Design-by-Contract (DbC)

Readings: OOSC2 Chapter 11

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

\
\

c|c
z|z
mim
D |0
wlwn
==
<lm

LASSONDE

ooooooooooooooooooo

Motivation: Catching Defects —
Design or Implementation Phase?

e To minimize development costs , minimize software defects.

-+ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle:

Requirements — Design — Implementation — Release
.. Catch defects as early as possible .

Design and Integration Customer Postproduct
architecture Implementation testing beta test release
1X* 5X 10X 15X 30X

¢ Discovering defects after release costs up to 30 times more
than catching them in the design phase.

e Choice of design language for your project is therefore of

paramount importance.
Sgl#rg:;a: Minimizing code defects to improve software quality and lower development costs.
o}

What This Course Is About e

ooooooooooooooooooo

e Focusis design

o Architecture: (many) inter-related modules
o Specification: precise (functional) interface of each module

¢ For this course, having a prototypical, working implementation
for your design suffices.

e Alater refinement into more efficient data structures and
algorithms is beyond the scope of this course.

[assumed from EECS2011, EECS3101]
.. Having a suitable language for design matters the most.
Q: Is Java also a “good” design language?
A: Let’s first understand what a “good” design is.

30of53

LASSONDE

ooooooooooooooooooo

Terminology: Contract, Client, Supplier
e A supplier implements/provides a service (e.g., microwave).

e A client uses a service provided by some supplier.
o The client are required to follow certain instructions to obtain the

service (e.g., supplier that client powers on, closes

door, and heats something that is not explosive).
o [f instructions are followed, the client would that the
service does what is guaranteed (e.g., a lunch box is heated).
o The client does not care how the supplier implements it.
e What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions
SUPPLIER || assume instructions followed | provide a service

e There is a contract between two parties, violated if:
o The instructions are not followed. [Client’s fault]

o Instructions followed, but service not satisfactory. [Supplier’s fault]
4 of 53

Client, Supplier, Contract in OOP (1)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}

T
‘class MicrowaveUser {
|
\
void lock() {locked = true;} ‘
|
\

public static void main(...) {
Microwave m = new Microwave() ;

1
\
|
Object obj = ; ‘
|
\

void heat (Object stuff) { m.power (); m.lock();]

m. heat (obj);
b}

Method call m.heat(obj) indicates a client-supplier relation.

o Client: resident class of the method call [MicrowaveUser]
o Supplier: type of context object (or call target) m [Microwave]

50f 53

ooooooooooooooooo

Client, Supplier, Contract in OOP (2) %

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock () {locked = true;}
void heat (Object stuff) {

\
\
\
e The contract is honoured if:

’ Right before the method call ‘:

o State of m is as assumed: m.on==true and m. locked==ture
e The input argument ob 7 is valid (i.e., not explosive).

’ Right after the method call ‘: ob 7 is properly heated.

e If any of these fails, there is a contract violation.
e m.onOrm.lockedis false = MicrowaveUser’s fault.
e ob7j is an explosive = MicrowaveUser’s fault.
o A fault from the client is identified = Method call will not start.

soss © Method executed but ob 5 not properly heated = Microwave'’s fault
o)

class MicrowaveUser ({
public static void main(...) {

Microwave m = new Microwave();

1
\
Object obj = [222]; \
\
\

m.power(); m.lock();

m. heat (obj);

LASSONDE

What is a Good Design? Lssonee

¢ A “good” design should explicitly and unambiguously describe
the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We such a contractual relation a specification .

¢ When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
o Instructions to clients should not be unreasonable.
e.g., asking them to assemble internal parts of a microwave
o Working conditions for suppliers should not be unconditional.
e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!
o You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.
e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]
o Upon contract violation, there should be the fault of only one side.
o This design process is called Design by Contract (DbC) .

7 of 53

LASSONDE

ooooooooooooooooo

A Simple Problem: Bank Accounts

Provide an object-oriented solution to the following problem:

: Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.

[REQ2: We may withdraw an integer amount from an account.
|REQ3 |: Each bank stores a list of accounts.

: Given a bank, we may add a new account in it.

[REQ5 |: Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").

[REQ6 |: Given a bank, we may withdraw from a specific
account, identified by its name, for an integer amount.

Let’s first try to work on | REQ1 | and | REQ2 | in Java.

This may not be as easy as you might think!
8 of 53

Playing the Various Versions in Java LASSONDE

ooooooooooooooooo

¢ Download the project archive (a zip file) here:
http://www.eecs.yorku.ca/~jackie/teaching/
lectures/2018/F/EECS3311/codes/DbCIntro.zip

¢ Follow this tutorial to learn how to import an project archive
into your workspace in Eclipse:
https://youtu.be/h-rgdQZg2qY

e Follow this tutorial to learn how to enable assertions in Eclipse:
https://youtu.be/OEgRV4a5Dzg

9 of 53

Version 1: An Account Class LASSONDE

1 |public class AccountVl {

2 private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

5 public int getBalance() { return balance; }

6 public AccountVI (String owner, int balance) {

7 this.owner = owner; this.balance = balance;

8 }

9 public void withdraw(int amount) {

10 this.balance = this.balance - amount;
11 }
12 public String toString() ({
13 return owner + "’s current balance is: " + balance;
14 }
15 |}

* Is this a good design? Recall : Each account is
associated with ... an integer balance that is always positive .

e This requirement is not reflected in the above Java code.
10 of 53

Version 1: Why Not a Good Design? (1) iégsésoms

ooooooooooooooooo

1

ipublic class BankAppV1 {

‘ public static void main(String[] args) { ‘
System.out.println("Create an account for Alan with balance -10:V)

‘ AccountV1l alan = new AccountVl ("Alan", -10) ;

‘ System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:
Alan’s current balance is: -10

e Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). = Violation of | REQ1 |

¢ Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of

AccountV1 does not require that! = A lack of defined contract
11 of 53

Version 1: Why Not a Good Design? (2) iégsésoms

ooooooooooooooooo

1
public class BankAppV1 { ‘
public static void main(String[] args) {
System.out.println("Create an account for Mark with balance 100:V);

System.out.println(mark);
System.out.println("Withdraw -1000000 from Mark’s account:");
mark. withdraw (-1000000) ;

T
AccountV1l mark = new AccountVI1 ("Mark", 100);
‘ System.out.println(mark) ;

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Mark’s current balance is: 1000100

¢ Mark’s account state is always valid (i.e., 100 and 1000100).
e Withdraw amount is never negative! = Violation of

e Again a lack of contract between Bank2AppVv1 and AccountVi.
12 of 53

Version 1: Why Not a Good Design? (3) L,{;%E

ooooooooooooooooo

T

public class BankAppV1 {
public static void main(String[] args) {

System.out.println("Create an account for Tom with balance 100:"
AccountV1l tom = new AccountVl("Tom", 100);
System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw(150) ;
System.out.println(tom);

7

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Tom’s current balance is: -50

¢ Withdrawal was done via an “appropriate” reduction, but the
resulting balance of Tom is invalid. = Violation of | REQ1 |

e Again a lack of contract between BankAppVv1 and AccountVi.
13 of 53

LASSONDE

ooooooooooooooooo

Version 1: How Should We Improve it?

e Preconditions of a method specify the precise circumstances
under which that method can be executed.
o Precond. of divide (int x, int y)? [v '= 0]
o Precond. of binSearch (int x, int[] [xs is sorted]
¢ The best we can do in Java is to encode the logical negations

of preconditions as exceptions:

o divide (int x, int vy)
throws DivisionByZeroException wheny == 0.

o binSearch (int x, int[] xs)
throws ArrayNot SortedException when xs is not sorted.

o Design your method by specifying the preconditions (i.e., service
conditions for valid inputs) it requires, not the exceptions (i.e.,
error conditions for invalid inputs) for it to fail.

 Create by adding exceptional conditions (an

approximation of preconditions) to the constructor and

withdraw method of the Account class.
14 of 53

xs)?

Version 2: Added Exceptions
to Approximate Method Preconditions

O©COoONOO O AhWN =

_
o

—_
—_

—_
N

-
w

-
N

-
(é)]

-
(o]

public class AccountV2 {

public AccountV2(String owner, int balance) throws
BalanceNegativeException
{
if (balance < 0) { /* negated precondition
throw new BalanceNegativeException(); }
else { this.owner = owner; this.balance = balance; }

}
public void withdraw(int amount) throws
withdrawAmountNegativeException, WithdrawAmountTooLargeExceptign {

if (amount < 0) { /% negated precondition
throw new WithdrawAmountNegativeException(); }

else if (balance < amount) { /* negated prec or
throw new WithdrawAmountTooLargeException(); }

else { this.balance =

}

this.balance - amount; }

15 0f 53

Version 2: Why Better than Version 1? (1)

—_

O W o N O O =

public class BankAppV2 {
public static void main(String[] args) {
System.out.println("Create an account for Alan with balance -10:1);
try {
AccountV2 alan = new AccountV2("Alan", -10) ;
System.out.println(alan);
}
catch (BalanceNegativeException bne) {

System.out.println("Illegal negative account balance.");

}

Create an account for Alan with balance -10:
Illegal negative account balance.

L6: When attempting to call the constructor Accountv2 with a
negative balance -10, a BalanceNegativeException (i.e.,
precondition violation) occurs, preventing further operations upon

this invalid object.
16 of 53

ooooooooooooooooo

0 N O AhWN =

‘publlc class BankAppVZ2 { ‘
public static void main(String[] args) {

System.out.println("Create an account for Mark with balance 100:V);

try {
AccountV2 mark = new AccountV2("Mark", 100);
System.out.println(mark) ;
System.out.println("Withdraw -1000000 from Mark’s account:");
mark. withdraw (-1000000) ;
System.out.println(mark);

}

catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");

}

catch (WithdrawAmountNegativeException wane) {
System.out.println("Illegal negative withdraw amount.");

}

catch (WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

7 of 53

ooooooooooooooooo

Console Output:

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Illegal negative withdraw amount.

e L9: When attempting to call method withdraw with a positive

but too large amount 150, a
WithdrawAmountTooLargeException (i.e., precondition
violation) occurs, preventing the withdrawal from proceeding.
We should observe that adding preconditions to the supplier
BankV2’s code forces the client BankAppVv2’s code to get
complicated by the t ry-catch statements.

Adding clear contract (preconditions in this case) to the design
should not be at the cost of complicating the client’s code!!

8 of 53

ooooooooooooooooo

0 N O h~hWN =

‘publlc class BankAppVZ2 { ‘
public static void main(String[] args) {

System.out.println("Create an account for Tom with balance 100:"};
try
AccountV2 tom = new AccountV2("Tom", 100);
System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw (150) ;
System.out.println(tom);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}
catch (WithdrawAmountNegativeException wane) |
System.out.println("Illegal negative withdraw amount.");
}
catch (WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

9 of 53

ooooooooooooooooo

Console Output:

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Illegal too large withdraw amount.

¢ L9: When attempting to call method withdraw with a negative

amount -1000000, a WithdrawAmountNegativeException
(i.e., precondition violation) occurs, preventing the withdrawal
from proceeding.

¢ We should observe that due to the added preconditions to the

supplier BankVv2’s code, the client Bankappv2’s code is forced
to repeat the long list of the t ry-catch statements.

¢ Indeed, adding clear contract (preconditions in this case)

should not be at the cost of complicating the client’s code!!

0 of 53

ooooooooooooooooo

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if (balance < 0) { /* negated precondition =/

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 withdrawAmountNegativeException, WithdrawAmountTooLargeExcepticn {
11 if (amount < 0) { /* negated precondition =/

12 throw new WlthdrawAmountNegatlveExceptlon(), }

13 else if (balance < amount) { /% negated prec on #
14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

¢ Are all the exception conditions (-~ preconditions) appropriate?

e What if amount == balance when calling withdraw?
21 of 53

T 1

1 |public class BankAppV2 { |
2 public static void main(String[] args) {
3 System.out.println("Create an account for Jim with balance 100:"};
4 try {
5 AccountV2 3jim = new AccountV2("Jim", 100);
6 System.out.println(jim);
7 System.out.println("Withdraw 100 from Jim’s account:");
8 jim. withdraw(100) ;
9 System.out.println(jim);
10 }
11 catch (BalanceNegativeException bne) {
12 System.out.println("Illegal negative account balance.");
13 }
14 catch (WithdrawAmountNegativeException wane) {
15 System.out.println("Illegal negative withdraw amount.");
16 }
17 catch (WithdrawAmountTooLargeException wane) {
18 System.out.println("Illegal too large withdraw amount.");
19 }
22 of 53

Version 2: Why Still Not a Good Design? (2.

Create an account for Jim with balance 100:
Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Jim’s current balance is: 0

L9: When attempting to call method withdraw with an amount
100 (i.e., equal to Jim’s current balance) that would result in a
zero balance (clearly a violation of [REQ1), there should have
been a precondition violation.

Supplier AccountVv2’s exception condition balance < amount

has a missing case :

e Calling withdraw with amount == balance will also result in an

invalid account state (i.e., the resulting account balance is zero).
e .. L13 of AccountV2 should be balance <= amount.

23 of 53

LASSONDE

ooooooooooooooooo

Version 2: How Should We Improve it?

Even without fixing this insufficient precondition, we could
have avoided the above scenario by checking at the end of
each method that the resulting account is valid.

= We consider the condition this.balance > 0 as invariant
throughout the lifetime of all instances of Account.

e Invariants of a class specify the precise conditions which all
instances/objects of that class must satisfy.

o Inv. of CSMajoarStudent? [gpa >= 4.5]
o Inv. of BinarySearchTree? [in-order trav. — sorted key seq.]
The best we can do in Java is encode invariants as assertions:
o CSMajorStudent: assert this.gpa >= 4.5

o BinarySearchTree: assert this.inOrder () is sorted
o Unlike exceptions, assertions are not in the class/method API.

Create by adding assertions to the end of

constructor and withdraw method of the Account class.
24 of 53

N]
Version 3: Why Still Not a Good Design? (1) #

52w

Version 3: Added Assertions

to Approximate Class Invariants Let's review what we have added to the method withdraw:
o From | Version 2 |: exceptions encoding negated preconditions
1 |public class AccountV3 {) .]]
2 | public AccountV3(String owner, int balance) throws o From | Version 3 |: assertions encoding the class invariants
3 BalanceNegativeException -
4 { 1 |public class AccountV3 {
5 if (balance < 0) { /+ n - ndi _— 2 public void withdraw(int amount) throws
6 throw new BalancéNeéétlve‘éxceptlonr()L "}‘ 3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {
7 else { this.owner = owner; this.balance = balance; } 4 if (amount < 0) { /* negated prec on */
8 ‘ assert this.getBalance() > 0 : "Invariant: positive balance"; ‘ 5 throw new pithdrawAmountNegativeException(); }
9 } 6 else if (balance < amount) { /* ne r n #
10 public void withdraw(int amount) throws 7 throw new WlthdrawAmountTooLargeExceptlon() }
11 withdrawAmountNegativeException WithdrawAmountTooLargeExcepticn { 8 else { this.palance = this.balance - amount; }
12 if (amount < 0) { /+ negated precondition +/ 9 ‘ assert this.getBalance() > 0 : "Invariant: positive balance"; ‘}
13 th WithdrawA tNegativeE t : : - , . e :
11| e T o iom o However, there is no contract in withdraw which specifies:
15 throw new WithdrawAmountTooLargeException(); } o Obligations of supplier (AccountVv3) if preconditions are met.
16 else { this.balance = this.palance - amount; } o Benefits of client (BankAppVv3) after meeting preconditions.
}; assert this.getBalance() > 0 : "Invariant: positive balance"; = We illustrate how problematic this can be by creating
} Version 4 |, where deliberately mistakenly implement withdraw.

25 of 53 27 of 53

Version 3: Why Better than Version 2? e Version 4: What If the e

T 1 . . .
1 |public class |BARKABPVE | Implementation of withdraw is Wrong? (1)
2 public static void main(String[] args) { 1 bl 1 2 va
3 System.out.println("Create an account for Jim with balance 100:"); 2 pl; bllc' cc aos_sd c'ctohu;t ('{nt t) throws
i - i ublic void wi raw (i amoun row.
4 try { BRI Jl{“ - nev‘AccountVB(Jim", 100); 3 withdrawAmountNegativeException, WithdrawAmountTooLargeException
5 System.out.println(jim); 4 { if (amount < 0) { /+ negated pre o ox/
6 System.out.println("Withdraw 100 from Jim’s account:"); 5 throw new WJ.thdr;awAmountNegatlveExceptlon O;)
7 jim. withdraw(100) ; 6 else if (balance < amount) { /+ negated pre i */
8 System out.println(jim); } 7 throw new WlthdrawAmountTooLargeExceptlon() }
9 /% e 8 else { /«* RO */
10 ” */ 9 this.balance = this.balance + amount; }
10 assert this.getBalance() > 0
Create an account for Jim with balance 100: 11 owner + "Invariant: positive balance"; }
Jim’s current balance is: 100 . - -
Withdraw 100 from Jim’s account: o Apparently the Implementatlon atL11 is wrong.
Exception in thread "main" o Adding a positive amount to a valid (positive) account balance
java.lang.AssertionError: Invariant: positive balance would not result in an invalid (negative) one
L8: Upon completion of §im.withdraw (100), Jim has a zero = The class invariant will not catch this flaw. - .
balance, an assertion failure (i.e., invariant violation) occurs, o When something goes wrong, a good design (with an appropriate
s o 55 PTEVENiNG further operations on this invalid account object. ot contract) should report it via a contract violation .
[(4

Version 4: What If the
Implementation of withdraw is Wrong? (2)

g\

ES30NDE

T

‘public class BankAppV4 |{

public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 100:"),
try { AccountV4 jeremy = new AccountV4("Jeremy", 100);

System.out.println(jeremy);

System.out.println("Withdraw 50 from Jeremy’s account:");

jeremy. withdraw (50) ;

System.out.println(jeremy); }

QLW N~ WN =

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Jeremy’s current balance is: 150

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal

was done via an mistaken increase. = Violation of m
29 of 53

Version 4: How Should We Improve it?

e Postconditions of a method specify the precise conditions
which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

o Postcondition of double divide (int x, int y)?
[Result x y == x]
o Postcondition of boolean binSearch(int x, int[] xs)?
[x e xs < Result]

e The best we can do in Java is, similar to the case of invariants,
encode postconditions as assertions.
But again, unlike exceptions, these assertions will not be part of
the class/method API.

* Create by adding assertions to the end of

withdraw method of the Account class.
30 of 53

L\

Version 5: Added Assertions
to Approximate Method Postconditions

ES30NDE

1 |public class AccountV5 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
4 int oldBalance = this.balance;

5 if (amount < 0) { /* negated precondition =/

6 throw new WithdrawAmountNegativeException(); }

7 else if (balance < amount) { /% negated precondition */

8 throw new WithdrawAmountTooLargeException();

9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";

11 ‘ assert this.getBalance() == oldBalance - amount :

12 ‘ "Postcondition: balance deducted"; } ‘

A postcondition typically relates the pre-execution value and the
post-execution value of each relevant attribute (e.g.,balance in
the case of withdraw).
= Extra code (L4) to capture the pre-execution value of balance for
510158 the comparison at L11.

Version 5: Why Better than Version 4?

[public class BankAppV5 {
public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 100:"),
try { AccountV5 jeremy = new AccountV5("Jeremy", 100);
System.out.println(jeremy) ;
System.out.println("Withdraw 50 from Jeremy’s account:");
jeremy. withdraw (50) ;
System.out.println(jeremy); }

QWO NOOOTA WN =

—_

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Exception in thread "main"
java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw (50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object.

32 of 53

LASSONDE

ooooooooooooooooo

Evolving from Version 1 to Version 5

Design Flaws

| Improvements Made

V1 \ - Complete lack of Contract

V2 Added exceptions as Preconditions not strong enough (i.e., with missing
method preconditions cases) may result in an invalid account state.

V3 Added assertions as Incorrect implementations do not necessarily result in

class invariants a state that violates the class invariants.

Deliberately changed
V4 | withdraw’s implementa-
tion to be incorrect.

The incorrect implementation does not result in a state
that violates the class invariants.

V5 Added assertions as _

method postconditions

® |n Versions 2, 3, 4, 5, preconditions approximated as exceptions.
® These are not preconditions, but their logical negation .

® Client BankApp’s code complicated by repeating the list of t ry-catch statements.
® |n Versions 3, 4, 5, class invariants and postconditions approximated as assertions.

