Aggregation: Independent Containees
Shared by Containers (1.1)

Aggregation and Composition orof

Course © 1 Faculty

class Course {

1 F 1t
String title; class Faculty {

String name;

. Faculty prof; .
EECS?OSO B: Advanced_ Course (String title) Fﬁz_lty(ﬁﬂfg name) |
Object Oriented Programming this.title = title; 1S.name = name;

}
Y R K Fall 201 > - -
O ' a 0 9 void setProf(Faculty prof) { vo:Ld_ setName (String name) {
this.name = name;

CHEN-WEI WANG }
Faculty getProf() {

return this.prof;

this.prof = prof;)

String getName () {
return this.name;

Aggregation vs. Composition: Terminology |.assono: Aggregation: Independent Containees
Container object: an object that contains others. Shared by Containers (1.2)
Containee object: an object that is contained within another. -

¢ e.g., Each course has a faculty member as its instructor. public void testAggregationl() {
o Container: Course Containee: Faculty. Course eecs2030 = new Course ("Advanced OOP");

¢ e.g., Each student is registered in a list of courses; Each faculty Course eecs3311 = new Course("Software Design");

Faculty prof = new Faculty("Jackie");

member teaches a list of courses. 0052030, sotPLof (prof) ;

o Container: Student, Faculty Containees: Course. cecs3311. setProf (prof) ;
e.g., eecs2030 taken by jim (student) and taught by tom (faculty). assertTrue (eecs2030.getProf() == eecs3311.getProf());
= Containees may be shared by different instances of containers. /% aliasing =*/
e.g., When EECS2030 is finished, jim and jackie still exist! prof.setName ("Jeff");
assertTrue (eecs2030.getProf() == eecs3311.getProf());

= Containees may exist independently without their containers.

¢ e.g., In a file system, each directory contains a list of files.
o Container: Directory Containees: File. Faculty prof2 = mew Faculty("Jonathan");

e.g., Each file has exactly one parent directory. eecs3311.setbrof (prof2);
assertTrue (eecs2030.getProf() != eecs3311.getProf());

=A contginee may be owned by onIy O'ne c':ontain'er. assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));
e.g., Deleting a directory also deletes the files it contains. assertTrue (eecs3311.getProf() .getName () .equals ("Jonathan"));
= Containees may co-exist with their containers. }

— sl

assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));

Aggregation: Independent Containees
Shared by Containers (2.1)

teaching
courses *
Student " Course prof Faculty
1
class Student {
String id; ArrayList<Course> cs; /* courses x/
Student (String id) { this.id = id; cs new ArrayList<>(); }

void addCourse (Course c)
ArrayList<Course> getCS()
}

{ cs.add(c); }
{ return cs; }

class Course { String title; Faculty prof; }

class Faculty {
String name; ArrayList<Course> te; /* te
Faculty(String name) { this.name = name; te
void addTeaching(Course c) { te.add(c); }
ArrayList<Course> getTE() { return te; }

}

new ArrayList<>(); }

Aggregation: Independent Containees
Shared by Containers (2.2)

ESONDE

@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student ("Jim");
Course eecs2030 = new Course ("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
.addTeaching(eecs2030) ;
.addTeaching(eecs3311);
.addCourse (eecs2030) ;
.addCourse (eecs3311);

w u's'c

assertTrue (eecs2030.getProf() == s.getCS() .get(0).getProf());
assertTrue (s.getCS() .get (0) .getProf ()
== s5.g9etCS() .get(1l) .getProf());
assertTrue (eecs3311 == s.getCS() .get(l));
assertTrue (s.getCS() .get (1) == p.getTE().get(1l));

The Dot Notation (3.1)

In real life, the relationships among classes are sophisticated.

teaching
courses *
- Course prof

Student

Faculty

class Course {
String id; String title;
ArrayList<Course> cs; Faculty prof;

} } }

class Student { class Faculty {
String name;

ArrayList<Course>

te;

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class Student:
o Writing cs denotes the list of registered courses.
o Writing cs[i] (where i is a valid index) navigates to the class

Course, which changes the context to class Course.

