js O(2")
2n+100-lognis O(n)

[ Contradiction! ]
[c=4, ng=1]
[c=102, ng = 1]

e
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Using Asymptotic Upper Bound Accurately |.

¢ Use the big-Oh notation to characterize a function (of an
algorithm’s running time) as closely as possible.
For example, say f(n) = 4n° + 3n? + 5:
o Recall: O(n®) c O(n*) c O(n°) c ...
o Itis the most accurate to say that f(n) is O(n®).
o ltis true, but not very useful, to say that f(n) is O(n*) and that

f(n)is O(n®).

o ltis false to say that f(n) is O(n?), O(n), or O(1).

e Do not include constant factors and lower-order terms in the
big-Oh notation.
For example, say f(n) = 2n? is O(n?), do not say f(n) is
O(4n? +6n+9).

Classes of Functio

ns
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upper bound |  class cost
o) constant cheapest
O(log(n)) logarithmic
o(n) linear
O(n-log(n)) “n-log-n”
Oo(r?) quadratic
o(n®) cubic
O(n*), k>1 | polynomial
O(a"), a>1 | exponential | most expensive

27 of 42]

Rates of Growth: Comparison
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Upper Bound of Algorithm: Example (1) LASSONDE Upper Bound of Algorithm: Example (3) LASSONDE
1 containsDuplicate (int[] a, int n) {
1 |maxOf (int x, int y) { 2 for (int i = 0; i < n; ) {
2 int max = x; 3 for (int j = 0; 7 < n; ) {
3 if (y > x) | 4 if (1 !'= j && ali]l == alj]) {
4 max = y; 5 return true; }
5 } 6 Fo++; 0}
6 return max; 7 i+t )
7 1} 8 return false; }

e # of primitive operations: 4 » Worst case is when we reach Line 8.
2 assignments + 1 comparison + 1 return = 4 * # of primitive operations ~ ¢y + n- n- ¢, where ¢; and ¢, are
 Therefore, the running time is O(1) . some constants.
e That s, this is a constant-time algorithm. « Therefore, the running time is O(n?) .
e That s, this is a quadratic algorithm.

[29°0f 42| [B1of 42)

Upper Bound of Algorithm: Example (2) LASSONDE Upper Bound of Algorithm: Example (4) LASSONDE

1 sumMaxAndCrossProducts (int[] a, int n) {

1 | finaMax (int[] a, int n) { 2 | int max = a[0]; ‘

2 currentMax = al0]; 3 for(int i = 1; i < n; 1 ++) {

3 for (int i = 1; i < n; ) { 4 if (ali]l > max) { max = al[il; }

4 if (a[i] > currentMax) { S|}

5 currentMax = alil; } 6 int sum = max;

6 PR 7 for (int j = 0; j < n; J ++) {

7 return currentMax; } 8 for (int k = 0; k < n; k ++) {
9 sum += al[j] * alkl; } }
10 return sum; }

e From last lecture, we calculated that the # of primitive

operations is 7n - 2. o # of primitive operations ~ (¢1 - n+ ¢,) + (c3- nN-n+ c4), where
e Therefore, the running time is O(n) . c1, Co, C3, and ¢4 are some constants.
e That s, this is a linear-time algorithm. * Therefore, the running time is O(n + n2) = O(nz) .
e That s, this is a quadratic algorithm.
[0 42] [2of42]



Upper Bound of Algorithm: Example (5) LASSONDE Array Case Study: VT
Comparing Two Sorting Strategies
1 | triangularSum (int[] a, int n) {
2 int sum = 0;
3| for (int i = 0; i < n; i ++) { ¢ Problem:
;‘ | for tint afj]:;i}" }j AR Input: An array a of n numbers (ay, as, ..., an)
6 | return sum; } Output: A permutation (reordering) (&}, as, ..., a,) of the
input sequence such that &) < a, <...< a,
¢ We propose two alternative implementation strategies for
e # of primitive operations » n+ (n-1)+---+2+1 = w solving this problem.
« Therefore, the running time is O(nQTm) - 0(mP) . * At the end, we want to know which one to choose, based on

. . . . time complexity .
e That s, this is a quadratic algorithm.

——— N e

Basic Data Structure: Arrays LASSONDE Sorting: Strategy 1 — Selection Sort LASSONDE
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¢ Maintain a (initially empty) sorted portion of array a.
e From left to right in array a, select and insert the minimum
element to the end of this sorted portion, so it remains sorted.

e An array is a sequence of indexed elements.

e Size of an array is fixed at the time of its construction.
e Supported operations on an array:

A o , _ 1 | selectionSort (int[] a, int n)
o Accessing: e.g., int max = a[0]; 5 for (int 1 = 0; 1 <= (n - 2); 1 +4)
Time Complexity: O(1) [constant operation] 3 int minindex = i;
° Updating: e.g., alil = al[i + 17; 4 foxf (int '_7 = 1i; J. <= (n - 1); .] +4) '
X i . 5 if (alj] < alminIndex]) { minIndex = j; }
Time Complexity: O(1) [constant operation] 6 int temp = alil;
o Inserting/Removing: 7 ali] = alminIndex];
8 a[minIndex] = temp;
String([] insertAt(String[] a, int n, String e, int i)
String[] result = new String[n + 1]; , , e How many times does the body of for loop (Line 4) run?
for(int j = 0; j <= i - 1; j ++){ result([j]l = aljl; }
result[i] = e; * Running time? [ O(rP) ]
for(int j =i + 1; j <=n - 1; j ++){ resultl[j] = alj-11; }
return result; n + (n-1) Tt 2
find {al0], ..., aln-11} fing {a[1], ..., aln-11} find {aln - 2], alaln - 111}
Time Complexity: O(n) [linear operation] * So selection sort is a quadratic-time algorithm.

————— N e



Sorting: Strategy 2 — Insertion Sort LASSONDE

¢ Maintain a (initially empty) sorted portion of array a.
e From left to right in array a, insert one element at a time into the
“right” spot in this sorted portion, so it remains sorted.

1 |insertionSort(int[] a, int n)

2 for (int i = 1; i < n; 1 ++)

3 int current = al[il;

4 int § = i;

5 while (j > 0 && alj - 1] > current)
6 aljl = alj - 11;

7 J -

8 aljl = current;

e while loop (L5) exits when? § <= 0ora[j - 1] <= current
* Running time? [ Or?) ]

O( 1 + 2 ot (n-1) )
~—— —— N ,
insert into {a[0]} insert into {a[0], alll} insert into {a[0], ..., a[n-21}
e So insertion sort is a quadratic-time algorithm.

Sorting: Alternative Implementations? LASSONDE

* In the Java implementations for selection sort and insertion
sort, we maintain the “sorted portion” from the /eft end.

o For selection sort, we select the minimum element from the
“unsorted portion” and insert it to the end in the “sorted portion”.
e For insertion sort, we choose the left-most element from the
“unsorted portion” and insert it at the “right spot” in the “sorted
portion”.
e Question: Can we modify the Java implementations, so that
the “sorted portion” is maintained and grown from the right
end instead?

Comparing Insertion & Selection Sorts e

e Asymptotically , running times of selection sort and insertion

sort are both O(n?) .

¢ We will later see that there exist better algorithms that can
perform better than quadratic: O(n- logn).
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