® Unlike exceptions, these assertions will not appear in the API of withdraw.

Potential clients of this method cannot know: 1) what their benefits are; and 2) what

their suppliers’ obligations are.

® For postconditions, exira code needed to capture pre-execution values of attributes.
33 of 53

LASSONDE

ooooooooooooooooo

Version 5:
Contract between Client and Supplier

benefits
balance deduction

obligations
amount non-negative

BankAppV5.main

(CLIENT) positive balance amount not too large
BankV5.withdraw || amount non-negative balance deduction
(SUPPLIER) amount not too large positive balance
benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER precondition postcondition & invariant

34 of 53

DbC in Java

DbC is possible in Java, but not appropriate for your learning:

e Preconditions of a method:
Supplier
e Encode their logical negations as exceptions.
¢ In the beginning of that method, a list of i £-statements for throwing
the appropriate exceptions.
Client
e Alist of t ry-catch-statements for handling exceptions.

e Postconditions of a method:
Supplier
e Encoded as a list of assertions, placed at the end of that method.
Client
o All such assertions do not appear in the API of that method.

e Invariants of a class:
Supplier
e Encoded as a list of assertions, placed at the end of every method.
Client

. o All such assertions do not appear in the API of that class.
35 of 53

DbC in Eiffel: Supplier
DbC is supported natively in Eiffel for supplier:

class ACCOUNT
create
make
feature Attributes
owner : STRING
balance : INTEGER
feature - Constructors
make (nn: STRING; nb: INTEGER)
require precond .
positive_balance: nb > 0

do
owner := nn
balance := nb
end
feature ommands
withdraw(amount: INTEGER)
require - precondition
non_negative_amount: amount > 0
affordable_amount: amount <= balance
do
balance := balance - amount
ensure —- postcondition
balance_deducted: balance = old balance - amount
end
invariant s ariant
positive _balance: balance > 0
end

S0 003

|
DbC in Eiffel: Contract View of Supplier iasono:

Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):

class ACCOUNT
create
make
feature Attributes
owner : STRING
balance : INTEGER
feature - Constructors
make (nn: STRING; nb: INTEGER)
require preconditio
positive_balance: nb > 0

end
feature —- Commands
withdraw(amount: INTEGER)
require precond
non_negative_amount: amount > 0
affordable_amount: amount <= balance problematic, why?
ensure - postconditic
balance_deducted: balance = old balance - amount
end
invariant lass ariant
positive_balance: balance > 0

end

E——

LASSONDE

ooooooooooooooooo

DbC in Eiffel: Anatomy of a Class

class SOME_CLASS

create
-— Expli e cc s used as const OIS
feature
ner
ors) ere

o1 taggea pooolean expressions I1o0or class 1lnvariants

e Use feature clauses to group attributes, commands, queries.
¢ Explicitly declare list of commands under create clause, so
that they can be used as class constructors.
[See the groups panel in Eiffel Studio.]
e The class invariant invariant clause may be omitted:
o There’s no class invariant: any resulting object state is acceptable.
o The class invariant is equivalent to writing] invariant true\

S—

LASSONDE

ooooooooooooooooo

DbC in Eiffel: Anatomy of a Feature

some_command

e The precondition require clause may be omitted:
o There’s no precondition: any starting state is acceptable.

o The precondition is equivalent to writing

e The postcondition ensure clause may be omitted:
o There’s no postcondition: any resulting state is acceptable.

o The postcondition is equivalent to writing

39 of 53

LASSONDE

ooooooooooooooooo

Runtime Monitoring of Contracts (1)

In the specific case of ACCOUNT class with creation procedure
make and command withdraw:

postcond_withdraw:
acc.balance = old acc.balance - a and acc.owner = old acc.owner

STATE: account_inv: call P A .
N balance >0 acc.withdraw(a, n) .-, 0 <aand a < balance acc.withdraw(a, n) e
balance }22.0 S0 >.—>: ... >

owner

not (account_inv) not (precond_withdraw) . not (postcond_withdraw) .

v v v

. Precondition
1 Violation

not (precond_make)
call : precond_make: execute

create {ACCOUNT} acc.make(a, n) -~ a>0 - -. create {ACCOUNT} acc.make(a, n)
IR EEEEE R Bl et >

Postcondition
Violation

not (postcond_make)

postcond_make:
acc.balance = a and acc.owner =n

40 of 53

Runtime Monitoring of Contracts (2) LASSONDE DbC in Eiffel: Precondition Violation (1.1) Lissonce
The client need not handle all possible contract violations:

In general, class C with creation procedure cp and any feature f:

3 class BANK_APP
postcond_f: -)
af inherit
eI ARGUMENTS
execute e . create
STATE: . af(.) make
attributes of J------p e el eeeiiieiiiaas > B
class A N feature - Tnitialization
make
‘ . —-— Run application.
S pnot! : local
Y alan: ACCOUNT
:‘ % Precondition do o)))
! Violation -— A precondition violation with tag "positive_l "
'-‘ create {ACCOUNT} alan.make ("Alan", -10)
\ R . end
not Pm : not Qm ' end
call : precond_make: execute :
create {A} a.make(..)) -+, Pm ,--. create {A} amake(...) .-, . i . . i
U BT =, By executing the above code, the runtime monitor of Eiffel Studio
___ ’ will report a contract violation (precondition violation with tag
postcond_make: "positive balance™").
Runtime Monitoring of Contracts (3) LASSONDE DbC in Eiffel: Precondition Violation (1.2) Lissonce

e All contracts are specified as Boolean expressions.

* Right a feature call (e.g., acc.withdraw(10)):

o The current state of acc is called the pre-state.
o Evaluate feature withdraw's pre-condition using current values

. . [E| |o APPLICATION 53| @ ACCOUNT 2. = e
of attributes and queries. — e e
. SalE [posmve balance: PRECONDITION_VIOLATION rawsed)
o Cache values (implicitly) of all expressions involving the old 2F e AYA B 3 e [nes s &
. _ “lat view of feature “make' of class ACCOUNT) make SACCOUNT _ACCOUNT 1
keyword in the post-condition . ke (n: STRING. 8. . TNTEGER. 32 make - APPLICATION APPLICATION 1
. | require
e.g., cache the value of old balance via] old_balance := balance i do
. 2 owner := nn
¢ Right | after | the feature call:] peance o

o The current state of acc is called the post-state.

o Evaluate class ACCOUNT’s invariant using current values of
attributes and queries.

o Evaluate feature withdraw's post-condition using both current

and “cached” values of attributes and queries.
42 of 53 44 of 53

DbC in Eiffel: Precondition Violation (2.1) LSSONDE

The client need not handle all possible contract violations:

class BANK _APP

inherit
ARGUMENTS

create
make

feature —— Initialization
make

Run application.
local
mark: ACCOUNT
do
create {ACCOUNT} mark.make ("Mark", 100)

—-— A precondition violation w h tag "non_n

non_n

mark.withdraw(-1000000) ‘
end
end

By executing the above code, the runtime monitor of Eiffel Studio

will report a contract violation (precondition violation with tag
"non_negative_amount").
45 of 53

\wy

DbC in Eiffel: Precondition Violation (2.2)

g

SSONDE

HooL OF B

B |0APpLxcnnom:e © ACCOUNT Rl Ca!l stack Faosesant

Status = Implicit exception pending

bank ACCOUNT withdraw < » % 0 %
o (non_negative_amount: PRECONDITION_VIOLATION raised)

HF(e=eazafy s 2

5 < : In Feature ‘ In Class ‘ From Class ‘ @
Flat view of feature *withdraw' of class ACCOUNT b withdraw ¢ ACCOUNT /ACCOUNT |1
make 5 APPLICATION APPLICATION 2

withdraw (amount: INTEGER_32)

uire
e E‘rﬁinegat\'veiamount: amount >= 0)
5 affordable_amount: amount <= balance
do
2 balance := balance - amount
ensure
g balance = old balance - amount
B end
46 of 53

DbC in Eiffel: Precondition Violation (3.1) LSSONDE

The client need not handle all possible contract violations:

class BANK _APP
inherit
ARGUMENTS
create
make
feature —— Initialization
make
Run o
local
tom: ACCOUNT
do
create {ACCOUNT} tom.make ("Tom", 100)
-— A precondition violation with tag " ar
tom.withdraw(150)
end
end

By executing the above code, the runtime monitor of Eiffel Studio

will report a contract violation (precondition violation with tag
470153 "affordable_amount").

\wy

DbC in Eiffel: Precondition Violation (3.2)

g

SSONDE

HooL OF B

L] |® APPLICATION 33| @ ACCOUNT 20 call Stack Faowe =

Status = Implicit exception pending

((affordable_amount: PRECONDITION_VIOLATION raised

bank ACCOUNT withdraw < » % O 3

F|F ei=e e SV A

SRSl |5 InFeature |InClass | From Class | @
Flat view of feature " withdraw’ of class ACCOUNT —| b withdraw « ACCOUNT CCOUN'
make s APPLICATION APPLICATION 2

withdraw (amount: INTEGER_32)
require

© non_negative_amount: amount >= 0
© (affordable_amount: amount <= balance)
do
© balance := balance - amount |
ensure
© balance = old balance - amount
© end =
48 of 53

DbC in Eiffel: Class Invariant Violation (4.1) .
The client need not handle all possible contract violations:

class BANK_APP
inherit
ARGUMENTS
create
make
feature -
make
Run
local
jim: ACCOUNT
do
create {ACCOUNT} tom.make ("Jim", 100)
Jim.withdraw(100)

g\

SSONDE

o

g

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance").

SE——

\u,

DbC in Eiffel: Class Invariant Violation (4.2)

LASSONDE
SThoot or Duoere
B |°APPI.ICATION23‘°ACCOUNT | 0 Fuouewaton
Feature bank ACCOUNT _invariant < » ¥ O 2 licit exception pendin .
ance: INVARIANT_VIOLATION raised ®
F eI, A [oess —{Fromces | @ |
Flat view of feature *_invariant' of class ACCOUNT b Iveriant o|ACCOUNT ;
withdraw < ACCOUNT ACC 5
+ APPLICATION APPLICATION 2

positive_balance: balance > 0 make

S—

DbC in Eiffel: Class Invariant Violation (5.1) ;

The client need not handle all possible contract violations:

Ay,

SSONDE

o

g

class BANK_APP

inherit ARGUMENTS

create make

feature Initializa
make

1draw in ACC(

e +

balance : bal € é
create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy.withdraw(150)

h tag "bal

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
"balance_deducted").

SE——

\u,

DbC in Eiffel: Class Invariant Violation (5.2)

g

SSONDE

HooL OF B

el cail stack Froseva

Status = Implicit exception pendi
balance_deducted: POSTCONDITION_VIOLATION raised

(B |O APPLICATION @ ACCOUNT 3

bank ACCOUNT withdraw < » % O

Feature
LEIEEROCE RS P 3 2 TnFeawre |InCass |FromClass | @
Flat view of feature " withdraw’ of class ACCOUNT T T N e OUNTER TEEE N
| affordable_amount: amount <= balance 2l make . APPLICATION APPLICATION 2
do
© balance := balance + amount
ensure
ﬁ (ba\anceﬁdeducted: balance = old balance - amount)
end

S—

Index (1) Lassonoe

Motivation: Catching Defects —
Design or Implementation Phase?

What This Course Is About
Terminology: Contract, Client, Supplier
Client, Supplier, Contract in OOP (1)
Client, Supplier, Contract in OOP (2)
What is a Good Design?

A Simple Problem: Bank Accounts
Playing with the Various Versions in Java
Version 1: An Account Class

Version 1: Why Not a Good Design? (1)
Version 1: Why Not a Good Design? (2)
Version 1: Why Not a Good Design? (3)

\éserfsssion 1: How Should We Improve it?

Index (2) :AssoNDE

Version 2: Added Exceptions
to Approximate Method Preconditions

Version 2: Why Better than Version 1? (1)
Version 2: Why Better than Version 1? (2.1)
Version 2: Why Better than Version 1? (2.2)
Version 2: Why Better than Version 1? (3.1)
Version 2: Why Better than Version 1? (3.2)
Version 2: Why Still Not a Good Design? (1)
Version 2: Why Still Not a Good Design? (2.1)
Version 2: Why Still Not a Good Design? (2.2)

Version 2: How Should We Improve it?
Version 3: Added Assertions
to Approximate Class Invariants

\£4erf553ion 3: Why Better than Version 2?

Index (3) Lassonoe

Version 3: Why Still Not a Good Design? (1)
Version 4: What If the

Implementation of withdraw is Wrong? (1)
Version 4: What If the

Implementation of withdraw is Wrong? (2)
Version 4: How Should We Improve it?
Version 5: Added Assertions

to Approximate Method Postconditions
Version 5: Why Better than Version 4?
Evolving from Version 1 to Version 5
Version 5:

Contract between Client and Supplier

DbC in Java

DbC in Eiffel: Supplier

DbC in Eiffel: Contract View of Supplier

55 of 53

Index (4) :AssoNDE

DbC in Eiffel: Anatomy of a Class

DbC in Eiffel: Anatomy of a Feature
Runtime Monitoring of Contracts (1)
Runtime Monitoring of Contracts (2)
Runtime Monitoring of Contracts (3)

DbC in Eiffel: Precondition Violation (1.1)
DbC in Eiffel: Precondition Violation (1.2)
DbC in Eiffel: Precondition Violation (2.1)
DbC in Eiffel: Precondition Violation (2.2)
DbC in Eiffel: Precondition Violation (3.1)
DbC in Eiffel: Precondition Violation (3.2)
DbC in Eiffel: Class Invariant Violation (4.1)
DbC in Eiffel: Class Invariant Violation (4.2)
DbC in Eiffel: Class Invariant Violation (5.1)

56 of 53

LASSONDE

ooooooooooooooooooo

Index (5)
DbC in Eiffel: Class Invariant Violation (5.2)

57 of 53

Syntax of Eiffel: a Brief Overview

EECS3311 A: Software Design

' Fall 2018

TE CHEN-WEI WANG
TY

LASSONDE

ooooooooooooooooooo

Escape Sequences

Escape sequences are special characters to be placed in your
program text.

o In Java, an escape sequence starts with a backward slash \
e.g., \n for a new line character.
o In Eiffel, an escape sequence starts with a percentage sign %
e.g., 3N for a new line characgter.
See here for more escape sequences in Eiffel: https://www.
eiffel.org/doc/eiffel/Eiffel%20programming$%
20language%20syntax#Special_characters

20f 36

Commands, and Queries, and Features

¢ In a Java class:

o Attributes: Data

o Mutators: Methods that change attributes without returning

o Accessors: Methods that access attribute values and returning
e In an Eiffel class:

o Everything can be called a feature.

o But if you want to be specific:

o Use attributes for data
o Use commands for mutators
o Use queries for accessors

30f36

LASSONDE

ooooooooooooooooo

Naming Conventions

¢ Cluster names: all lower-cases separated by underscores
e.g., root, model, tests, cluster_number_one

¢ Classes/Type names: all upper-cases separated by
underscores

€.g., ACCOUNT, BANK_.ACCOUNT_APPLICATION

¢ Feature names (attributes, commands, and queries): all
lower-cases separated by underscores

e.d., account_balance, deposit_into, withdraw_from

4 of 36

LASSONDE

ooooooooooooooooo

Operators: Assignment vs. Equality

e In Java:
o Equal sign = is for assigning a value expression to some variable.
eg.,x = 5 » ychanges xsvalueto5 » y
This is actually controversial, since when we first learned about =,
it means the mathematical equality between numbers.
o Equal-equal == and bang-equal ! = are used to denote the equality
and inequality.

e.g.,x == 5 = y evaluates to frueif x’s value is equal to the
value of 5 = v, or otherwise it evaluates to false.
« In Eiffel:

o Equal = and slash equal /= denote equality and inequality.
e.g.,x = 5 » vy evaluates to frue if x’s value is equal to the value
of 5 * vy, or otherwise it evaluates to false.
o We use : = to denote variable assignment.
e.g.,x := 5 x ychanges x'svalueto5 x y
o Also, you are not allowed to write shorthands like x++,
soraglustwrite x 1= x + 1.

Attribute Declarations

¢ In Java, you write: int i, Account acc
¢ In Eiffel, you write: i: INTEGER, acc: ACCOUNT
Think of : as the set membership operator ¢:

e.g., The declaration acc: ACCOUNT means object accis a
member of all possible instances of ACCOUNT.

6 of 36

LASSONDE

ooooooooooooooooo

Method Declaration

e Command
deposit (amount: INTEGER)
do
balance := balance + amount
end

Notice that you don’t use the return type void

e Query
sum_of (x: INTEGER; y: INTEGER): INTEGER
do
Result := x + y
end

o Input parameters are separated by semicolons ;
o Notice that you don’t use return; instead assign the return value
to the pre-defined variable Result.
7 of 36

Operators: Logical Operators (1)

ooooooooooooooooo

¢ Logical operators (what you learned from EECS1090) are for
combining Boolean expressions.

e In Eiffel, we have operators that EXACTLY correspond to
these logical operators:

| Logic | EIFFEL

Conjunction A and
Disjunction v or
Implication = implies
Equivalence = =

8 of 36

LASSONDE

ooooooooooooooooo

Review of Propositional Logic (1)

e A proposition is a statement of claim that must be of either
true or false, but not both.
¢ Basic logical operands are of type Boolean: true and false.
¢ We use logical operators to construct compound statements.
o Binary logical operators: conjunction (A), disjunction (v),
implication (=), and equivalence (a.k.a if-and-only-if <)

| p | g [[prg]pvg]p=qg]p = q]
true true true true true true
true | false || false | true false false
false | true false | true true false
false | false || false | false true true

o Unary logical operator: negation (-)
L p I -, |
true || false
false true

9 of 36

ASSONDE

ooooooooooooooooo

Review of Propositional Logic: Implication

—

Written as p = q
Pronounced as “p implies g”
We call p the antecedent, assumption, or premise.
We call g the consequence or conclusion.
Compare the fruth of p = g to whether a contract is honoured: p ~
promised terms; and g »~ obligations.
o When the promised terms are met, then:
e The contract is honoured if the obligations are fulfilled.
e The contract is breached if the obligations are not fulfilled.
o When the promised terms are not met, then:
o Fulfilling the obligation (g) or not (~q) does not breach the contract.

O O O O O

. p | g [[p=q]
true | true true
true | false || false

false | true true
false | false true

10 of 36

LASSONDE

ooooooooooooooooo

Review of Propositional Logic (2)
e Axiom: Definition of =

, p=qg=-pvq
e Theorem: Identity of =

frue=p=p

Theorem: Zero of =

false = p = true

Axiom: De Morgan

-(brq) = -pPv-q
-(pvq) = -pr-q
¢ Axiom: Double Negation
p=-(=p)

Theorem: Contrapositive
p=q=-q=-p

Review of Predicate Logic (1)

ooooooooooooooooo

e A predicate is a universal or existential statement about
objects in some universe of disclosure.

Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.
We use the following symbols for common numerical ranges:
o Z: the set of integers
o N: the set of natural numbers
Variable(s) in a predicate may be quantified:
o Universal quantification :

All values that a variable may take satisfy certain property.

e.g., Given that / is a natural number, i is always non-negative.
o Existential quantification :

Some value that a variable may take satisfies certain property.

e.g., Given that / is an integer, i can be negative.
12 of 36

Review of Predicate Logic (2.1) o

» A universal quantification has the form (VX | R ¢ P)
o X is a list of variable declarations
o Ris a constraint on ranges of declared variables
o Pis a property
o (VX|R e P)=(VX e R=P)
eg., (VX | True ¢ P)=(VX o True= P)=(VX o P)
eg., (VX | False ¢« P)= (VX e False = P)= (VX e True) = True
e for all (combinations of) values of variables declared in X that
satisfies R, it is the case that P is satisfied.

o Vi|ieN e >0 [true]
o Vi|ieZ o i>0 [false]
oVijlieZNjeZl o i<jvi>] [false]

e The range constraint of a variable may be moved to where the
variable is declared.
o Vi:N e >0
o Vi:Z e i>0
o Vijj:7Z e i<jvi>j
13 of 36

Review of Predicate Logic (2.2) o

* An existential quantification has the form (3X | R ¢ P)
o X is a list of variable declarations
o Ris a constraint on ranges of declared variables
o Pis a property
o (3IX|R e P)=(3X e RAP)
e.g., (3X | True ¢ P)=(3X o TruenP)= (VX o P)
e.g., (3X | False ¢« P)=(3X e Falsen P)=(3X e False) = False
e There exists a combination of values of variables declared in X
that satisfies R and P.

o Jj|ieN e j>0 [true]
o Jji|ieZ o i>0 [true]
o i jlieZnjeZ o i<jvi>j [true]

e The range constraint of a variable may be moved to where the
variable is declared.
o 3i:Neij>0
o 3j:7Z e >0
o Ji,j:Z e i<jvi>]j
14 of 36

Predicate Logic (3) e

ooooooooooooooooo

e Conversion between V and 3
(VX|ReP) «<— —(3X ¢ R=-P)
(3IX|ReP) «<— —(VX ¢«R=-P)
¢ Range Elimination

(VX|ReP) «<— (VX ¢«eR=P)
(IX|ReP) «<— (IX ¢« RAP)

15 of 36

LASSONDE

ooooooooooooooooo

Operators: Logical Operators (2)

e How about Java?
o Java does not have an operator for logical implication.
o The == operator can be used for logical equivalence.
o The «& and | | operators only approximate conjunction and
disjunction, due to the short-circuit effect (SCE):
e When evaluating el && e2,if el already evaluates to false, then el
will not be evaluated.

eg.,In(y !'=0) «& (x / y > 10),the SCE guards the division
against division-by-zero error.

e When evaluatingel || e2,if el already evaluates to true, then el
will not be evaluated.
eg.,In(y ==0) || (x / y > 10),the SCE guards the division

against division-by-zero error.
o However, in math, we always evaluate both sides.

¢ In Eiffel, we also have the version of operators with SCE:
|| short-circuit conjunction | short-circuit disjunction

‘ && ‘ I

Java

Eiffel and then or else

16 of 36

LASSONDE

ooooooooooooooooo

Operators: Division and Modulo

| Division | Modulo (Remainder)
Java 20 / 3is6 20 % 3is2
Eiffel || 20 // 3is6 20 \\ 3is2

17 of 36

Class Declarations

e In Java:

class BankAccount

}

e In Eiffel:

class BANK_ACCOUNT
/* attributes, commands, and queries */
end

18 of 36

LASSONDE

ooooooooooooooooo

Class Constructor Declarations (1)

¢ In Eiffel, constructors are just commands that have been
explicitly declared as creation features:

class BANK_ACCOUNT
—— List names commands tha e used as constructors
create
make
feature ommands
make (b: INTEGER)
do balance := b end
make2
do balance := 10 end
end

¢ Only the command make can be used as a constructor.
e Command make?2 is not declared explicitly, so it cannot be used
as a constructor.

19 of 36

LASSONDE

ooooooooooooooooo

Creations of Objects (1)

¢ In Java, we use a constructor Accont (int b) by:
o Writing Account acc = new Account (10) to create a named
object acc
o Writing new Account (10) to create an anonymous object

* In Eiffel, we use a creation feature (i.e., a command explicitly
declared under create) make (int b) inclass ACCOUNT by:

o Writing create {ACCOUNT} acc.make (10) tocreate a
named object acc

o Writing create {ACCOUNT}.make (10) to create an
anonymous object

o Writing’create {ACCOUNT} acc.make (10)‘

is really equivalent to writing

acc := create {ACCOUNT}.make (10)|

20 of 36

LASSONDE

ooooooooooooooooo

Selections (1)

if B; then
- B

elseif B, then
—— By n(=B1)

something

[0)
9]
(0]

else
- (=B1) /}SﬂBz)

—— defau action

end

21 of 36

Selections (2)

ERSS0NDE
An if-statement is considered as:
o An instruction if its branches contain instructions.
o An expression if its branches contain Boolean expressions.
class
FOO
feature Attribt
x, y: INTEGER
feature —— C
command
A command with if-st in 1 entati ontract
require
if x \\ 2 /= 0 then True else False end —— Or: x \\ 2 /= 0
do
if x > 0 then y := 1 elseif x < 0 then y := -1 else y := 0 end
ensure
y = if old x > 0 then 1 elseif old x < 0 then -1 else 0 end
Or: (old x > 0 sy =1
o) < 0 = -1)] (old x = 0 = 0)
end
end

220136

LASSONDE

ooooooooooooooooo

Loops (1)

¢ In Java, the Boolean conditions in for and while loops are
stay conditions.

void printStuffs() {

int i = 0;

while(i < 10 /# stay condition =*/) {
System.out.println(1i);
i=1+1;

}
}

¢ In the above Java loop, we stay in the loop
aslongasi < 10 istrue.

« In Eiffel, we think the opposite: we exit the loop
assoonasi >= 10 istrue.

23 of 36

LASSONDE

ooooooooooooooooo

Loops (2)

In Eiffel, the Boolean conditions you need to specify for loops
are exit conditions (logical negations of the stay conditions).

print_stuffs
local
i: INTEGER
do
from
i =0
until
i >= 10 exit condition
loop
print (1)
i =1+ 1
end] 1
end -

o Don’tput () after a command or query with no input parameters.
o Local variables must all be declared in the beginning.

24 of 36

LASSONDE

ooooooooooooooooo

Library Data Structures

Enter a DS name. Explore supported features.

Features 6 [S =]

= % Inherit

& RESIZABLE [G]

@ INDEXABLE [G, INTEGER]

@ TO_SPECIAL [G]
= [Initialization
make_empty
make_filled
make
make_from_array
make_from_specia
make_from_cil
= 4 Access

4 item

4 at

4 entry

File Edit View Favorites Project E:
EMEG 9e a0
& zg&;lCIass [ARRAY i -]

Cg Searct

& a4k g

|+l Groups || 4 Features| > AutoTest |»'

25 of 36

LASSONDE

ooooooooooooooooo

Data Structures: Arrays
e Creating an empty array:

local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make_empty

o This creates an array of 1ower and upper indices 1 and 0.
o Size of array a: ’ a.upper — a.lower + 1 ‘

¢ Typical loop structure to iterate through an array:

local
a: ARRAY[INTEGER]
i, j: INTEGER
do
from
j := a.lower
until
j > a.upper
do
1 :=a [J]
jo:=3+1
26/ 36

Data Structures: Linked Lists (1) LASSONDE

ooooooooooooooooo

before after

2 .t

HIIIIIIII LIIIIIIII g::3 hlllllll' hllllllll hlllllll'

1 4 count
Cursor

forth
_—

item
index: INTEGER

27 of 36

Data Structures: Linked Lists (2) LASSONDE
e Creating an empty linked list:

local
list: LINKED_LIST|[INTEGER]
do
create {LINKED_LIST[INTEGER]} list.make

e Typical loop structure to iterate through a linked list:

local
list: LINKED_ LIST|[INTEGER]
i: INTEGER

list.start

list.after

i := list.item
list.forth

LASSONDE

ooooooooooooooooo

Ilterable Structures

o Eiffel collection types (like in Java) are iterable .
e If indices are irrelevant for your application, use:

across ... as ... |loop| ... end
e.g.
local

a: ARRAY[INTEGER]
1: LINKED_LIST|[INTEGER]
suml, sumZ2: INTEGER

do

suml + cursor.item end
sum2 + cursor.item end

across a as cursor loop suml :
across 1 as cursor loop sum2 :

end

29 of 36

LASSONDE

ooooooooooooooooo

Using across for Quantifications (1)
® across ... as ... |all| ... end
A Boolean expression acting as a universal quantification (V)

local
allPositive: BOOLEAN
a: ARRAY [INTEGER]

do

Result :=
across
a.lower |..| a.upper as i
all
a [i.item] > 0
end

0O OVWoONOUA~WN =

_

o L8:a.lower |..| a.upper denotes a list of integers.
o L8: as i declares a list cursor for this list.
o L10: i.item denotes the value pointed to by cursor i.

¢ L9: Changing the keyword all to some makes it act like an
% O%jstential quantification 3.

LASSONDE

ooooooooooooooooo

Using across for Quantifications (2)

class
CHECKER
feature Att
collection
feature —— ¢ es
is_all_positive: BOOLEAN

Are all items in collection positiver

do
ensure
across
collection as cursor
all
cursor.item > 0

end
end

¢ Using all corresponds to a universal quantification (i.e., V).
¢ Using some corresponds to an existential quantification (i.e., 3).

31 of 36

Using across for Quantifications (3) LASSONDE
class BANK
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT
require
Vi: INTEGER | 1< i< accounts.count e accounts[i].id < accounts[i+ 1].id
across
1 |..| (accounts.count - 1) as cursor
all
accounts [cursor.item].id <= accounts [cursor.item + 1].id
end
do
ensure
Result.id = acc_id
end
32 of 36

Using across for Quantifications (4) LASSONDE

ooooooooooooooooo

class BANK

accounts: LIST [ACCOUNT]
contains_duplicate: BOOLEAN

Does th o sunt list contain

do

ensure
Vi,j: INTEGER |
\ 1 < i< accounts.count A 1< j< accounts.count e \
accounts[i] ~ accounts[j] = i = j
’ end

¢ Exercise: Convert this mathematical predicate for
postcondition into Eiffel.

¢ Hint: Each across construct can only introduce one dummy
variable, but you may nest as many across constructs as
necessary.

33 of 36

Eq uality LASSONDE

ooooooooooooooooo

¢ To compare references between two objects, use =.

¢ To compare “contents” between two objects of the same type,
use the redefined version of is_equal feature.

¢ You may also use the binary operator ~
ol ~ o2 evaluates to:

o true if both o1 and o2 are void

o false if one is void but not the other

o ol.is_equal (02) if both are not void
34 of 36

Use Of ~3 Cautlon LASSONDE
1 |class
2 BANK
3 | feature Attribute
4 accounts: ARRAY[ACCOUNT]
5 | feature - Queries
6 get_account (id: STRING): detachable ACCOUNT
7 Account object with 7id’.
8 do
9 across
10 accounts as cursor
11 loop
12 if cursor.item ~ id then
13 Result := cursor.item
14 end
15 end
16 end
17 | end

L15 should be: cursor.item.id ~ id
35 of 36

Index (1) LASSONDE Index (3) LASSONDE
Escape Sequences Using across for Quantifications (1)

Commands, Queries, and Features
Naming Conventions

Operators: Assignment vs. Equality

Attribute Declarations
Method Declaration Using across for Quantifications (3)

Using across for Quantifications (2)

Operators: Logical Operators (1)
Review of Propositional Logic (1) Using across for Quantifications (4)
Review of Propositional Logic: Implication
Review of Propositional Logic (2)

Review of Predicate Logic (1)

Review of Predicate Logic (2.1)

Review of Predicate Logic (2.2) Use of ~: Caution
F:gggleicate Logic (3)

Equality

38 of 36

Index (2) Lassonoe

Operators: Logical Operators (2) i

Operators: Division and Modulo Common Eiffel Errors:
Class Declarations Contracts vs. Implementations

Class Constructor Declarations (1)
Creations of Objects (1)
Selections (1)

Selections (2)
Loops (1) EECS3311 A: Software Design

Loops (2) YORK ' Fall 2018
Library Data Structures CHEN-WE! WANG
Data Structures: Arrays

Data Structures: Linked Lists (1)
Data Structures: Linked Lists (2)
lterable Data Structures

ooooooooooooooooo

In Eiffel, there are two categories of constructs:
o Implementations
o are step-by-step instructions that have side-effects

e.g.,,’across ... as ... loop ... end

e change attribute values
e do not return values
e ~ commands

o Contracts

e are Boolean expressions that have no side-effects

eg.,|... = ... ,’across ... as ... all ... end

¢ use attribute and parameter values to specify a condition
e return a Boolean value (i.e., True or False)
e ~ queries

20of 22

LASSONDE

ooooooooooooooooo

Contracts vs. Implementations: Where?

e Instructions for Implementations: insty, insts
¢ Boolean expressions for Contracts: expi, expo, exps, €xps, €Xps

class feature Commands
withdraw
ACCOUNT require
feature —— Queries qu exps
balance: INTEGER do
require .
e insty
exp;
do ensure
. exps
n.
st end
ensure . .
exps invariant
X
end Ps)) T T
end —- end of class ACCOUNI
3of 22

LASSONDE

ooooooooooooooooo

Implementations:
Instructions with No Return Values

¢ Assignments

’ balance := balance + a ‘

¢ Selections with branching instructions:

’if a > 0 then acc.deposit (a) else acc.withdraw (-a) end ‘

e Loops
from from
unlti:: a-fower list.start across
i > a.upver until list as cursor
loo Supp list.after loop
Repsult 1= loop sum :
Result + ali] list.item.wdw(10) sum + cursor.item
; : list.forth end
i::=1i+1
end
end

4 of 22

LASSONDE

ooooooooooooooooo

Contracts:

Expressions with Boolean Return Values
¢ Relational Expressions (using =, /=, ~, /~, >, <, >=, <=)

| a>o0 |

e Binary Logical Expressions (using and, and then, or, or else,
implies)

’ (a.lower <= index) and (index <= a.upper) ‘

¢ Logical Quantification Expressions (using all, some)

across

a.lower |..| a.upper as cursor
all

a [cursor.item] >= 0
end

¢ old keyword can only appear in postconditions (i.e., ensure).

balance = old balance + a ‘
50f22

J

LASSONDE

ooooooooooooooooooo

Contracts: Common Mistake (1)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
balance := old balance - a
end

Colon-Equal sign (: =) is used to write assignment instructions.

6 of 22

J

LASSONDE

ooooooooooooooooooo

Contracts: Common Mistake (1) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
balance = old balance - a
end

7 of 22

J

LASSONDE

ooooooooooooooooooo

Contracts: Common Mistake (2)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
across
a as cursor
loop

end

across...loop...end is used to create loop instructions.

8 of 22

J

LASSONDE

ooooooooooooooooooo

Contracts: Common Mistake (2) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
across

a as cursor
all —-

end

9 of 22

LASSONDE

ooooooooooooooooo

Contracts: Common Mistake (3)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
old balance - a
end

Contracts can only be specified as Boolean expressions.

10 of 22

LASSONDE

ooooooooooooooooo

Contracts: Common Mistake (3) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
postcond_1: balance = old balance - a

postcond_2: old balance > 0
end

11 0f 22

LASSONDE

ooooooooooooooooo

Contracts: Common Mistake (4)

class
ACCOUNT
feature
withdraw (a: INTEGER)
require
old balance > 0
do

ensure

end

e Only postconditions may use the old keyword to specify the
relationship between pre-state values (before the execution of
withdraw) and post-state values (after the execution of
withdraw).

* Pre-state values (right before the feature is executed) are

.

LASSONDE

ooooooooooooooooo

Contracts: Common Mistake (4) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
require
balance > 0
do

ensure

end

13 of 22

LASSONDE

ooooooooooooooooo

Contracts: Common Mistake (5)

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY[STRING]
feature Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end
feature - Commands

make do create a.make_empty end
update (i: INTEGER; v: STRING)
do ...
ensure Others nchanged
across
1 |..| count as j
all
j.item /= i implies old get (j.item) ~ get(j.item)
end
end
end

Compilation Error:
o Expression value to be cached before executing update?
[Current.get (j.item)]
o But, in the pre-state, integer cursor § does not exist!
14 of 22

LASSONDE

ooooooooooooooooo

Contracts: Common Mistake (5) Fixed

class LINEAR_CONTAINER
create make
feature - Attributes
a: ARRAY[STRING]
feature Queries
count: INTEGER do Result := a.count end
get (i: INTEGER): STRING do Result := a[i] end
feature —- Comma 5
make do create make_empty end
update (i: INTEGER; v: STRING)
do ...
ensure Others Unchanged
across
1 |..| count as j
all
j.item /= i implies (old Current) .get (j.item) ~ get(j.item)
end
end
end

o The idea is that the old expression should not involve the local
cursor variable 5 that is introduced in the postcondition.

o Whether to put (old Current.twin) or (old
Current.deep twin) is up to your need.

15 0f 22

Implementations: Common Mistake (1)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance = balance + 1
end

e Equal sign (=) is used to write Boolean expressions.
¢ In the context of implementations, Boolean expression values
must appear:

o on the RHS of an assignment;
o as one of the branching conditions of an if-then-else statement; or
o as the exit condition of a loop instruction.

16 of 22

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance := balance + 1
end

17 of 22

Implementations: Common Mistake (2) LASSONDE Implementations: Common Mistake (3) LASSONDE
class class

BANK BANK
feature feature

min_credit: REAL accounts: LIST[ACCOUNT

accounts: LIST[ACCOUNT
total_balance: REAL

no_warning_accounts: BOOLEAN do
do Result :=
across across
accounts as cursor accounts as cursor
all loop
cursor.item.balance > min credit Result := Result + cursor.item.balance
end end
end .
end

Again, in implementations, Boolean expressions cannot appear In implementations, since instructions do not return values, they

alone without their values being “captured”. cannot be used on the RHS of assignments.
18 of 22 20 of 22

Implementations: Common Mistake (2) Fixedsono: Implementations: Common Mistake (3) Fixedsono:

1 |class
2 BANK
3 | feature
4 min_credit: REAL class
5 accounts: LIST[ACCOUNT] BANK
6 feature
7 no_warning_accounts: BOOLEAN accounts: LIST[ACCOUNT
8 do
9 Result := total_balance: REAL
10 across do
11 accounts as cursor across
12 all accounts as cursor
13 cursor.item.balance > min_credit loop
14 end Result := Result + cursor.item.balance
15 end end
16 |... end

Rewrite L10 — L14 using across ... as ... some ... end.

Hint: Vx e P(x) = -(3x e -P(x))

19 of 22 21 of 22

Index (1) LassonDE
Contracts vs. Implementations: Definitions

Contracts vs. Implementations: Where?
Implementations:

Instructions with No Return Values
Contracts:

Expressions with Boolean Return Values
Contracts: Common Mistake (1)
Contracts: Common Mistake (1) Fixed
Contracts: Common Mistake (2)
Contracts: Common Mistake (2) Fixed
Contracts: Common Mistake (3)
Contracts: Common Mistake (3) Fixed
Contracts: Common Mistake (4)
Contracts: Common Mistake (4) Fixed

(gzofnztzracts: Common Mistake (5)

e
Index (2) Assonoe
Contracts: Common Mistake (5) Fixed

Implementations: Common Mistake (1)
Implementations: Common Mistake (1) Fixed
Implementations: Common Mistake (2)
Implementations: Common Mistake (2) Fixed
Implementations: Common Mistake (3)

Implementations: Common Mistake (3) Fixed

23 of 22

Types: Reference vs. Expanded
Copies: Reference vs. Shallow vs. Deep
Writing Complete Postconditions

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

\
\

cic
z|z
mim
D=
wlwn
==
<Im

Expanded Class: Modelling LASSONDE
¢ We may want to have objects which are:

o Integral parts of some other objects

o Not shared among objects

e.g., Each workstation has its own CPU, monitor, and keyword.

All workstations share the same network.

k| |KEYBOARD1 k KEYBOARD1 KEYBOARDI

CPUI C CPU2 ¢ CPU3

MONITOR m MONITOR2 m MONITOR3

(WORKSTATION) (WORKSTATION) (WORKSTATION)

(NETWORK)

2o0f 41

Expanded Class: Programming (2) LASSONDE
class KEYBOARD ... end class CPU ... end
class MONITOR ... end class NETWORK ... end

class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

end

Alternatively:

expanded class KEYBOARD ... end
expanded class CPU ... end
expanded class MONITOR ... end
class NETWORK ... end

class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK
end
3of #1

Expanded Class: Programming (3) LASSONDE
1 | test_expanded: BOOLEAN
2 local
expanded class 3 ebl, eb2: B
B 4 do
feature 5 Result := ebl.i = 0 and eb2.i = 0
change_1 (ni: INTEGER) 6 check Result end
do 7 Result := ebl = eb2
i := ni 8 check Result end
end 9 eb2.change_1i (15)
feature 10 Result := ebl.i = 0 and eb2.i = 15
i: INTEGER 11 check Result end
end 12 Result := ebl /= eb2
13 check Result end
14 end

¢ L5: object of expanded type is automatically initialized.
¢ L9 & L10: no sharing among objects of expanded type.
e L7 & L12: = between expanded objects compare their contents.

4 of 41

Reference vs. Expanded (1) LASSONDE

ooooooooooooooooo

e Every entity must be declared to be of a certain type (based on
a class).

e Every type is either referenced or expanded.