The Dot Notation (3.2)

LASSONDE

class Student { class Course {
String id; String title;
ArrayList<Course> cs; Faculty prof;

} } }

class Faculty {
String name;
ArrayList<Course>

te;

class Student {
/% & }

ttri

1tes */

student’s id #*/
String getID() { return this.id; }

the it

/* Get
String getCourseTitle(int 1) {
return this.cs.get (i) .title;

}

/* Get the

h course x/

the title of

instructor’s 1

String getInstructorName (int 1) {
return this.cs.get (i) .prof.name;
}
}

8 of 25

The Dot Notation (3.3) fASSONDE

class Student { class Course { class Faculty {
String id; String title; String name;
ArrayList<Course> cCs; Faculty prof; ArrayList<Course> te;

} } }

class Course {

. /* attributes x/
/* Get the course’s title */

String getTitle() { return this.title; }

/% Get the 1 ictor’s name x/
String getInstructorName () {
return this.prof.name;
}
/* Get title of ith teaching course of the ins C *

String getCourseTitleOfInstructor(int i) {
return this.prof.te.get (i) .title;
}

9 of 25

The Dot Notation (3.4) LASSONDE

class Student { class Course { class Faculty {
String id; String title; String name;
ArrayList<Course> cs; Faculty prof; ArrayList<Course> te;

} } }

class Faculty {
/* attributes */,/

/+ Get the 1 u

String getName () {
return this.name;

}

/* Get the title of ith te

String getCourseTitle(int 1) {
return this.te.get (i) .title;

Composition: Dependent Containees
Owned by Containers (1.1)

LASSONDE

_parent files
. -

Directory File

Assumption: Files are not shared among directories.

class Directory {
String name;
File[] files;

class File {

int nof; /% ni of files */
Directory(String name) {
this.name = name;
files = new File[100];
}
void addFile(String fileName) {

files[nof] = new File(fileName);

String name;
File(String name) {
this.name = name;

Composition: Dependent Containees
Owned by Containers (1.2.1)

nof ++;

LASSONDE

1 | @Test
D 2 |public void testComposition() {

3 Directory dl = new Directory("D");
f.txt 4 | dl.addFile("fl.txt");

5 dl.addFile("f2.txt");

6 dl.addFile("f3.txt");
f2.txt 7 assertTrue (

8 dl.files[0] .name.equals ("fl.txt"))
f3.txt 9 |}

e L4: 1st File objectis created and owned exclusively by d1.

No other directories are sharing this Fi1e object with d1.

e L5: 2nd rile object is created and owned exclusively by d1.

No other directories are sharing this File object with d1.

e L6: 3rd File object is created and owned exclusively by d1.

No other directories are sharing this Fi1e object with d1.

Composition: Dependent Containees
Owned by Containers (1.2.2)

ESONDE

Right before test method testComposition terminates:

nof
Directory o ‘

= . s ‘
dl.nles[o/\dlflu/ dl.file: [21(
File I File I File
[name [name
“£2. Xt “

“El.Ext”

4 5 6 7 99
nutl | nut | ot | nut | nun [pun | nur |

[name

Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.

A copy constructor is a constructor which initializes attributes
from the argument object other.

ESONDE

class Directory {
Directory(Directory other) {

/ T 7 74 + oo 79 S+ ~ThiitFoeae AF VAtha
/* Initialize attributes via attributes of ‘other’

}

}

Hints:
¢ The implementation should be consistent with the effect of
copying and pasting a directory.

e Separate copies of files are created.

Composition: Dependent Containees
Owned by Containers (1.4.1)
Version 1: Shallow Copy by copying all attributes using =.

class Directory {
Directory (Directory other) {

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [NO]

@Test

void testShallowCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt"
Directory d2 = new Directory(dl);
assertTrue (dl.files == d2.files);
d2.files[0].changeName ("f11.txt");

assertFalse(dl.files[0].name.equals ("fl.txt")); }
[5of 25t

/+ violation of composition x|/

Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:

Directory

d2.files

nof

!