In reference types:

o y denotes a reference to some object
o x := y attaches x to same object as does y
o x = ycompares references

In expanded types:

o y denotes some object (of expanded type)
o x := y copies contents of y into x
o x = ycompares contents [x ~ vy]

5of 41

Reference vs. Expanded (2) LASSONDE

ooooooooooooooooo

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author || expanded-typed author
“The Red and the Black™ “Life of Rossini”
1830 1823 “The Red and the Black” “Life of Rossini”
341 307 1830 1823
reference reference 341 307
“Stendhall” “Stendhall”
- “Henri Beyle” “Henri Beyle”
“Stendhall 1783 1783
“Henri Beyle” T84 842
1783
1842

6 of 41

LASSONDE

Copying Objects ~ ussowe
Say variables c1 and c¢2 are both declared of type C. [c1, c2: ¢]

e There is only one attribute a declared in class C.
e cl.aand c2.a may be of either:

o expanded type or

o reference type

—

cl

S

c2

7of 41

LASSONDE

ooooooooooooooooo

Copying Objects: Reference Copy

Reference Copy cl i= c2

o Copy the address stored in variable c2 and store itin c1.
= Both c1 and c2 point to the same object.
= Updates performed via c1 also visible to c2.

—

[aliasing]

k

cl

g

c2

8 of 41

LASSONDE

Copying Objects: Shallow Copy = Lissom

Shallow COpy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

C
a

AT

9 of 41

\u,

Copying Objects: Deep Copy -,é;éo o
Deep Copy [c1 := c2.deep twin]
o Create a temporary, behind-the-scene object c3 of type C.

o Recursively initialize each attribute a of c3 as follows:
Base Case: a is expanded (e.g., INTEGER).
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin

o Make a reference copy of c3: cl := c3

= c1 and c2 are not pointing to the same object.
= cl.a and c2.a are not pointing to the same object.
= No aliasing occurs at any levels.

cj

<]
[= 1]
c2
10 of 41

g
8

= c3.a = c2.a.

Copying Objects

ERSS0NDE
a
O v 1 1 o1
= Initial situation: name | “Almaviva’
landlord —:l
loved_one i, _1 03
o2 1 . .
Figaro Susanna
= Result of:
bi=a]
04 “Almaviva”
c .= a.twin @_,

(:) name “Almaviva” :|05

landlord i
loved_one i, _1 o7
06 = 1 w »
Figaro Susanna

11 of 41

LASSONDE

ooooooooooooooooo

Example: Collection Objects (1)

¢ In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):
At runtime, that variable stores the address of an object of that
type (as opposed to storing the object in its entirety).

¢ Assume the following variables of the same type:

local
imp : ARRAY [STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Tom", 3)

12 of 41

LASSONDE

ooooooooooooooooo

Example: Collection Objects (2)

¢ Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

imp

imp[1] imp[2] imp[3]

STRING STRING STRING
value value value

22

old imp

13 of 41

LASSONDE

ooooooooooooooooo

Reference Copy of Collection Object

T 1

1 ‘ old-imp := imp
2 |Result := old _imp = imp -- Result = true
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count as j
6 all imp [j.item] ~ old_imp [j.item]
7 end Result = true
Before Executing L3 After Executing L3
(]
old_imp
ola_inp NN inp
STRING STRING STRING
[vatue [N | [vatue [REEE [vatue JECTA
imp
STRING STRING STRING
[vatue [EAEIA [value RG] [vaive [RETE “Jim”
14 of 41

Shallow Copy of Collection Object (1)

EaSaRNDE

NOoO O~ WN =

T 1
‘ old-imp := imp.twin
Result := old _imp = imp -— Res = false
imp[2] := "Jim"
Result
across 1 |..| imp.count as j
all imp [j.item] ~ old_imp [j.item]
end R 1t = false
Before Executing L3 After Executing L3
ARRAYISTRING]
LT LT
imp imp / X \
STRING STRING STRING STRING STRING STRING
value value 0
old_imp ‘ ‘
\\\‘\\-‘~ ARRAY[STRING] ARRAY[STRING]

15 of 41

Shallow Copy of Collection Object (2)

EaSaRNDE

NOoO O WN =

T

‘ old-imp := imp.twin
Result := old imp = imp —- Re
imp[2] .append ("*xxx")
Result
across 1 |..| imp.count as j
all imp [j.item] ~ old_imp [j.item]
end R 1t = true

Before Executing L3

After Executing L3

imp

NN

old_imp

STRING

STRING STRING

ARRAY[STRING]

///////, ARRAY[STRING]
= // \\\\ \\\\\\\‘
STRING STRING STRING
value value m m”

old_imp ‘ /‘

ARRAY[STRING]

16 of 41

EaSaRNDE

Deep Copy of Collection Object (1)
T 1
1 ‘ old-imp := imp.deep_-twin ‘
2 |Result := old_imp = imp -- Re = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count as j
6 all imp [j.item] ~ old_imp [j.item] end —-- Result = false
Before Executing L3 After Executing L3
Anmvm STRING
e
// \ imp
STRING STRING STRING STRING
m “Mark” m “Tom” m o
old_imp old_imp
17 of 41
Deep Copy of Collection Object (2) LASSONDE
T 1
1 ‘ old-imp := imp.deep_twin ‘
2 |Result := old imp = imp Result = false
3 | imp[2].append ("x*x")
4 |Result :=
5 across 1 |..| imp.count as j
6 all imp [j.item] ~ old_imp [j.item] end t = false

Before Executing L3

After Executing L3

mp
STRING STRING STRING

/ ARRAY[STRING]
i

STRING

STRING STRING

ARRAY[STRING]

ARRAY[STRING]

18 of 41

LASSONDE

ooooooooooooooooo

How are contracts checked at runtime?
¢ All contracts are specified as Boolean expressions.
¢ Right before a feature call (e.g., | acc.withdraw(10) ‘):

o The current state of is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.
o Cache values, via| : =], of old expressions in the post-condition .

[old_balance := balance]

e.g., ’ old balance = balance — a ‘

e.g.,| old accountsfi].id

e.g., ’ (old accounts|i]).id ‘

[old_accounts_i_id := accounts]i].id]

[old_accounts_i := accounts]i]]

e.g.,| (old accounts)[i].id ‘ [old_accounts := accounts]

e.g., | (old Current).accounts[i].id ‘ [old_current := Current]

¢ Right after the feature call:
o The current state of is called its post-state.
o Evaluate invariant using current values of attributes and queries.

o Evaluate post-condition using both current values and

100t at “cached” values of attributes and queries.
(4

LASSONDE

ooooooooooooooooo

When are contracts complete?

e In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
o Eiffel supports this purpose using the old keyword.
e This is tricky for attributes whose structures are composite
rather than simple:
e.g., ARRAY, LINKED_LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.
¢ Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

¢ The second contract is much harder to specify:
o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across |
20 of 41

Account LASSONDE
class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
create balance = old balance + a
make end
feature - Attr =5 is_equal (other: ACCOUNT): BOOLEAN
owner: STRING do
balance: INTEGER Result :=
owner ~ other.owner
feature —— C ands and balance = other.balance
make (n: STRING) end
do end
owner := n
balance := 0
end
21 of 41

Ban k :ASSONDE

ooooooooooooooooo

class BANK
create make
feature
accounts: ARRAY[ACCOUNT
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require - the input
existing: across accounts as acc some acc.item.owner ~ n end

not (across ac d)

name exists

nts as acc all acc

C all acc.1c n. O er

do ...
ensure Result.owner ~ n
end
add (n: STRING)
require —- the input name does not exist

non_existing: across accounts as acc all acc.item.owner /~ n end
not
local new_account: ACCOUNT
do
create new_account.make (n)
accounts. force (new_account, accounts.upper + 1)
end

endt a1

(:i\in.':'iS accounts as acc some acc.item.owner ~ n Cfld)

Roadmap of lllustrations LASSONDE

ooooooooooooooooo

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

3 of 41

E——

Object Structure for lllustration LASSONDE

ooooooooooooooooo

We will test each version by starting with the same runtime object
structure:

BANK 0 1
b.accounts
accounts

b

ACCOUNT ACCOUNT

“Bill” “Steve”

balance

24 of 41

Version 1:
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_v1l (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

do
from i := accounts.lower
until i1 > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i:=1+1
end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a
end
end

25 of 41

Test of Version 1

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN

local
b: BANK
do

comment ("t1l: correct imp and incomplete contract")
create b.make

b.add ("Bill")

b.add ("Steve")

accoun

b.deposit_on-vl

Result :=
b.account_of ("Bill") .balance = 0
and b.account_of ("Steve").balance = 100
check Result end
end
end
26 of 41

Test of Version 1: Result LASSONDE Test of Version 2 LASSONDE
class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

APPLICATION local
b: BANK
Note: * indicates a violation test case do
I comment ("t2: wrong imp and incomplete contract®)
create b.make
PASSED (1 t of 1 .
oo ety
ase Type asse ota b.add ("Steve")
Violation] 0
Boolean 1 1 - deposit 100 do s to Steve’s
All Cases 1 1 b.deposit_on.v2 ("Steve", 100)
[Stote [contract Violation] Testhame | Result i-
TEST_BANK b.account_of ("Bill").balance = 0
PASSED NONE tl: test deposit_on with correct imp and incomplete contract and b.account_of ("Steve").balance = 100
check Result end
end
end
27 of 41 29 of 41

Version 2: LASSONDE Test of Version 2: Result LASSONDE

STHOOL OF ENGINEERING. STHOOL OF ENGINEERING.

Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)

\wy

require across accounts as acc some acc.item.owner ~ n end APPLICATION
local i: INTEGER Note: * indicates a violation test case
do

FAILED (1 failed & 1 passed out of 2)

in the CaseType]l Passed | Total |
accounts [accour Violation] [}
ensure Boolean 1 2
num_of_accounts_unchanged: A1l Cases 1 2
accounts.count = old accounts.count State Contract Violation
balance_of n_increased:
account_of (n).balance = old account_of (n).balance + a PASSED NONE tl: test deposit_on with correct imp and incomplete contract
end FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract

end

Current postconditions lack a check that accounts other than n

are unchanged.
28 of 41 30 of 41

Version 3: LASSONDE
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

do
- a > ir ac
account] .depos
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count

balance_of_n_increased:
account_of(n) .balance = old account_of(n) .balance + a
others_unchanged :
across old accounts as cursor
all cursor.item.owner /~ n implies
cursor.item ~ account_of (cursor.item.owner)

end
end
ST 04T

Test of Version 3 LASSONDE

STHOOL OF ENGINEERING.

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref copy: BOOLEAN

local
b: BANK
do

comment ("t3: wrong imp and complete contract with ref copy")
create b.make

b.add ("Bill")

b.add ("Steve")

b.deposit_on-v3 ("Steve", 100)

Result :=
b.account_of ("Bill") .balance = 0
and b.account_of ("Steve").balance = 100
check Result end
end
end
32 of 41

Test of Version 3: Result LASSONDE

CHOOL OF ENGINEERING.

APPLICATION

Note: * indicates a violation test case

[FAILED (2 failed & 1 passedoutof 3) |

Violation) [4
Boolean 1 3
A1l Cases 1 3

Contract Violation Test Name
TEST_BANK

PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy

3 of 41

S——

Version 4: LASSONDE

CHOOL OF ENGINEERING.

Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

o depc

accounts[accounts.lower].deposit (a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others_unchanged :
across old accounts.twin as cursor
all cursor.item.owner /~ n implies
cursor.item ~ account_of (cursor.item.owner)
end
end
end

40141

Test of Version 4 LASSONDE Version 5: LASSONDE
Complete Contracts with Deep Object Copy

(00L OF ENGINEERING

class TEST_BANK AL
X . class BANK
test_bank_deposit_wrong_imp_complete contract_shallow_copy: BOOLE deposit_on_v5 (n: STRING; a: INTEGER)
local require across accounts as acc some acc.item.owner ~ n end
dob: BANK local i: INTEGER

do

comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make

b.add ("Bill")
b.add ("Steve")

al

accounts ccounts.lower].deposit

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a
Result :=
b.account_of ("Bill") .balance = 0 otherg-rmelkangee
and b.account_of ("Steve").balance = 100 across old accounts.deep_-twin as cursor
check Result end all cursor.item.owner /~ n implies
end cursor.item ~ account_of (cursor.item.owner)
end end
end
end

5 of 41 37 of 4t

. — E—

Test of Version 4: Result LASSONDE Test of Version 5 LASSONDE

STHOOL OF ENGINEERING. STHOOL OF ENGINEERING.

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

APPLICATION local
b: BANK
Note: * indicates a violation test case
do
| comment ("t5: wrong imp and complete contract with deep copy")
FAILED (3 failed & 1 passed out of 4) create b.make
Case Tyl passed | o o
Violation] ? b.add ("Bill")
Boolean 1 4 b.add ("Steve")
ALl Cases 1 4
Contract Violation -- s
TEST_BANK b.deposi
PASSED NONE tl: test deposit_on with correct imp and incomplete contract Result :
FAILED Check assertion violated.|[t2: test deposit_on with wrong imp but incomplete contract . .
F—— ; ; : - b.account_of ("Bill") .balance = 0

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy . — M
FAILED |Check assertion violated.|[t4: test deposit_on with wrong imp, complete contract with shallow object copy and b.account_of ("Steve").balance = 100

check Result end

end
end

36 of 41 38 of 41

Test of Version 5: Result

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)

Total

\Violation] 0

Boolean 1 5

ALl Cases 1 5

Test Nane

PASSED NONE t1: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated.|t4: test deposit_on with wrong imp, complete contract with shallow object copy
FAILED Postcondition V"Lolated] t5: test deposit_on with wrong imp, complete contract with deep object copy

9 of 41

S—

Exercise LASSONDE

e Consider the query account_of (n: STRING) of BANK.

¢ How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o laccounts = old accounts‘ [X]
o laccoum‘:s = old accounts.twin‘ [X]
O | accounts = old accounts.deep_twin‘ [><
© | accounts ~ old accounts‘ [x]
o laccounts ” old accounts.twin‘ X

o ’accounts ~ old accounts.deepﬁtwin‘

¢ Which equality of the above is appropriate for the
postcondition?

¢ Why is each one of the other equalities not appropriate?

40 of 41

Index (1) :AssoNDE

Expanded Class: Modelling
Expanded Class: Programming (2)
Expanded Class: Programming (3)
Reference vs. Expanded (1)
Reference vs. Expanded (2)
Copying Objects

Copying Objects: Reference Copy
Copying Objects: Shallow Copy
Copying Objects: Deep Copy
Example: Copying Objects
Example: Collection Objects (1)
Example: Collection Objects (2)
Reference Copy of Collection Object
Shallow Copy of Collection Object (1)

41 of 41

Index (2) :AssoNDE

Shallow Copy of Collection Object (2)
Deep Copy of Collection Object (1)
Deep Copy of Collection Object (2)
How are contracts checked at runtime?
When are contracts complete?
Account

Bank

Roadmap of lllustrations

Object Structure for lllustration
Version 1:

Incomplete Contracts, Correct Implementation
Test of Version 1

Test of Version 1: Result
Version 2:

Incomplete Contracts, Wrong Implementation

42 of 41

Index (3) LASSONDE DbC: Supplier LASSONDE

oooooooooooooooooooooooooooooooooo

Test of Version 2 DbC is supported natively in Eiffel for supplier:
Test of Version 2: Result crese M
VerSIon 3. . featur:ake Attributes
Complete Contracts with Reference Copy omner ;TE:;GER
Test of Version 3 feature — Cons ;
make (nn: STRING nb INTEGER)
EzféigfnY‘erSIon 3: Resu" reqUJ'r:OSJ.téu‘/;”balance nb > 0
: do
Complete Contracts with Shallow Object Copy balance o nb
end
Test of Version 4 feature hd (o INTEGER)
wit raw(amount:
TeSt .Of VerSion 4: ReSUIt requlr:oz;7ne:;a‘t1vel;a;n;o‘uvz;t amount > 0
VerSIon 5: affordable_amount: amount <= balance
Complete Contracts with Deep Object Copy O lance - batance - anount
TeSt Of VerSion 5 ensurebala;ce deduct;d balance = old balance - amount
» end
Test of Version 5: Result invariant

positive. balance balance >0

Exercise end

43 of 41 20135

DbC: Contract View of Supplier LASSONDE

ooooooooooooooooo

Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the

Test-Driven Development (TDD) contract view (without showing any implementation details):

class ACCOUNT
create
make
feature At butes
owner : STRING
balance : INTEGER
feature —- Cons :
make(nn STRING nb INTEGER)
require prec

EECS3311 A: Software Design positive balance: nb > 0

end

‘- 7 O R I < Fa” 2018 feature -- Commands
w1thdraw(amount INTEGER)
require prec

non_. negat:.ve amount: amount > 0
CHEN-WE' WANG affordable amount: amount <= balance problemat i

ensure - postcondition
balance. deducted balance = old balance - amount
end
invariant
positive. balance balance >0
end

30f35

DbC: Testing Precondition Violation (1.1)
The client need not handle all possible contract violations:

class BANK_APP

inherit
ARGUMENTS

create
make

feature - Initialization
make

g\

EaSaRNDE

local
alan: ACCOUNT
do

ag "positive_ L

-10)

-— A precor on violation with tc

create {ACCOUNT} alan.make ("Alan",
end

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag

"positive balance™").
4 0f 35

DbC: Testing for Precondition Violation (1 2)LASSONDE

[E] |O APPLICATION 32| @ ACCOUNT 20 ELdOdew

bank ACCOUNT make < b # O ¢ ototus = Implicit exception pending

Feature [posmve balance: PRECONDITION_VIOLATION rawsed)
§ e 3= 30 el 30 e &8

#[F : AWA B InFeature |InClass | From Class | @

“lat view of feature make' of class ACCOUNT B make . ACCOUNT) 1

CO T
make » APPLICATION APPLICATION 1
make (nn: STRING_8; nb: INTEGER_32)

require
positive_balance: nb >= 0
d

w

o
2 owner := nn
2 balance := nb
B end

50f35

DbC: Testing for Precondition Violation (2.1);%%%

class BANK_APP
inherit
ARGUMENTS
create
make
feature - Initialization
make
Run
local
mark: ACCOUNT
do
create {ACCOUNT} mark.make ("Mark", 100)
—-— A precondit viola with tag "non
mark.withdraw(-1000000)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag

"non_negative_amount").
60f 35

DbC: Testing for Precondition Violation (2.2);%%%

Bl il stack |ECEELCEER

B |0 APPLICATION 3| @ ACCOUNT
Status = Implicit exception pending

bank ACCOUNT withdraw < » % O %

Feature (non_negative_amount: PRECONDITION_VIOLATION raised)
v 32 3082 =2 o

P[H2 2= 2 stziel AN L 8 InFeature |InClass | From Class | @

Flat view of feature withdraw' of class ACCOUNT » withdraw oACCOUNT |ACCOUNT |1

make + APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)

uire
e E‘rﬁinegat\'veiamount: amount >= 0)
5 affordable_amount: amount <= balance
do
2 balance := balance - amount
ensure
g balance = old balance - amount
B end
7 0f35

DbC: Testing for Precondition Violation (3.1);%%%

class BANK_APP

inherit
ARGUMENTS

create
make

feature - Initialization
make

Run
local
tom: ACCOUNT
do

create {ACCOUNT} tom.make ("Tom", 100)

—-— A precondition violation

h tag "affordabl

precondi

tom.withdraw(150)
end
end

By executing the above code, the runtime monitor of Eiffel Studio

will report a contract violation (precondition violation with tag

"affordable_amount").
80f 35

DbC: Testing for Precondition Violation (3.2);%%%

L] |® APPLICATION 33| @ ACCOUNT 20 call Stack Faowe =
bank ACCOUNT withdraw < 5 7 5 7] Status = Implicit exception pending
E i sl e &8
4 SRR R @] InFeature |InClass | FromClass | @
Flat view of feature ~ withdraw’ of class ACCOUNT | remrr— e OUN
= make s APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)

require
© non_negative_amount: amount >= 0
© affordable_amount: amount <= balance

do
© balance := balance - amount |

ensure :
© balance = old balance - amount
g end =
90f 35

DbC: Testing for Class Invariant Violation (4.3

sCroolor ENGINEERING.

class BANK_APP

inherit
ARGUMENTS

create
make

feature ——
make

create {ACCOUNT} tom.make ("Jim", 100)
jim.withdraw(100)

—— A cl S nvarian

By executing the above code, the runtime monitor of Eiffel Studio

will report a contract violation (class invariant violation with tag

"positive balance").
10 of 35

DbC: Testing for Class Invariant Violation (4.2 ono

‘‘‘‘‘‘‘‘‘‘

(B |O APPLICATION zz‘o ACCOUNT |

30 ECEECEERER

Status = Implicit exception pendin

Feature bank ACCOUNT _invariant < & % 0%
FEIEER IS FAE]
Flat view of feature " _invariant' of class ACCOUNT

positive_balance: INVARIANT_VIOLATION raised &

i | i
Tn Feature [TnClass — [From Class | @ |
> _invariant « ACCOUNT e

withdraw s ACCOUNT ACC 5
positive_balance: balance > 0 make 4 APPLICATION APPLICATION 2

110f 35

DbC: Testing for Class Invariant Violation (5.1)

class BANK_APP
inherit ARGUMENTS
create make

feature Initialization
make
—-— Run application.
local
jeremy: ACCOUNT
do

in AC

create {ACCOUNT} jeremy.make ("Jeremy", 100)

riAT At 1A it Rh FAac "holaoanre Adodil
sriolation with tag "balance_deduc

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
"balance_deducted").

DbC: Testing for Class Invariant Violation (5.2 om0

B |o APPLICATION | ® ACCOUNT BE [Weozeva
o bank ACCOUNT withdraw < b % O o1 corarus = Implicit exception pendi
balance_deducted: POSTCONDITION_VIOLATION raised

LEIEEROCE RS P 3 2 TnFeawre |InCass |FromClass | @
Flat view of feature " withdraw’ of class ACCOUNT T T N e OUNTER TEEE N
| affordable_amount: amount <= balance 2l make . APPLICATION APPLICATION 2

do
© balance := balance + amount

ensure
ﬁ (ba\anceﬁdeducted: balance = old balance - amount)

end

e

LASSONDE

ooooooooooooooooo

TDD: Test-Driven Development (1)

e How we have tested the software so far:
o Executed each test case manually (by clicking Run in EStudio).
o Compared with our eyes if actual results (produced by program)
match expected results (according to requirements).
e Software is subject to numerous revisions before delivery.
= Testing manually, repetitively, is tedious and error-prone.
= We need automation in order to be cost-effective.

e Test-Driven Development

© |Test Case |

e normal scenario (expected outcome)
e abnormal scenario (expected contract violation).

o | Test Suite |: Collection of test cases.

= A test suite is supposed to measure “correctness” of software.
= The larger the suite, the more confident you are.

LASSONDE

TDD: Test-Driven Development (2) Lssonee

e Start writing tests as soon as your code becomes executable :
o with a unit of functionality completed
o or even with headers of your features completed

class TEST_STACK

class STACK[G] e
create make test_lifo: BOOLEAN
No 1 local s: STACK[STRING]

feature - 0O do create s.make

top: G do end s.push ("Alan") ; s.push ("Mark")
feature - Comm Result := s.top ~ "Mark"

make do end check Result end

push (v: G) do end s.pop

pop do end Result := s.top ~ "Alan"
end end

end

» Writing tests should not be an isolated, last-staged activity.
o Tests are a precise, executable form of documentation that
can guide your design.

S———

LASSONDE

ooooooooooooooooo

TDD: Test-Driven Development (3)

e The ESpec (Eiffel Specification) library is a framework for:

o Writing and accumulating fest cases
Each list of relevant test cases is grouped into an ES_TEST class,
which is just an Eiffel class that you can execute upon.
o Executing the fest suite whenever software undergoes a change
e.g., a bug fix
e.g., extension of a new functionality
e ESpec tests are helpful client of your classes, which may:

o Either attempt to use a feature in a legal way (i.e., satisfying its
precondition), and report:
e Success if the result is as expected
e Failure if the result is not as expected:
e.g., state of object has not been updated properly
e.g., a postcondition violation or class invariant violation occurs
o Or attempt to use a feature in an illegal way (e.g., not satisfying
its precondition), and report:
e Success if precondition violation occurs.
e Failure if precondition violation does not occur.

S——

LASSONDE

ooooooooooooooooo

TDD: Test-Driven Development (4)

fix the Eiffel class under test

extend, maintain

N

Elffel Classes
(e.g., ACCOUNT, BANK)

when some test fails

derive (re-)run as ESpec
espec test suite Framework
ESpec Test Suite
(e.g., TEST_ACCOUT,
TEST BANK)

when all tests pass

add more tests

LASSONDE

ooooooooooooooooo

Adding the ESpec Library (1)
Step 1: Go to Project Settings.

Execution Refactor Tools Window Help

. Compile EZ
o, Find Added Classes & Recompile Alt+F8
., Recompile Overrides Shift+F8

Freeze... Ctrl+F7

@ Finalize... Ctrl+Shift+F7

. Precompile
Cancel Ctrl+Pause

Compile Workbench C Code
Compile Finalized C Code
Terminate C Compilation

P Run Workbench System Ctrl+Alt+F5
& Run Finalized System Ctrl+Alt+Shift+F5
¢ Go to Next Error Ctrl+F8

@ Go to Previous Ermror Ctrl+Shift+F8
& Go to Next Ctrl+Alt+F8

i# Go to Previous Ctrl+Alt+Shift+F8

u -‘.‘)a i ‘»
@ Project Settings...

18 of 35

LASSONDE

ooooooooooooooooo

Adding the ESpec Library (2)

Step 2: Right click on Libraries to add a library.

[System
= [& Target: bank
il Assertions
< [Groups
b (4 Clusters
= "7 Libra
[l base
b [E§ Precompile
b [Advanced

i@ Add Library

S———

Adding the ESpec Library (3)

Step 3: Search for espec and then include it.

X! Add Library

© Searchin [local & iron [available packages

O Ssearchclass [inde Fulxer.espec
Name Status Information
P espec Complete..|ESpec: Eiffel Specification Library

Custom Refresh @ i Packages

Name [espec

Location [$1SE_LIBRARY\ y/testing ylespec.ect | (I Browse... |

[ESpec: Eiffel Specification Library
Information

This will make two classes available to you:

e £ES_TEST for adding test cases
e £ES_SUITE for adding instances of ES_TEST.

o To run, an instance of this class must be set as the root.
20 of 35

I Include l Cancel |

ES TEST: Expecting to Succeed (1)

ERSS0NDE
1 |class TEST_ACCOUNT
2 |inherit ES TEST
3 | create make
4 | feature Add tests in constructor
5 make
6 do
7 add boolean_case (agent test_valid withdraw)
8 end
9 | feature —- Tests
10 test_valid _withdraw: BOOLEAN
11 local
12 acc: ACCOUNT
13 do
14 comment ("test: normal execution of withdraw feature")
15 create {ACCOUNT} acc.make ("Alan", 100)
16 Result := acc.balance = 100
17 check Result end
18 acc.withdraw (20)
19 Result := acc.balance = 80
20 end
21 |end

210f 35

LASSONDE

ooooooooooooooooo

ES TEST: Expecting to Succeed (2)
e L2: Atestclass is a subclass of ES_TEST.
e L10 — 20 define a BOOLEAN test query . At runtime:
o Success: Return value of test_valid withdraw (final value of
variable Result) evaluates to frue upon its termination.
o Failure:
e The return value evaluates to false upon termination; or
e Some contract violation (which is unexpected) occurs.

* L7 calls feature | add boolean_case |from ES_TEST, which

expects to take as input a query that returns a Boolean value.
o We pass query test_valid withdraw as an input.

o Think of the keyword agent acts like a function pointer.
.] test_invalid withdraw \ alone denotes its return value

. ’agent test,invalid,withdraw‘denotes address of query

e L14: Each test feature must call| comment (...) | (inherited
from ES_TEST) to include the description in test report.

s L L17 Check that each intermediate value of Result is true.

LASSONDE

ooooooooooooooooo

ES_TEST: Expecting to Succeed (3)

* Why is the [check result end|statement at L7 necessary?
o When there are two or more assertions to make, some of which
(except the last one) may temporarily falsify return value Result.
o Aslong as the last assertion assigns true to Result, then the
entire test query is considered as a success.
= A false positive is possible!
¢ For the sake of demonstrating a false positive, imagine:
o Constructor make mistakenly deduces 20 from input amount.
o Command withdraw mistakenly deducts nothing.

test_query_giving false positive: BOOLEAN

local acc: ACCOUNT

do comment ("Result temporarily false, but flnally true.")
create {ACCOUNT} acc.make ("Jim", 100) s
Result := acc.balance = 100 Res
acc.withdraw (20) —— a
Result := acc.balance

80 -

COONOUAWN =

on, Res being true make 2
sidered as a success ==> false positive!

end

Fix? [insert check Result end | between L6 and L7.

23 of 35

ES_TEST: Expecting to Fail Postcondition (1) ssones

Ay,

ES TEST: Expecting to Fail Precondition (1)

SSONDE
1 |class TEST_ACCOUNT model
2 |inherit ES._TEST - - - NN
, Y
3 |create make B ACCOUNT \
4 | feature —— ts 1 1 1
1 feature -- Commands 1
5 make 1 withdraw (amount: INTEGER) 1
6 do 1 require 1
))) X 1 non_negative_amount: amount > 0 !
7 add_violation case with_ tag ("non_negative_amount", 1 affordable_amount: amount < balance 1
8 agent test_withdraw_precondition_violation) ! do !
9 q 1 balance := balance - amount 1
en 1 ensure 1
10 feature —— 1 balance_deduced: balance = old balance - amount 1
) - , , 1\ end)
11 test_withdraw_precondition_violation tests 1 1
pTTTTEEEEEEEEE S ~ 1 1
12 local ke \ ' 1
13 acc: ACCOUNT , TEST ACCOUNT 1 1 1
— 1 f 1
14 do 1 ; 1 (
feature -- Test Commands for Contract Violations 1 B AD ACCOUNT WITHDR AW 1
15 comment ("test: expected precondition violation of withdraw") . test_withdraw_postcondition_violation : 1 = = :
local 1 A
16 create {ACCOUNT} acc.make ("Mark", 100) 1 acc: BAD_ACCOUNT WITHDRAW 1 acc feature - Redefined Commands '
1 7 5 L P 1 do - . (amount: INTEGER) ++ 1
) ’ ' create acc.make ("Alan”, 100) ! 1 d"mmmr (amount) 1
18 - W 1L expected - Violation of Postcondition 1 1) 1
. 1 o T edend" expected ' - Wrong Implementation .
19 acc.withdraw (-1000000) 1 - with tag "balance_deduced” expecte ' ! balance := balance + 2 * amount
acc.withdraw (50) 1 1
20 end ' end ! \ end '
. J 1 ’
21 |end N ’ AN .
N e e e e o e e e e o e e e e o o e - T -
24 of 35 26 of 35

\u,

g

SSONDE

HoOL OF EN

ES _TEST: Expecting to Fail Precondition (2)

e L2: Atestclass is a subclass of ES_TEST. 1 |class
e L11 - 20 define a test command . At runtime: 2 | BAD_ACCOUNT_WITHDRAW
o Success: A precondition violation (with ta 8 |inherit
“Ap g _ o 4 | ACCOUNT
"non_negative_amount") occurs at L19 before its termination. 5 redefine withdraw end
o Failure: 6 | create
¢ No contract violation with the expected tag occurs before its 7 make o ‘
termination; or g feaFure —— redefined
« Some other contract violation (with a different tag) occurs. 10 Wzltohdmmamo””t'
o L7 calls feature |add_violation_case_with_tag|from 11 Precursor (amount)
. . 12 -— Wrong 1 1tatio
ES_TEST, which expects to take as input a command . 13 balance = balance 4 2 + amount
o We pass command test_invalid withdraw as an input. 14 end
o Think of the keyword agent acts like a function pointer. 15 |end

o [test_invalid withdraw]alone denotes a call to it
o ’ agent test_invalid.withdraw ‘ denotes address of command

* L15: Each test feature must call| comment (...) | (inherited

from ES_TEST) to include the description in test report.
25 of 35

o L3-5: BAD_ACCOUNT WITHDRAW.withdraw inherits postcondition
from ACCOUNT.withdraw: balance = old balance - amount.
o L11 calls correct implementation from parent class ACCOUNT.

o L13 makes overall implementation incorrect.
27 of 35

ES_TEST: Expecting to Fail Postcondition (2.2} ES_SUITE: Collecting Test Classes LASSONDE

1 |class TEST_ACCOUNT

2 |inherit ES_TEST 1 |class TEST _SUITE

3 |create make 2 |inherit ES SUITE

4 | feature —— Cc fo t 3 | create make

5 make 4 | feature Cor

6 do 5 make

7 add violation casewith tag ("balance_deducted", 6 do

8 agent test_withdraw_postcondition_violation) 7 add test (create {TEST _ACCOUNT}.make)
9 end 8 show_browser

10 | feature —— Test c s (test to fail) 9 run_espec

11 test_withdraw_postcondition_violation 10 end

12 local 11 |end

13 acc: BAD_ACCOUNT_WITHDRAW

14 do

15 comment ("test: expected postcondition violation of withdraw" s

16 create aéc_make (..ilan.., 11)00)) e L2: A test suite is a subclass of ES_SUITE.
17 - L’(ij‘:‘(l(?j} ition Violation with tag "b: nce_deduced" to occur. ° L7 passes an anonymous object of type TEST_ACCOUNT to
18 acc.withdraw (50) . .

19 end add_test inherited from ES_SUITE).
20 [end L8 & L9 have to be entered in this order!

28 of 35 30 of 35

Exercise Sssonee Running ES_SUITE (1) e
Recall from the “Writing Complete Postconditions” lecture:

Step 1: Change the roof class (i.e., entry point of execution) to be

class BANK
deposit_on_v5 (n: STRING; a: INTEGER) TEST,SUITE
do ... Put Correct Implementation Here.
ensure X| Project Settings (bank) |
- - DR REnREG X 8
others_unchanged : 5 system = Ganeral
across old accounts.deep-twin as cursor T gigéf‘pmn pank
all cursor.item.owner /~ n implies &) Assertions Abstract False
cursor.item ~ account_of (cursor.item.owner) ~ [Groups o X Edit Root
end b (4 Clusters - b;:i':a.fgt.y l
end ~ (@ Libraries Catcall detection I
i base Concurrency .
end N = Execution [TEST_SUITE, |
i espec Compilation Type |2
> (@ Precompile Output Name | | °°: Procedure
@ ” H | Version make
How do you create a “bad” descendant of BANK that violates » T Advances e |
. g I
this postcondition? _Cane |
class BAD BANK DEPOSIT
inherit BANK redefine deposit end
feature edefined feature
deposit_on_v5 (n: STRING; a: INTEGER) =
do Precursor (n, a) Root: Root cluster, class, feature of the system. Q 1l
accounts [accounts. lower] .deposit (a)
end Cancel \‘
end

29 of 35 31 of 35

Running ES_SUITE (2) e Beyond this lecture... e

Step 2: Run the Workbench System.

p Run -][;E S=z

3 » Run F5
PO - — Ctrlere e Study this tutorial series on DbC and TDD:
<> Ignore Contract Violation Ctrl+F6

https://www.youtube.com/playlist?list=PL5dxAmCmjv_

b Ignore Breakpoints 6r5VFzCO5bTznoDDgh_ KS

Disable Catcall Console Warning
Disable Catcall Debugger Warning
i L ing

Ctrl+Alt+Shift+F5

& Exception Handling ...
[=] Execution Parameters ...

320f 35 34 of 35

Running ES SUITE (3) Lassonpe Index (1) Lassonpe
DbC: Supplier
Step 3: See the generated test report. DbC: Contract View of Supplier
DbC: Testing for Precondition Violation (1.1)
TEST_SUITE DbC: Testing for Precondition Violation (1.2)
Note: *indicates a violation test case DbC: Testing for Precondition Violation (2.1)
‘ S B ot | DbC: Testing for Precondition Violation (2.2)
DbC: Testing for Precondition Violation (3.1)
Violation 2 ’%
Boolean I i DbC: Testing for Precondition Violation (3.2)
T T T DbC: Testing for Class Invariant Violation (4.1)
= . i i iolati
==, DbC: Testing for Class Invariant Violation (4.2)
PASSED | NONE __|[ftest: expected precondition violation of i DbC: Testing for Class Invariant Violation (5.1)
PASSED NONE |*lcsl: expected postcondition violation of withdraw
DbC: Testing for Class Invariant Violation (5.2)

TDD: Test-Driven Development (1)
TDD: Test-Driven Development (2)

33 of 35 35 of 35

Index (2)

ooooooooooooooooo

TDD: Test-Driven Development (3)
TDD: Test-Driven Development (4)
Adding the ESpec Library (1)
Adding the ESpec Library (2)
Adding the ESpec Library (3)
ES_TEST: Expecting to Succeed (1)

ES_TEST:
ES_TEST:
ES_TEST:
ES_TEST:
ES_TEST:
ES_TEST:
ES_TEST:

Expecting to Succeed (2)

Expecting to Succeed (3)

Expecting to Fail Precondition (1)
Expecting to Fail Precondition (2)
Expecting to Fail Postcondition (1)
Expecting to Fail Postcondition (2.1)
Expecting to Fail Postcondition (2.2)

Exgicise
e —,
|

Index (3) LassonDE
ES_SUITE: Collecting Test Classes

Running ES_SUITE (1)

Running ES_SUITE (2)

Running ES_SUITE (3)

Beyond this lecture...

37 0f 35

Use of Generic Parameters
Iterator and Singleton Patterns

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

\
\

cic
z|z
mim
D=
wlwn
==
<Im

LASSONDE

ooooooooooooooooo

Generic Collection Class: Motivation (1)

class STRING _STACK

feature {NONE} - Implementation
imp: ARRAY[STRING] ; i: INTEGER

feature —— Queries

count: INTEGER do Result := i end
—-— Number of items on stack.
top: STRING do Result := imp [i] end
-— Ret of stack.
feature ds
push (v: STRING) do imp[i] := v; 1 := 1 + 1 end
Add ’v’ to top of stack.
pop do i - 1 end

—— RrRemove rtop oI St

ack.

end

o Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type STRING
(e.g., at, append)? [NO!]

o How would you implement another class ACCOUNT_STACK?

20f 39

Generic Collection Class: Motivation (2) LASSONDE

ooooooooooooooooo

class ACCOUNT _STACK
feature {NONE} - Imp ation

imp: ARRAY[ACCOUNT] ; 1i:
feature —— Queries
count: INTEGER do Result := i end
- N ber of items on stack.

top: ACCOUNT do Result := imp [i] end

feature - ds
push (v: ACCOUNT) do imp[i] := v; 1 := 1 + 1 end
—-— Add v’ to top of stack.
pop do 1 - 1 end
Remove top of stack.
end

INTEGER

> of stack.

o Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type
ACCOUNT (e.g., deposit, withdraw)? [NO!]

o A collection (e.g., table, tree, graph) is meant for the storage and
retrieval of elements, not how those elements are manipulated.

30f39

Generic Collection Class: Supplier LASSONDE

ooooooooooooooooo

Your design “smells” if you have to create an almost identical
new class (hence code duplicates) for every stack element
type you need (e.g., INTEGER, CHARACTER, PERSON, efc.).
Instead, as supplier, use G to parameterize element type:

class STACK [G]
feature {NONE} —— Im mentation
imp: ARRAY[G] ; i: INTEGER
feature —— Queries
count: INTEGER do Result := i end

\ er oOor 1ten on stack.

top: G do Result := imp [i] end

R c stack
-— R stack.

feature (1ds
push (v: G) do imp[i] := v; 1 := 1 + 1 end

—-— Add v’ to top of stack

Generic Collection Class: Client (1.1) LASSONDE

ooooooooooooooooo

As client, declaring ss: STACK[STRING] instantiates every
occurrence of G as STRING.

T 1
class STACK [f STRING]

feature {NONE} - Implementation
imp: ARRAY [ﬁ STRING] ; i: INTEGER
feature Queries

count: INTEGER do Result := i end

top: ﬁ STRING do Result [i] end
feature
push (v: ﬁ STRING) do imp[i] := v; 1 := 1 + 1 end
—-— Add v’ to top of stack.
- 1 end
ve top of stack.

Generic Collection Class: Client (1.2) LASSONDE

ooooooooooooooooo

As client, declaring ss: STACK[ACCOUNT] instantiates every
occurrence of G as ACCOUNT.