0 1 2 3 4 5 6 7 99

i
d1
dl.files[0] dl.files[1], dl.files[2]|
dz.files[0] dz2.files[1] dz.files[2]
File File File

“f11.txt” “£2.txt” “£3.txt”

Directory

‘ null ‘ null ‘ null ‘ null ‘ null ‘ null | null ‘

Composition: Dependent Containees
Owned by Containers (1.5.1)
Version 2: a Deep Copy

ESONDE

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }
this.name — Dirgctory(Directory other) |
new String(other.name); this (other.name);
for(int i = 0; 1 < nof; 1 ++) {
! File src = other.files[1i];
! File nf = new File(src);
this.addFile(nf); } }
void addFile(File f) { ... } }

class File {
File(File other) {

@Test

void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt"
Directory d2 = new Directory(dl);
assertTrue (dl.files != d2.files); /» composition preserved x/
d2.files[0].changeName ("f11.txt");
assertTrue (dl.files[0].name.equals("fl.txt")); }

Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

ESONDE

nof
wpw

Directory d2. name 1
e R T S S S S S
a2 ites
/ = T T T v [oar [t | o [i |t | o]
dz nof
arritesto) ~ ar-citenrty " eitestz)

[File [File [File
[ame [ame [ame

“f11.txt” “£2.txt" “£3.txt”

“p” nof

Directory |
name 0 1 2 3 4 5 6 7 99
dl.files
/ files | I I [nun T nun T pun | own [non | nun | nun]
a1 nof
dl.files[0] dl.files[1], dl.files[2]|

[File [File [File
[name [name [name

“f1.txt” “f2.txt” “£3.txt”

Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

LASSONDE

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }
Directory(Directory other) {

class File {
File(File other) {
this.name =

new String (other.name); this (other.name);
} for(int i = 0; i < nof; 1 ++) {
} File src = other.files[1i];

this.addFile(src); } }
void addFile(File f) { ...

b}

@Test
void testDeepCopyConstructor() {
Directory dl = new Directory("D");

dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt"
Directory d2 = new Directory(dl);

assertTrue (dl.files != d2.files); /+ composition preserved x/

d2.files[0].changeName ("f11.txt");

assertTrue (dl.files[0] == d2.files[0]); /+ composition violated|! +*/
[190f25]

Composition: Dependent Containees
Owned by Containers (1.6)

LASSONDE

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;

int nof;
File[] getFiles() {
/% Your Task #*/

so that it preserves composition, i.e., does not allow
references of files to be shared.

Aggregation vs. Composition (1)

Terminology:

o Container object: an object that contains others.
o Containee object: an object that is contained within another.

Aggregation :

o Containees (e.g., Course) may be shared among containers
(e.g., Student, Faculty).

o Containees exist independently without their containers.

o When a container is destroyed, its containees still exist.

Composition :

o Containers (e.g, Directory, Department) own exclusive
access to their containees (e.g., File, Faculty).

o Containees cannot exist without their containers.

o Destroying a container destroys its containeees cascadingly.

Aggregation vs. Composition (2) s

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:

o Each workstation owns CPU, monitor, keyword. [compositions]
o All workstations share the same network. [aggregations]

KEYBOARDI k KEYBOARDI1 k KEYBOARD!
CPU1 c CPU2 ¢ CPU3

MONITOR1 m MONITOR2 m MONITOR3

m
n n
n — -
(WORKSTATION) (WORKSTATION) (WORKSTATION)

(NETWORK)

Index (1)

Aggregation vs. Composition: Terminology|

Aggregation: Independent Containees |
Shared by Containers (1.1)|

Aggregation: Independent Containees |
Shared by Containers (1.2)|

Aggregation: Independent Containees |
Shared by Containers (2.1)]

Aggregation: Independent Containees |
Shared by Containers (2.2)]

[The Dot Notation (3.1))

[The Dot Notation (3.2)|

[The Dot Notation (3.3)|

The Dot Notation (3.4)|

Composition: Dependent Containees |
Owned by Containers (1.1))

@
r

Index (2) L;ASSONDE

Composition: Dependent Containees |
Owned by Containers (1.2.1)]

[Composition: Dependent Containees |
[Owned by Containers (1.2.2)|

[Composition: Dependent Containees |
[Owned by Containers (1.3)|

Composition: Dependent Containees |
Owned by Containers (1.4.1)|

Composition: Dependent Containees |
Owned by Containers (1.4.2)|

Composition: Dependent Containees |
Owned by Containers (1.5.1)|

Composition: Dependent Containees |
Owned by Containers (1.5.2)|

Index (3) LASSONDE

Composition: Dependent Containees |
Owned by Containers (1.5.3)|

[Composition: Dependent Containees
[Owned by Containers (1.6)|

|Aggregation vs. Composition (1)|

Aggregation vs. Composition (2)|