T 1
class STACK [f ACCOUNT]
feature {NONE} - Implementation

imp: ARRAY [ﬁ ACCOUNT] ; 1i: INTEGER
feature Queries

feature

push (v: ﬁ ACCOUNT) do imp[i] := v; 1 := 1 + 1 end

A"dd ‘v’ to too of stack
—— Add 14 CO Cop OI stack.

Generic Collection Class: Client (2) LASSONDE Iterator Pattern: Motivation (1) LASSONDE
As client, instantiate the type of G to be the one needed. Client:
1 | test_stacks: BOOLEAN .
2 local SUpleer: CJ:Sa:OSP
3 ss: STACK[STRING] ; sa: STACK[ACCOUNT] 1 feature
4 s: STRING ; a: ACCOUNT ¢ ;;;T cart: CART
2 dzs.pUSh("A") feature cifckout: INTEGER
7 ss.push (create (ACCOUNT}.make ("Mark", 200)) en‘fders: ARRAY [ORDER] ofrom
S 5 := ss.top i := cart.orders.lower
a := ss.top 3
. Y class until
1? sa.pusﬁif;f?te {ACCOUNT} .make ("Alan", 100)) ORDER i > cart.orders.upper
12 Za:iuza top feature de
13 S - sa.to price: INTEGER Result := Resu}t +
12 ond . -top quantity: INTEGER cart.orders[i] .price
end *
. i cart.orders[i].quantity
¢ L3 commits that ss stores STRING objects only. i=di+1
o L8 and L10 valid; L9 and L11 invalid. Probl n end
o L4 commits that sa stores ACCOUNT objects only. roblems: e
o L12 and L14 valid; L13 and L15 invalid.

7 of 39 9 of 39

What are design patterns? LASSONDE Iterator Pattern: Motivation (2) LASSONDE
_ Client:
Supplier:
class
class SHOP
CART feature
feature cart: CART

e Solutions to recurring problems that arise when software is
being developed within a particular confext.

o Heuristics for structuring your code so that it can be systematically

maintained and extended.

o Caveat : A pattern is only suitable for a particular problem.
o Therefore, always understand problems before solutions!

8 of 39

orders: LINKED LIST[ORDER]
end

class
ORDER
feature
price: INTEGER
quantity: INTEGER
end

Client’s code must be modi-
fied to adapt to the supplier’s
change on implementation.

10 of 39

checkout: INTEGER
do
from
cart.orders.start
until
cart.orders.after
do
Result := Result +
cart.orders.item.price
*
cart.orders.item.quantity
end
end
end

lterator Pattern: Architecture LASSONDE

ooooooooooooooooo

class
CART
(SurrLiER] inherit
k ITERABLE [ORDER]

ITERATION_CURSORIG]

feature {NONE} - Information Hiding
orders: ARRAY[ORDER]

INDEXABLE_ITERATION_CURSOR[G] +

feature - Iteration
new_cursor: ITERATION_CURSOR[ORDER]
do
Result := orders.new_cursor
end

When the secrete implementation is already iterable, reuse it!
11 of 39 13 of 39

Iterator Pattern: Supplier’s Side LASSONDE Iterator Pattern: Supplier’s Imp. (2.1) LASSONDE
e Information Hiding Principle :
o Hide design decisions that are likely to change (i.e., stable API). s [ON—
o Change of secrets does not affect clients using the existing API. inherit
e.g., changing from ARRAY to LINKED_LIST in the CART class | TTERABLEL TOPLE[STRING, o]]
e Steps: feature {NONE} Information Hiding
1. Let the supplier class inherit from the deferred class e A
/TERABLE[G]- feature - Iteration
2. This forces the supplier class to implement the inherited feature: new_cursor: ITERATION _CURSOR[TUPLE[STRING, G] |
new_cursor: ITERATION_.CURSOR [G], where the type parameter local
G may be instantiated (e.g., ITERATION_.CURSOR[ORDER)]). cursor: Qe]
2.1 If the internal, library data structure is already iterable do . X g
e.g., imp: ARRAY[ORDER), then simply return imp.new_cursor. ;:zilf_ czrizisgi © (names, records)
2.2 Otherwise, say imp: MY_TREE[ORDER]J, then create a new class end '
MY _TREE_ITERATION_CURSOR that inherits from
ITERATION.CURSOR[ORDER], then implement the 3 inherited No Eiffel library support for iterable arrays = Implement it yourself!

features after, item, and forth accordingly.
12 of 39 14 of 39

Iterator Pattern: Supplier’s Imp. (2.2) LASSONDE
class

MY ITERATION_CURSORI[G]
inherit

ITERATION_CURSOR[TUPLE [STRING, G]]
feature —— Constructor

make (ns: ARRAY[STRING]; rs: ARRAY[G])

do ... end

feature {NONE} - Information Hiding

cursor_position: INTEGER
names: ARRAY [STRING]
records: ARRAY|[G]

feature - Cursor Operations
item: TUPLE[STRING, G]
do ... end
after: Boolean
do ... end
forth
do ... end

You need to implement the three inherited features:

item, after, and forth.
15 of 39

EaSaRNDE

Iterator Pattern: Supplier’s Imp. (2.3)

Visualizing iterator pattern at runtime:

ArrayedMap

inherit ITERABLE[TUPLE[STRING, G]] 1 2 3 = FETE o Egelzhe
names L ! |

records 1 2 3 records.upper
I N A R

new_cursor

ITERATION_CURSOR[TUPLE[STRING, G]]

values_1
values_2
cursor_position

item
after, forth

16 of 39

Exercises LAssonDE

ke

1. Draw the BON diagram showing how the iterator pattern is
applied to the CART (supplier) and SHOP (client) classes.
2. Draw the BON diagram showing how the iterator pattern is
applied to the supplier classes:
o GENERIC_BOOK (a descendant of ITERABLE) and

o MY_ITERATION_CURSOR (a descendant of
ITERATION_CURSOR).

17 of 39

EaSaRNDE

Resources

e Tutorial Videos on Generic Parameters and the Iterator Pattern
e Tutorial Videos on Information Hiding and the lterator Pattern

18 of 39

- . ___
=

Iterator Pattern: Client’s Side LASSONDE Iterator Pattern: LASSONDE
Clients using across for Contracts (2)
Information hiding : the clients do not at all depend on how the class BANK
supplier implements the collection of data; they are only interested : e .
. accounts: LIST [ACCOUNT]
in iterating through the collection in a linear manner. binary search (acc id: INTEGER): ACCOUNT
S'[eps: - .Sea rch on accounts rted in non-descending order.
I require
1. Obey the code to interface, not to implementation principle. across
X . . 1 |..| (accounts.count - 1) as cursor
2. Let the client declare an attribute of interface type all
/TERABLE[G] (rather than implementation type ARRAY, enadccounts [cursor.item] .id <= accounts [cursor.item + 1].1id
LINKED_LIST, or MY_TREE). do
e.g., cart: CART, where CART inherits ITERATBLE [ORDER] ensure
3. Eiffel supports, in both implementation and contracts, the enﬁfsult'id = acc_id

across syntax for iterating through anything that’s iterable.
This precondition corresponds to:

” 'sgi: INTEGER | 1 < i < accounts.count e accounts[i].id < accounts[i+1].id
(o)

. — E—

Iterator Pattern: LASSONDE Iterator Pattern: LASSONDE
Clients using across for Contracts (1) Clients using across for Contracts (3)
class class BANK
CHECKER ..
feature - Attributes accounts: LIST [ACCOUNT]
collection: RABLE [INTEGER] contains_duplicate: BOOLEAN
feature Queries —-— Does the account 1ist e:
is_all_positive: BOOLEAN do
7 Axe @ll dtems in collection positive: Lo
Vi,j: INTEGER |
ensure 1 < i< accounts.count A 1< j < accounts.count e
across accounts[i] ~ accounts[j] =i =
collection as cursor ’ end ‘
all
cursor.item > 0 e Exercise: Convert this mathematical predicate for
end postcondition into Eiffel.
end . .
: : S— ¢ Hint: Each across construct can only introduce one dummy
¢ Using all corresponds to a universal quantification (i.e., V). variable, but you may nest as many across constructs as
¢ Using some corresponds to an existential quantification (i.e., 3). necessary.

20 of 39 22 of 39

LASSONDE

ooooooooooooooooo

Iterator Pattern:
Clients using lterable in Imp. (1)

class BANK

accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT
—— Account with the maximum balance value.
require ??
local
cursor: ITERATION_CURSOR[ACCOUNT]; max: ACCOUNT
do
from max := accounts [1l]; cursor := accounts. new.cursor

until cursor. after
do
if cursor. item .balance > max.balance then

max := cursor. item
end
cursor. forth
end
ensure ??
end
23 of 39

LASSONDE

ooooooooooooooooo

Iterator Pattern:
Clients using Iterable in Imp. (2)

O©OoONO® O »hWN =

class SHOP
cart: CART
checkout: INTEGER

require ??

local
order: ORDER
do
across
cart as cursor
loop
order := cursor. item
Result := Result + order.price x order.quantity
end

ensure ??

end

e Class CART should inherit from ITERABLE[ORDER].

e L10 implicitly declares cursor: ITERATION_CURSOR[ORDER]
and does cursor := cart.new_cursor

24 of 39

LASSONDE

ooooooooooooooooo

Iterator Pattern:
Clients using Iterable in Imp. (3)

class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

ACC with

require ??
local
max: ACCOUNT
do
max := accounts [1]
across
accounts as cursor

loop
if cursor.item.balance > max.balance then
max := cursor. item
end
end

ensure ??

end
.,

LASSONDE

ooooooooooooooooo

Singleton Pattern: Motivation

Consider two problems:

1. Bank accounts share a set of data.

e.g., interest and exchange rates, minimum and maximum
balance, etc.

2. Processes are regulated to access some shared, limited
resources.

e.g., printers

26 of 39

Shared Data via Inheritance LASSONDE
Client:

class DEPOSIT inherit SHARED DATA

‘n balance’ rele t SU Iier.
end pp
class
class WITHDRAW inherit SHARED DATA SHARED DATA
- 'm balance’ re 11 feature
end interest_rate: REAL
exchange_rate: REAL
class INT_TRANSFER inherit SHARED DATA minimum balance: INTEGER
—= lexc te’ t maximum_balance: INTEGER
end L.
end
class ACCOUNT inherit SHARED DATA
feature
—-— ‘interest_rate’ re t
deposits: DEPOSIT_LIST Problems?

withdraws: WITHDRAW_LIST
end

27 of 39

TBANK

< WITHDRAWAL_LIST |

o [rreverent features are inherited.
= Descendants’ cohesion is broken.
o Same set of data is duplicated as instances are created.

= Updates on these data may result in inconsistency .
28 of 39

Sharing Data via Inheritance: Limitation

LASSONDE

ooooooooooooooooo

e Each descendant instance at runtime owns a separate copy of
the shared data.

¢ This makes inheritance not an appropriate solution for both

problems:

o What if the interest rate changes? Apply the change to all

instantiated account objects?
o An update to the global lock must be observable by all regulated
processes.
Solution:
o Separate notions of data and its shared access in two separate
classes.

o Encapsulate the shared access itself in a separate class.

29 of 39

ooooooooooooooooo

1 |class A

2 |create make

3 | feature - Constructor

4 make do end

5 | feature —- Query

6 new_once_array (s: STRING): ARRAY[STRING]

7 —-— A once query that returns an array.

8 once

9 create {ARRAY[STRING]} Result.make_empty
10 Result. force (s, Result.count + 1)

11 end

12 new_array (s: STRING): ARRAY[STRING]

13 -—- An ordi query that returns an array.
14 do

15 create {ARRAY[STRING]} Result.make_empty
16 Result. force (s, Result.count + 1)

17 end

18 | end

L9 & L10 executed only once for initialization.
L15 & L16 executed whenever the feature is called.

30 of 39

ooooooooooooooooo

1 | test_qguery: BOOLEAN

2 local

3 a: A

4 arrl, arr2: ARRAY [STRING]

5 do

6 create a.make

7

8 arrl := a.new_array ("Alan")

9 Result := arrl.count = 1 and arrl[1]
10 check Result end

11

12 arr2 := a.new_array ("Mark")

13 Result := arr2.count = 1 and arr2[1]
14 check Result end

15

16 Result := not (arrl = arr2)

17 check Result end

18 end

~

"Alan"

"Mark"

1 of 39

e —

ooooooooooooooooo

1 | test_once_query: BOOLEAN
2 local
3 a: A
4 arrl, arr2: ARRAY [STRING]
5 do
6 create a.make
7
8 arrl := a.new_once_array ("Alan")
9 Result := arrl.count = 1 and arrl[l] ~ "Alan"
10 check Result end
11
12 arr2 := a.new_once_array ("Mark")
13 Result := arr2.count = 1 and arr2[1l] ~ "Alan"
14 check Result end
15
16 Result := arrl = arr2
17 check Result end
18 |end
32 of 39

e The ordinary do ... end is replaced by once ... end.

¢ The first time the once routine r is called by some client, it
executes the body of computations and returns the computed
result.

¢ From then on, the computed result is “cached”.

¢ In every subsequent call to r, possibly by different clients, the
body of r is not executed at all; instead, it just returns the
“cached” result, which was computed in the very first call.

¢ How does this help us?

Cache the reference to the same shared object !
3 of 39

e —

Approximating Once Routine in Java

We may encode Eiffel once routines in Java:

LASSONDE

ooooooooooooooooo

LASSONDE

ooooooooooooooooo

class BankData {
BankData () { }
double interestRate;
void setIR(double r);

class Account {
BankData data;
Account () {
data = BankDataAccess.getData() ;
}
}

class BankDataAccess {
static boolean initOnce;
static BankData data;
static BankData getData() {
if(!initOnce) |
data = new BankDatal();
initOnce = true;

Problem?

Multiple BankData objects may
be created in Account,
breaking the singleton!

}
return data;
}
}

Account () |
data = new BankData();

}

34 of 39

Singleton Pattern in Eiffel (1) LASSONDE Testing Singleton Pattern in Eiffel LASSONDE
Supplier: Client: test_bank_shared_data: BOOLEAN
—-— Test that a single data o S
class DATA test: BOOLEAN local accl, acc2: ACCOUNT
create {DATA ACCESS} make local do
feature {DATA_ACCESS} access: DATA ACCESS comment ("t1l: test that a single data object is shared")
make do v 10 end dl, d2: DATA create accl.make ("Bill")
feature Data Attributes do create acc2.make ("Steve")
v: INTEGER dl := access.data Result := accl.data = acc2.data
change_v (nv: INTEGER) d2 := access.data check Result end
do v := nv end Result := dl1 = d2 Result := accl.data ~ acc2.data
end and dlI.v = 10 and d2.v = 10 check Result end
check Result end accl.data.set_interest_rate (3.11)
dl.change_v (15) Result :=
expanded class Result := dl = d2 accl.data.interest_rate = acc2.data.interest_rate
DATA ACCESS and dlI.v = 15 and d2.v = 15 and accl.data.interest_rate = 3.11
feature end check Result end
data: DATA end acc2.data.set_interest_rate (2.98)
—— The one and only ac 55 Result :=
once create Result.make end iy . accl.data.interest_rate = acc2.data.interest_rate
invariant data = data ertmg’create d1‘make‘ln test and accl.data.interest_rate = 2.98
feature does not compile. Why? end

35 of 39 37 of 39

Singleton Pattern in Eiffel (2) LASSONDE Singleton Pattern: Architecture LASSONDE
Supplier: Client:
class BANK DATA class R —— .
create {BANK DATA ACCESS} make ACCOUNT LLCLENT NG .
feature {BANK DATA ACCESS} feature | —APPLeATON T T oo ________iSUPPLIER OF SHARED DATA;
- \\
make do ... end data: BANK.DATA N / /)
feature Data Attributes make (...) | DATA_ACCESS + }
interest_rate: REAL —— Init. access to ban e minletlel : I !
. . | CLIENT_2 data: DATA v: VALUE !
set_interest_rate (r: REAL) local e N - A shared data object. data + ~ An example query. i
data_access: BANK.DATA ACCESS / ; Loy once = |
nd \ S create Result.make - An example command. | |
e do L N end DATA_ACCESS i
data := data_access.data | shared_instance: make) |
L }_(_L_IETTI'I_';B_'\ | data = data - - Initialize a data object. }
expanded class end [N N i
BANK_DATA_ACCESS | CAPPLICATION 3 +—> ==
end \ /!
feature Semmmmm e

data: BANK DATA

— The one and only access

' 5| Writing |create data.make| in Important Exercises: Instantiate this architecture to both
once create Result.make end| gliant’s make feature does not

invariant data = data ; problems of shared bank data and shared lock. Draw them in
compile. Why? draw. io.

36 of 39 38 of 39

Index (1) Lassonoe

Generic Collection Class: Motivation (1)
Generic Collection Class: Motivation (2)
Generic Collection Class: Supplier
Generic Collection Class: Client (1.1)
Generic Collection Class: Client (1.2)
Generic Collection Class: Client (2)
What are design patterns?

Iterator Pattern: Motivation (1)

Iterator Pattern: Motivation (2)

Iterator Pattern: Architecture

Iterator Pattern: Supplier’s Side

Iterator Pattern: Supplier’s Implementation (1)
Iterator Pattern: Supplier’s Imp. (2.1)
Iggorg}or Pattern: Supplier’s Imp. (2.2)

Index (2) :AssoNDE

Iterator Pattern: Supplier’s Imp. (2.3)
Exercises
Resources

Iterator Pattern: Client’s Side

Iterator Pattern:

Clients using across for Contracts (1)
Iterator Pattern:

Clients using across for Contracts (2)
Ilterator Pattern:

Clients using across for Contracts (3)
Iterator Pattern:

Clients using Iterable in Imp. (1)
Iterator Pattern:

qgi?;;lts using Iterable in Imp. (2)

Index (3) Lassonoe

Iterator Pattern:

Clients using Iterable in Imp. (3)

Singleton Pattern: Motivation

Shared Data via Inheritance

Sharing Data via Inheritance: Architecture
Sharing Data via Inheritance: Limitation
Introducing the Once Routine in Eiffel (1.1)
Introducing the Once Routine in Eiffel (1.2)
Introducing the Once Routine in Eiffel (1.3)
Introducing the Once Routine in Eiffel (2)
Approximating Once Routines in Java
Singleton Pattern in Eiffel (1)

Singleton Pattern in Eiffel (2)

Testslng Singleton Pattern in Eiffel

41 of

Index (4) :AssoNDE

Singleton Pattern: Architecture

42 of 39

Inheritance
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A: Software Design

YORK ' Fall 2018

UNIVERSITE CHEN-WEI WANG
UNIVERSITY
Aspects of Inheritance LASSONDE

e Code Reuse

¢ Substitutability

o Polymorphism and Dynamic Binding
[compile-time type checks]

o Sub-contracting
[runtime behaviour checks]

20f 54

Why Inheritance: A Motivating Example e

ooooooooooooooooo

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.
3of54

The COURSE Class LASSONDE

ooooooooooooooooo

class
COURSE

create ——- Declare commands that can be used as constructors
make

feature —— Attributes
title: STRING
fee: REAL

feature —— Commands
make (t: STRING; f: REAL)

No Inheritance: RESIDENT STUDENT Class isono: No Inheritance: Testing Student Classes iasono:

oooooooooooooooooooooooooooooooooo

class RESIDENT_STUDENT
create make
feature Attri es

: STRIN i1
name: 8 G jim: RESIDENT_STUDENT

courses: LINKED_LIST[COURSE] Jeremy: NON_RESIDENT_ STUDENT
premium-rate: REAL do

feature - Co ructor create cl.make ("EECS2030", 500.0)

test_students: BOOLEAN
local
cl, c2: COURSE

make (n: STRING) create c2.make ("EECS3311", 500.0)
do name := n ; create courses.make end create jim.make ("J. Davis")
feature —- nds jim.set_pr (1.25)
set_pr (r: REAL) do premium.rate := r end jim.register (cl)
register (c: COURSE) do courses.extend (c) end Jjim.register (c2)
feature —— Queries Result := jim.tuition = 1250
tuition: REAL check Result end
local base: REAL create jeremy.make ("J. Gibbons")
do base := 0.0 jeremy.set_dr (0.75)
across courses as c loop base := base + c.item.fee end jeremy.register (cl)
| Result := base # premium.rate | jeremy.regiyster (CZ)V ‘
end Result := jeremy.tuition = 750
end end
50754 7 0f 54

No Inheritance: NON_ RESIDENT _STUDENT Clasg% No Inheritance: R
class NON.RESIDENT.STUDENT Issues with the Student Classes

create make

feature Attributes

name: STRING .
courses: LINKED LIST[COURSE] Implementations for the two student classes seem to work. But

discount_rate: REAL can you see any potential problems with it?

feature - Constructo: i
ma;e (n: STRING) e The code of the two student classes share a lot in common.
feaiﬁrza’f‘f 7 i create courses.make end » Duplicates of code make it hard to maintain your software!
set.dr (r: REAL) do discount rate := r end e This means that when there is a change of policy on the
fel;iguiriter (c: COURSE) do courses.extend (c) end common part, we need modify more than one places.
—— Queries
tuition: REAL = This violates the Single Choice Principle :
local base: REAL . i
do base := 0.0 when a change is needed, there should be a single place (or
across courses as c loop base := base + c.item.fee end a minimal number ofplaces) Where y0U need to make that
Result := base * discount_rate
change.
end
end
6 of 54 8 of 54

ASSONDE

ooooooooooooooooo

—

No Inheritance: Maintainability of Code (1)

What if a new way for course registration is to be implemented?
e.g.,

register (Course c)
do
if courses.count >= MAX CAPACITY then

Error: maximum capacity
else

courses.extend (c)
end

end

reacned.

We need to change the register commands in both student
classes!

= Violation of the Single Choice Principle

9 of 54

LASSONDE

ooooooooooooooooo

No Inheritance: Maintainability of Code (2)

What if a new way for base tuition calculation is to be
implemented?

e.g.,

tuition: REAL
local base: REAL
do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base x inflation.rate x ...
end

We need to change the tuition query in both student
classes.

= Violation of the Single Choice Principle

10 of 54

No Inheritance:

A Collection of Various Kinds of Students

How do you define a class StudentManagement System that
contains a list of resident and non-resident students?

ooooooooooooooooo

class STUDENT_MANAGEMENT _SYSETM
rs : LINKED_LIST[RESIDENT_STUDENT]
nrs : LINKED_LIST[NON_RESIDENT_STUDENT]
add_rs (rs: RESIDENT_STUDENT) do ... end
add_nrs (nrs: NON_RESIDENT_STUDENT) do . end
register_all (Course c) —— Register a n
do
across rs as c loop c.item.register (c) end
across nrs as c¢ loop c.item.register (c) end
end
end

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the

same manner, separately!
11 of 54

LASSONDE

ooooooooooooooooo

Inheritance Architecture

STUDENT

inherit
inherit

RESIDENT_STUDENT NON_RESIDENT_STUDENT

12 of 54

Inheritance: The STUDENT Parent Class

LASSONDE

ooooooooooooooooo

O©CoOo~NOO~WN =

class STUDENT
create make
feature - Attributes
name: STRING
courses: LINKED_ LIST|[COURSE]
feature C 1ds that can be used as constructors.
make (n: STRING) do name := n ; create courses.make end
feature —— C ands
register (c: COURSE) do courses.extend (c) end
feature Queries
tuition: REAL
local base: REAL
do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base
end
end
13 of 54

0 NoO O WN =

|
|

Inheritance: LASSONDE
The RESIDENT STUDENT Child Class
class
RESIDENT_STUDENT
inherit
STUDENT
redefine tuition end
create make
feature —— Attr tecs
premium_-rate : REAL
feature C 1ds
set_pr (r: REAL) do premium _rate := r end
feature —— Queries
tuition: REAL
local base: REAL
do base := Precursor ; Result := base * premium.rate end ‘
end

14 of 54

e L3: RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command
e L14: Precursor returns the value from query tuition in STUDENT.

Inheritance:
The NON RESIDENT STUDENT Child Class

© oo NOOR~WN =

class
NON_RESIDENT_STUDENT
inherit
STUDENT
redefine tuition end
create make
feature —— At

discount_rate :

REAL
feature - Co is

1S

set.dr (r: r end
feature —— Que:
tuition: REAL
local base:

REAL) do discount_rate :=

r1es

REAL

do base := Precursor ; Result := base * discount_-rate end

end

e L3: NON_RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command

e L14: Precursor returns the value from query tuition in STUDENT.
15 of 54

Inheritance Architecture Revisited

STUDENT

inherit
inherit

RESIDENT_STUDENT NON_RESIDENT_STUDENT

¢ The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

e Each “specialized” class is called a child , sub, or

descendent class.
16 of 54

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:
o Factor out common features (attributes, commands, queries) in a
separate class.
e.g., the STUDENT class
o Define an “specialized” version of the class which:
e inherits definitions of all attributes, commands, and queries
e.g., attributes name, courses
e.g., command register
e.g., query on base amount in tuition
This means code reuse and elimination of code duplicates!
o defines new features if necessary
e.g., set_pr for RESIDENT_STUDENT
e.g., set _dr for NON_RESIDENT_STUDENT
e redefines features if necessary
e.g., compounded tuition for RESIDENT_STUDENT
e.g., discounted tuition for NON_RESIDENT_STUDENT

17 of 54

Testing the Two Student Sub-Classes

test_students: BOOLEAN
local
cl, c2: COURSE
jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_ STUDENT
do
create cl.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25) ; jim.register (cl); jim.register (c2)
Result := jim.tuition = 1250
check Result end
create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75); jeremy.register (cl); jeremy.register (c2)
Result := jeremy.tuition = 750
end

¢ The software can be used in exactly the same way as before
(because we did not modify feature signatures).
¢ But now the internal structure of code has been made

maintainable using inheritance .
18 of 54

Static Type vs. Dynamic Type ¥
e In object orientation , an entity has two kinds of types:
o static type is declared at compile time [unchangeable]
An entity’s ST determines what features may be called upon it.
o dynamic type is changeable at runtime
e |n Java:

Student s = new Student ("Alan");
Student rs = new ResidentStudent ("Mark");

¢ |n Eiffel:

local s: STUDENT
rs: STUDENT
do create {STUDENT} s.make ("Alan")
create {RESIDENT_STUDENT} rs.make ("Mark")

SSONDE

HooL OF B

o In Eiffel, the dynamic type can be omitted if it is meant to be the
same as the static type:

local s: STUDENT
do create s.make ("Alan")

19 of 54

Inheritance Architecture Revisited

name: STRING
courses: LINKED_LIST[COUNRSE]

register (Course ¢)

tuition: REAL STUDENT

/* new features */
discount_rate: REAL
NON_RESIDENT_STUDENT| set_dr (r: REAL)

/* redefined features */
tuition: REAL

/* new features */
premium_rate: REAL
set_pr (r: REAL)

/* redefined features */
tuition: REAL
sl,s2,s3: STUDENT ; rs: RESIDENT STUDENT ; nrs :

create {STUDENT} sl.make ("S1")

create {RESIDENT STUDENT} sZ2.make ("S2")
create {NON.RESIDENT_STUDENT} s3.make ("S3")
create {RESIDENT STUDENT} rs.make ("RS")
create {NON RESIDENT STUDENT} nrs.make ("NRS")

RESIDENT_STUDENT

NON_RESIDENT STUDENT

H name | courses ‘reg ‘tuition ‘pr H set,pr‘ dr H set_dr
sl. v X
s2. v X
s3. v X
rs. v v X
nrs. v X v

20 of 54

Polymorphism: Intuition (1) LASSONDE
1 | local
2 s: STUDENT
3 rs: RESIDENT STUDENT
4 |do
5 create s.make ("Stella")
6 create rs.make ("Rachael")
7 rs.set_pr (1.25)
8 s := rs /+x Is this valid? x/
9 rs := s /x Is this valid? =/
e Which one of L8 and L9 is valid? Which one is invalid?
o L8: What kind of address can s store? [STUDENT]

.. The context object s is expected to be used as:
e s.register(eecs3311) and s.tuition
o L9: What kind of address can rs store? [RESIDENT_STUDENT]

.. The context object rs is expected to be used as:

e rs.register (eecs3311) and rs.tuition

e rs.set pr (1.50) [increase premium rate]
21 of 54

Polymorphism: Intuition (2) LASSONDE
1 local s: STUDENT ; rs: RESIDENT STUDENT
2 |do create {STUDENT} s.make ("Stella")
3 create {RESIDENT STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /» Is this valid? =/
6 rs := s /% Is this valid? =/
e rs := s (L6) should be invalid:

s :STUDENT

[name JESTE

rs:RESIDEN:! TQJ:E;I\
e rsdeclared of type RESIDENT_S TUDEN
s.calling rs.set pr(1.50) can be expected.
e rsis now pointing to a STUDENT object.
e Then, what would happento rs.set pr(1.50)7?
CRASH -+ rs.premium_rate is undefined!l
22 of 54

Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)

oA wWN =

LASSONDE

ooooooooooooooooo

local s: STUDENT ; rs: RESIDENT STUDENT
do create {STUDENT} s.make ("Stella")
create {RESIDENT STUDENT} rs.make ("Rachael")
rs.set_pr (1.25)
s := rs /» Is this valid? =/
rs := s /+x Is this valid? */

e s :=rs (L5) should be valid:

“Stella”
rs: RE‘SIDEN%
Y

RESIDENT_STUDENT

e Since s is declared of type STUDENT, a subsequent call
s.set pr(1.50) is never expected.

e sis now pointing to a RESIDENT_STUDENT object.

e Then, what would happento s. tuition?

— OK "+ s.premium_rate is just never used!!
[

0 NO O~ WN =

LASSONDE

ooooooooooooooooo

local ¢ : COURSE ; s : STUDENT

do crate c.make ("EECS3311", 100.0)
create {RESIDENT STUDENT} rs.make("Rachael")
create {NON_RESIDENT_STUDENT} nrs.make("Nancy")
rs.set_pr(l.25); rs.register(c)
nrs.set_dr(0.75); nrs.register(c)
s := rs; ; check s .tuition = 125.0 end
s := nrs; ; check s .tuition = 75.0 end

After s := rs (L7), s points {0 @ RESTDENT_STUDENT Object.
= Calling s .tuition applies the premium rate.

rs:RESIDENT STUDENT RESIDENT_STUDENT

———

S :STUDENT

[title REESEEEE
100.0

nrs:NON_RESIDENT STUDENT | NON_RESIDENT STUDENT
name

courses

discount_rate

24 of 54

Dynamic Binding: Intuition (2) LASSONDE Multi-Level Inheritance Architecture (2)
1 |local ¢ : COURSE ; s : STUDENT
2 |do crate c.make ("EECS3311", 100.0)
3 create {RESIDENT STUDENT} rs.make("Rachael")
4 create {NON_RESIDENT_STUDENT} nrs.make("Nancy")
5 rs.set_pr(l.25); rs.register(c) AT PHONE |t e
6 nrs.set_dr(0.75); nrs.register(c)
7 s := rs; ; check s .tuition = 125.0 end
8 s := nrs; ; check s .tuition = 75.0 end
After s :=nrs (L8), s points to a NON_RESTDENT _STUDENT object. S [Sl e

= Calling s .tuition applies the discount_rate.

rs:RESIDENT STUDENT

———

RESIDENT_STUDENT
“Rachael”

IPHONE_6S IPHONE_6S_PLUS SAMSUNG HTC

premium_rate 1.25

<

s:STUDENT GALAXY_S6_EDGE GALAXY_S6_EDGE_PLUS HTC_ONE_A9 HTC_ONE_M9
[_course]
[titie [REESEN T
| fee |TIN
nrs:NON_RESIDENT STUDENT—— | NON_RESIDENT STUDENT
25 of 54 27 of 54

Multi-Level Inheritance Architecture (1) LASSONDE Inheritance Forms a Type Hierarchy
e A (data) type denotes a set of related runtime values.
o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:

o (Implicit) Root of the hierarchy is ANY.
o Each inherit declaration corresponds to an upward arrow.
o The inherit relationship is fransitive: when A inherits B and B
inherits C, we say A indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class A are: 2 itself and all classes that
A directly, or indirectly, inherits.
o A inherits all features from its ancestor classes.
.. A’s instances have a wider range of expected usages (i.e.,
attributes, queries, commands) than instances of its ancestor classes.
o The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, inherits A.

¢ Code defined in A is inherited to all its descendant classes.
26 of 54 28 of 54

DOMESTIC_STUDENT FOREIGN_STUDENT

DOMESTIC_RESIDENT_STUDENT

DOMESTIC_NON_RESIDENT_STUDENT

‘ FOREIGN_RESIDENT_STUDENT ‘

LASSONDE

ooooooooooooooooo

Inheritance Accumulates Code for Reuse

e The lower a class is in the type hierarchy, the more code it
accumulates from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
e Declare new attributes.
¢ Define new queries or commands.
e Redefine inherited queries or commands.
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).
o When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.
o e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT_STUDENT Or @ NON_RESIDENT_STUDENT object.
o Justification: A descendant class contains at least as many
54l‘eatures as defined in its ancestor classes (but not vice versal).

29 of

LASSONDE

ooooooooooooooooo

Substitutions via Assighments

e By declaring |v1:C1|, reference variable v1 will store the
address of an object of class c1 at runtime.

e By declaring [v2:C2], reference variable v2 will store the
address of an object of class c2 at runtime.

* Assignment copies the address stored in v2 into v1.
o v1 will instead point to wherever v2 is pointing to. [object alias |

v H

C1i

« In such assignment|v1:=v2 |, we say that we substitute an
object of type C1 with an object of type c2.

e Substitutions are subject to rules!
30 of 54

Rules of Substitution LASSONDE
Given an inheritance hierarchy:
1. When expecting an object of class 2, it is safe to substitute it

with an object of any descendant class of 2 (including 2).

o e.g., When expecting an 10s phone, you can substitute it with
either an IPhone6s Or TPhone6sPlus.

o - Each descendant class of A is guaranteed to contain all code
of (non-private) attributes, commands, and queries defined in A.

o .. All features defined in A are guaranteed to be available in the
new substitute.

2. When expecting an object of class 2, it is unsafe to substitute

it with an object of any ancestor class of A’s parent .

o e.g., When expecting an 10s phone, you cannot substitute it with
just a smartPhone, because the facetime feature is not
supported in an Android phone.

o --Class A may have defined new features that do not exist in any

of its parent’s ancestor classes .
31 of 54

Reference Variable: Static Type LASSONDE

ooooooooooooooooo

e A reference variable’s static type is what we declare it to be.

o e.¢g.,| jim: STUDENT |declares jim’s static type as STUDENT.
° e.g.,|my_phone : SMART _PHONE |
declares a variable my_phone of static type SmartPhone.
o The static type of a reference variable never changes.
e For a reference variable v, its static type defines the

expected usages of v as a context object .
» Afeaturecall v.m(...) is compilable if mis defined in .

o e.g., After declaring | im: STUDENT |, we

e may call register and tuitionon jim
e may not call set_pr (specific to a resident student) or set _dr
(specific to a non-resident student) on jim
o e.g., After declaring ’ my_phone : SMART_PHONE ‘ we
e may call dial and surf_web On my_phone
e may nof call facetime (specific to an IOS phone) or skype (specific
320f54 10 an Android phone) on my_phone

EaSaRNDE

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it

is currently pointing to at runtime.

o The dynamic type of a reference variable may change whenever
we re-assign that variable to a different object.

o There are two ways to re-assigning a reference variable.

33 of 54

ES30NDE

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

o Substitution Principle : the new object’s class must be a
descendant class of the reference variable’s static type.

o e.g., Given the declaration | jim: STUDENT |:

. ’ create {RESIDENT_STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jimto RESIDENT_STUDENT.

° ’ create {NON RESIDENT STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jim to NON_RESIDENT_STUDENT.

o e.g., Given an alternative declaration] jim: RESIDENT STUDENT \:

e e4, ’ create {STUDENT} jim.make ("Jim") ‘ is illegal

because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT_STUDENT).

34 of 54

Reference Variable: LASSONDE
Changing Dynamic Type (2)
Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):
o Substitution Principle : the static type of other must be a
descendant class of v’s static type.
° eg.,

jim: STUDENT ; rs: RESIDENT STUDENT; nrs: NON_RESIDENT STUDENT
create {STUDENT} jim.make (...)

create {RESIDENT STUDENT} rs.make (...)

create {NON_RESIDENT STUDENT} nrs.make (...)

e rs := Jjim X

e nrs := Jjim

e jim := rs v
changes the dynamic type of jim to the dynamic type of rs

e jim := nrs v

changes the dynamic type of jim to the dynamic type of nrs
35 of 54

Polymorphism and Dynamic Binding (1) LASSONDE
e Polymorphism : An object variable may have “multiple possible

shapes” (i.e., allowable dynamic types).
o Consequently, there are multiple possible versions of each feature
that may be called.
e e.g., 3 possibilities of tuition on a STUDENT reference variable:
In STUDENT: base amount
In RESIDENT STUDENT: base amount with premium_rate
In NON_RESIDENT STUDENT: base amount with discount_rate

e Dynamic binding : When a feature m is called on an object
variable, the version of m corresponding to its “current shape”

(i.e., one defined in the dynamic type of m) will be called.

jim: STUDENT; rs: RESIDENT_STUDENT; nrs: NON_STUDENT
create {RESIDENT STUDENT} rs.make (...)
create {NON_RESIDENT_STUDENT} nrs.nrs (...)

jim := rs
jim.tuitoion; /% version in RESIDENT_STUDENT x/
jim := nrs

jim.tuition; /* version in NON_RESIDENT_STUDENT x/
36 of 54

Polymorphism and Dynamic Binding (2.1)

LASSONDE

ooooooooooooooooo

1 | test_polymorphism_students

2 local

3 jim: STUDENT

4 rs: RESIDENT_STUDENT

5 nrs: NON_RESIDENT_STUDENT

6 do

7 create {STUDENT} jim.make ("J. Davis")
8 create {RESIDENT_STUDENT} rs.make

9 create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
10 jim := rs

11 rs := jim x

12 jim := nrs Vv

13 rs := jim X

14 end

("J. Davis")

In (L3, L7), (L4, L8), (L5, L9), ST = DT, so we may abbreviate:

L7: ’create jim.make ("J. Davis")‘

L8: ’create rs.make ("J. Davis™") ‘

L9: ’create nrs.make ("J. Davis") ‘

37 of 54

Polymorphism and Dynamic Binding (2.2)

LASSONDE

ooooooooooooooooo

local
jim: STUDENT
rs: RESIDENT STUDENT
nrs: NON_RESIDENT STUDENT
c: COURSE
do
create c.make ("EECS3311", 500.0)

create {RESIDENT STUDENT} rs.make
rs.register (c)

rs.set_pr (1.5)

jim := rs

Result := jim.tuition = 750.0
check Result end

nrs.register (c)
nrs.set_dr (0.5)

jim := nrs

Result := jim.tuition = 250.0
end
38 of 54

test_dynamic_binding_students: BOOLEAN

create {STUDENT} jim.make ("J. Davis")

create {NON RESIDENT STUDENT} nrs.make ("J. Davis")

("J. Davis")

Reference Type Casting: Motivation

local jim: STUDENT; rs: RESIDENT STUDENT

do create {RESIDENT STUDENT} jim.make ("J. Davis")
rs := jim
rs.setPremiumRate (1.5)

AW =

e Line 2 is legal: resrpent_stupent iS @ descendant class of the
static type of jim (i.e., stupenT).

e Line 3 is illegal: jim’s static type (i.e., stupent) is not a
descendant class of rs’s static type (i.€., resrpenT_sTupenT).

e Eiffel compiler is unable to infer that jim’s dynamic type in

Line 4 is resipeNT STUDENT. [Undecidable]
¢ Force the Eiffel compiler to believe so, by replacing L3, L4 by a
type cast (which temporarily changes the ST of jim):

check attached {RESIDENT STUDENT} jim as rs_jim then

rs := rs_jim
rs.set_pr (1.5)
end

39 of 54

Reference Type Casting: Syntax

check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim
rs.set_pr (1.5)

end

L1 is an assertion:
o ’attached RESIDENT STUDENT jim‘is a Boolean expression

AW =

that is to be evaluated at runtime .
o If it evaluates to frue, then the expression has the effect

of assigning “the cast version” of jim to a new variable rs_jim.
o [f it evaluates to false, then a runtime assertion violation occurs.

o Dynamic Binding : Line 4 executes the correct version of set _pr.
e It is equivalent to the following Java code:

if (jim instanceof ResidentStudent) ({
ResidentStudent rs = (ResidentStudent) jim;
rs.set_pr(l.5);

}

else { throw new Exception("Cast Not Done."); }

40 of 54

LASSONDE

Noteson Type Cast(1) @ Lissom
e Given v of static type ST, itis compilable to cast vto C, as

long as C is a descendant or ancestor class of ST.
e Why Cast?
o Without cast, we can only call features defined in ST on v.
o By casting vto C, we change the static type of v from ST to C .

= All features that are defined in C can be called.

my_phone: IOS
create (IPHONE 65' PLUS} my._ phone make

41 of 54

Notes on Type Cast (2) LASSONDE
¢ A cast being compilable is not necessarily runtime-error-free!
* Acast|check attached (c} v as ...|triggers an assertion

violation if C is not along the ancestor path of v's DT.

test_smart_phone_type cast_violation
local mine: ANDROID
do create (SAMSUNG} mine. make

check attached {SMARI'PHONE} mine as sp then ... end

E; DT of sp is S

ST of sp is SMART _F

check attached {SAMSUNG) mine as samsung then

check attached {HTC} mine as htc then . end

Compilable Cast vs. Exception-Free Cast (1)

class A end

class B inherit A end
class C inherit B end
class D inherit A end

local b: B ; d: D
do

create {C} b.make

check attached {D} b as temp then d := temp end
end

s wnN =

o After L3: b’s ST is B and b’s DT is C.
e Does L4 compile? [NO]
- cast type D is neither an ancestor nor a descendant of b’s ST B

43 of 54

Compilable Cast vs. Exception-Free Cast (2)..

class A end

class B inherit A end
C
D

class inherit B end
class inherit A end

local b: B ; d: D
do

create {C} b.make

check attached {D} b as temp then d := temp end
end

g wnN =

¢ Would the following fix L4?

check attached {A} b as templ then
check attached {D} templ as temp2 then d := temp2 end
end

YES - cast type D is an ancestor of b’s cast, temporary ST A

* What happens when executing this fix?

Assertion Violation - cast type D not an ancestor of temp1’s DT C
44 of 54

ooooooooooooooooo

1 class STUDENT MANAGEMENT SYSTEM {

2 ss : ARRAY|[STUDENT] -- ss[1] has static type Student

3 add_s (s: STUDENT) do ss[0] := s end

4 add_rs (rs: RESIDENT_STUDENT) do ss[0] := rs end

5 add_nrs (nrs: NON_RESIDENT STUDENT) do ss[0] := nrs end

e L4: is valid. -- RHS’s ST RESIDENT STUDENT is
a descendant class of LHS’s ST STUDENT.
e Say we have a STUDENT MANAGEMENT_SYSETM object sms:

o -+ call by value ,| sms.add.rs (o) ‘attempts the following
assignment (i.e., replace parameter rs by a copy of argument o):

rs := O ‘

o Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class c, then we may call feature m by passing objects whose

static types are C’s descendants.
45 of 54

Polymorphism: Feature Call Arguments (2) ssono

ooooooooooooooooo

test_polymorphism feature_arguments

local
sl, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT
sms: STUDENT_MANAGEMENT SYSTEM

do
create sms.make
create {STUDENT} sl.make ("sl1l")
create {RESIDENT_STUDENT} s2.make ("s2")
create {NON_RESIDENT _STUDENT} s3.make ("s3")
create {RESIDENT _STUDENT} rs.make ("rs"
create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
sms.add_s (sl1) v sms.add_s (s2) v sms.add_s (s3) V
sms.add_s (rs) v sms.add_s (nrs) Vv
sms.add_rs (sl) x sms.add_rs (s2) x sms.add_rs (s3) X
sms.add_rs (rs) v/ sms.add_rs (nrs) x
sms.add_nrs (sl) x sms.add _nrs (s2) X sms.add_nrs (s3) x
sms.add_nrs (rs) x sms.add_nrs (nrs) v

end

46 of 54

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class STUDENT MANAGEMENT_SYSETM
that contains a list of resident and non-resident students?

class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST|[STUDENT]
add_student (s: STUDENT)
do
students.extend (s)
end
registerAll (c: COURSE)
do
across
students as s
loop
s.item.register (c)
end
end
end

47 of 54

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students

test_sms_polymorphism: BOOLEAN
local

rs: RESIDENT STUDENT

nrs: NON_RESIDENT STUDENT

c: COURSE

sms: STUDENT_MANAGEMENT _SYSTEM
do

create rs.make ("Jim")

rs.set_pr (1.5)

create nrs.make ("Jeremy")

nrs.set_dr (0.5)

create sms.make

sms.add_s (rs)

sms.add_s (nrs)

create c.make ("EECS3311", 500)

sms.register_all (c

Result := sms.ss[l].tuition = 750 and sms.ss[2].tuition = 250
end

48 of 54

Polymorphism: Return Values (1)

class STUDENT_MANAGEMENT_SYSTEM {
ss: LINKED_LIST[STUDENT]
add_s (s: STUDENT)
do
ss.extend (s)
end
get_student (i: INTEGER): STUDENT
require 1 <= i and i <= ss.count
do
10 Result := ss[i]
11 end
12 | end

O©CoOoONOOORWN =

e L2: ST of each stored item (ss[11]) in the list: [STUDENT]
e L3: ST of input parameter s: [STUDENT]
e L7: ST of return value (Result) of get _student: [STUDENT]
e L11: ss[i]’s ST is descendant of Result’ ST.

Question: What can be the dynamic type of s after Line 117

Answer: All descendant classes of Student.
49 of 54

Polymorphism: Return Values (2) LASSONDE
1 | test_sms_polymorphism: BOOLEAN

2 |local

3 rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT

4 c: COURSE ; sms: STUDENT_MANAGEMENT_SYSTEM

5 |do

6 create rs.make ("Jim") ; rs.set_pr (1.5)

7 create nrs.make ("Jeremy") ; nrs.set_dr (0.5)

8 create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)

9 create c.make ("EECS3311", 500) ; sms.register_all (c)
10 Result :=

11 get_student (1) .tuition = 750

12 and get_student (2) .tuition = 250

13 |end

e L11: get_student (1)’s dynamic type?
e L11: Version of tuition? [rRESTDENT_STUDENT]
e L12: get_student (2)’s dynamic type? [won_resipenT sTupenT]

e L12: Version of tuition?
50 of 54

[rESIDENT_SsTUDENT]

[NON_RESTDENT_STUDENT]

LASSONDE

Design Principle: Polymorphism s
* When declaring an attribute

= Choose static type | T |which “accumulates” all features that
you predict you will want to call on a.
e.g., Choose if you do not intend to be specific about
which kind of student s might be.
= Let dynamic binding determine at runtime which version of
tuition will be called.

» What if after declaring you find yourself often
needing to cast s to RESIDENT_STUDENT in order to access
premium_rate?

check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(...) end‘

= Your design decision should have been: [s:restpEnT_sTupEnT |
e Same design principle applies to:
o Type of feature parameters: fla: T)

o Type of queries: gl...): T
51 of 54

Static Type vs. Dynamic Type:
When to consider which?

LASSONDE

ooooooooooooooooo

o Whether or not an OOP code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Java code being executed at runtime

e.g., which version of method is called
e.g., ifacheck attached {...} as ... then ... end
assertion error will occur

depends on the dynamic types of relevant variables.

= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

52 of 54

Summary: Type Checking Rules o T

[[Cope [[CONDITION TO BE TYPE CORRECT I

X 1=y v’'s ST a descendant of x’s ST
Feature f defined in x’s ST

x-£y) y's ST a descendant of £'s parameter's ST
Feature f defined in x’s ST
z 1= x.f(y) v’'s ST a descendant of £’s parameter’s ST

ST of m’s return value a descendant of z's ST
C an ancestor or a descendant of y's ST

check attached {C} y
then ... end

check attached {C} y as temp C an ancestor or a descendant of y's ST
then x := temp end C a descendant of x's ST

check attached {C} y as temp C an ancestor or a descendant of y's ST
then x.f (temp) end Feature £ defined in x's ST

C a descendant of £’s parameter's ST

Even if ’ check attached {C} y then ... end‘ compiles, a
runtime assertion error occurs if C is not an ancestor of y’'s DT!

53 of 54

Index (1) :AssoNDE

Aspects of Inheritance

Why Inheritance: A Motivating Example

The coursek Class

No Inheritance: RESIDENT STUDENT Class

No Inheritance: NON RESIDENT STUDENT Class

No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)
No Inheritance:
A Collection of Various Kinds of Students

Inheritance Architecture
Igtggxitance: The STUDENT Parent Class

Index (2) Lassonoe

Inheritance:

The RESIDENT STUDENT Child Class
Inheritance:

The NON RESIDENT STUDENT Child Class
Inheritance Architecture Revisited
Using Inheritance for Code Reuse
Testing the Two Student Sub-Classes
Static Type vs. Dynamic Type
Inheritance Architecture Revisited
Polymorphism: Intuition (1)
Polymorphism: Intuition (2)
Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)
Dynamic Binding: Intuition (2)

h!lsu!gi-Level Inheritance Architecture (1)

Index (3) Sssonee

Multi-Level Inheritance Architecture (2)
Inheritance Forms a Type Hierarchy
Inheritance Accumulates Code for Reuse
Substitutions via Assighments

Rules of Substitution

Reference Variable: Static Type
Reference Variable: Dynamic Type
Reference Variable:

Changing Dynamic Type (1)

Reference Variable:

Changing Dynamic Type (2)
Polymorphism and Dynamic Binding (1)
Polymorphism and Dynamic Binding (2.1)
Pol ‘l;norphism and Dynamic Binding (2.2)

56 of 5

Index (4) s

ooooooooooooooooo

Reference Type Casting: Motivation
Reference Type Casting: Syntax

Notes on Type Cast (1)

Notes on Type Cast (2)

Compilable Cast vs. Exception-Free Cast (1)
Compilable Cast vs. Exception-Free Cast (2)
Polymorphism: Feature Call Arguments (1)

Polymorphism: Feature Call Arguments (2)
Why Inheritance:

A Polymorphic Collection of Students
Polymorphism and Dynamic Binding:

A Polymorphic Collection of Students
Polymorphism: Return Values (1)

F;g)l morphism: Return Values (2)

Index (5) s

ooooooooooooooooo

Design Principle: Polymorphism

Static Type vs. Dynamic Type:
When to consider which?

Summary: Type Checking Rules

58 of 54

Generics

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

UN
U N

mim
D=
wlwn
==
<Im

ooooooooooooooooo

class BOOK
names: ARRAY [STRING]
records: ARRAY [ANY]
—— Create an empty book
make do end
Add a name-record pair to the book
add (name: STRING; record: ANY) do

—— Return the record o ated with a given name

get (name: STRING) : ANY do ... end
end

Question: Which line has a type error?

1 | birthday: DATE; phone_number: STRING

b: BOOK; is_wednesday: BOOLEAN

create {BOOK} b.make

phone_number := "416-677-1010"

b.add ("SuYeon", phone_number)

create {DATE} birthday.make (1975, 4, 10)

b.add ("Yuna", birthday)

is_wednesday := b.get ("Yuna").get_day_of_week = 4

ONO O~ WN

20f16

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (1)

¢ |n the BOOK class:
o In the attribute declaration

’ records: ARRAY [ANY]

e ANY is the most general type of records.
e Each book instance may store any object whose static type is a
descendant class of ANY.

o Accordingly, from the return type of the get feature, we only know
that the returned record has the static type ANY, but not certain
about its dynamic type (e.g., DATE, STRING, efc.).

.. a record retrieved from the book, e.g., b.get ("Yuna"), may
only be called upon features defined in its static type (i.e,. ANY).
¢ In the tester code of the BOOK class:

o In Line 1, the static types of variables birthday (i.e., DATE) and
phone_number (i.e., STRING) are descendant classes of ANY.

.. Line 5 and Line 7 compile.
3of 16

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (2)

Due to polymorphism , in a collection, the dynamic types of
stored objects (e.g., phone_number and birthday) need not
be the same.

o Features specific to the dynamic types (e.g., get_day_of_week
of class Date) may be new features that are not inherited from
ANY.

o This is why Line 8 would fail to compile, and may be fixed using an
explicit cast :

check attached {DATE} b.get("Yuna") as yuna bday then
is_wednesday := yuna_bday.get_day_of week = 4
end

o

But what if the dynamic type of the returned object is not a DATE?

check attached {DATE} b.get ("SuYeon") as suyeon_bday then
is_wednesday := suyeon_bday.get_day_of week = 4
end

= An assertion violation at runtime!
4 0f 16

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (2.1)

e |t seems that a combination of attached check (similar to an
instanceof check in Java) and type cast can work.

e Can you see any potential problem(s)?
¢ Hints:
o Extensibility and Maintainability
o What happens when you have a large number of records of
distinct dynamic types stored in the book
(e.g., DATE, STRING, PERSON, ACCOUNT, ARRAY _CONTATINER,
DICTIONARY, etfc.)? [all classes are descendants of ANY]

50f 16

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (2.2)

Imagine that the tester code (or an application) stores 100
different record objects into the book.

recl: C1

L. declarati

recl00: C100

create {Cl} recl.make(...) ; b.add(..., recl)
2)

2

ons of rec to rec99
i10ns oI rec«z toO recd”

—— additions of rec2 to r

create {C100} recl00.make(.. ; b.add(..., recl00)

where static types C1to C100 are descendant classes of ANY.
o Every time you retrieve a record from the book, you need to check
“exhaustively” on its dynamic type before calling some feature(s).

7 F17 speci

ciri to C1, Iz ciric Cz

check attached {C1} b:get("Jim") as cl theh cl.fl end

mption: fic to CI ’f2’ specific to C2, etc

fFor > to C99
or CZ2 to C99

check attached {C100} b.get("Jim") as cl00 then cl100.f100 end

o Writing out this list multiple times is tedious and error-prone!
6 of 16

LASSONDE

ooooooooooooooooo

Motivating Example: Observations (3)
We need a solution that:
¢ Eliminates runtime assertion violations due to wrong casts
e Saves us from explicit at tached checks and type casts
As a sketch, this is how the solution looks like:
¢ When the user declares a BOOK object b, they must commit to
the kind of record that b stores at runtime.
e.g., b stores either DATE objects (and its descendants) only
or string objects (and its descendants) only, but not a mix .
¢ When attempting to store a new record object rec into b, if

rec’s static type is not a descendant class of the type of book
that the user previously commits to, then:
o ltis considered as a compilation error
o Rather than triggering a runtime assertion violation

* When attempting to retrieve a record object from b, there is no
longer a need to check and cast.

w Static types of all records in b are guaranteed to be the same.

7 of

LASSONDE

ooooooooooooooooo

Parameters

¢ In mathematics:

o The same function is applied with different argument values.
eg.,2 + 3,1 + 1,10 + 101, etc.

o We generalize these instance applications into a definition.
e.g., +: (Z xZ) - Z is a function that takes two integer

parameters and returns an integer.
¢ In object-oriented programming:

o We want to call a feature, with different argument values, to
achieve a similar goal.

e.g., acc.deposit (100), acc.deposit (23), efc.

o We generalize these possible feature calls into a definition.
e.g., In class ACCOUNT, a feature deposit (amount: REAL)
takes a real-valued parameter .

¢ When you design a mathematical function or a class feature,
always consider the list of parameters , each of which

representing a set of possible argument values.
8 of 16

Generics: Design of a Generic Book

class BOOK|[G]
names: ARRAY [STRING]
records: ARRAY[G]

—-— Create an empty book

make do ... end
/* Add a name-record pair to the book x/
add (name: STRING; record: G) do ... end
/* Return the record associated with a given name x/
get (name: STRING): G do ... end
end

Question: Which line has a type error?

1 |birthday: DATE; phone_number: STRING

b: BOOK[DATE] ; is_wednesday: BOOLEAN

create BOOK[DATE] b.make

phone_number = "416-67-1010"

b.add ("SuYeon", phone_number)

create {DATE} birthday.make (1975, 4, 10)

b.add ("Yuna", birthday)

is_wednesday := b.get("Yuna") .get_day_of week == 4

ONOOTA~ W N

90of 16

LASSONDE

ooooooooooooooooo

Generics: Observations

¢ |n class BOOK:
o Atthe class level, we parameterize the type of records :

’ class BOOK[G] ‘

o Every occurrence of ANY is replaced by E.

As far as a client of BOOK is concerned, they must instantiate G.
= This particular instance of book must consistently store items of
that instantiating type.

¢ As soon as E instantiated to some known type (e.g., DATE,

STRING), every occurrence of E will be replaced by that type.
For example, in the tester code of BOOK:
In Line 2, we commit that the book b will store DATE objects only.
Line 5 fails to compile. [.- STRING not descendant of DATE]
Line 7 still compiles. [-- DATE is descendant of itself]
Line 8 does not need any attached check and type cast, and
does not cause any runtime assertion violation.

- All attempts to store non-DATE objects are caught at compile time.

e}

o O O

10 of 16

LASSONDE

ooooooooooooooooo

Bad Example of using Generics

Has the following client made an appropriate choice?

book: BOOK[ANY]

o It allows all kinds of objects to be stored.
-+ All classes are descendants of ANY.

o We can expect very little from an object retrieved from this book.
-+ The static type of book’s items are ANY, root of the class
hierarchy, has the minimum amount of features available for use.
-~ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

110f 16

LASSONDE

ooooooooooooooooo

Instantiating Generic Parameters
e Say the supplier provides a generic DICTIONARY class:

class DICTIONARY[V, K] -- V type of values; K type of keys
add_entry (v: V; k: K) do ... end
remove_entry (k: K) do ... end

end

¢ Clients use prcrronary with different degrees of instantiations:

class DATABASE_TABLE[K, V]
imp: DICTIONARY[V, K]
end

e.g., DeC|ariﬂg’DATABSE_TABLE[INTEGER, STRING] |instantiates

’ DICTIONARY[STRING, INTEGER] |

class STUDENT_BOOK[V]
imp: DICTIONARY[V, STRING]
end

e.g., Declaring [stupenT_Book arRaY [coursE]] | instantiates
DICTIONARY [ARRAY [COURSE], STRING] ‘
12 of 16

LASSONDE

ooooooooooooooooo

Generics vs. Inheritance (1)

Abstraction

SET_OF_
BOOKS

Type parameterization Type parameterization

LIST OF LIST OF LIST OF
PEOPLE BOOKS JOURNAL

LINKED_LIS
OF BOOKS

Specialization

13 0f 16

LASSONDE

ooooooooooooooooo

Generics vs. Inheritance (2)

Inheritance and

/‘ﬁT Generalization gemericity
CHAIN [TAXT] -~ ®

Inheritance

Genericity
(type parameterization)

LINKED LIS
[T4XT)

A ‘Specialization

14 0f 16

LASSONDE

ooooooooooooooooo

Beyond this lecture ...

e Study the “Generic Parameters and the lterator Pattern” Tutorial
Videos.

150f 16

Index (1) Lassonoe
Motivating Example: A Book of Any Objects
Motivating Example: Observations (1)
Motivating Example: Observations (2)
Motivating Example: Observations (2.1)
Motivating Example: Observations (2.2)
Motivating Example: Observations (3)
Parameters

Generics: Design of a Generic Book
Generics: Observations

Bad Example of using Generics
Instantiating Generic Parameters

Generics vs. Inheritance (1)

Generics vs. Inheritance (2)

Beyond this lecture ...
16 of 16

Uniform Access Principle

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

\
\

cic
z|z
mim
D=
wlwn
==
<Im

LASSONDE

ooooooooooooooooo

Uniform Access Principle (1)

¢ We may implement Point using two representation systems:
y

Aus .4

[

T COS X
o The Cartesian system stores the absolute positions of x and y.
o The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).
¢ How the Point is implemented is irrelevant to users:
o Imp. 1: Store x and y. [Compute r and phi on demand]
o Imp. 2: Store r and phi. [Compute x and v on demand]
e As far as users of a Point object p is concerned, having a
uniform access by always being ableto callp.x and p.y is
20\f/\1/§1at matters, despite Imp. 1 or Imp. 2 being current strategy.

LASSONDE

ooooooooooooooooo

Uniform Access Principle (2)

class
POINT
create
make_cartisian, make_polar
feature Public, Uniform Access to x
x : REAL
y : REAL
end

e Aclass Point declares how users may access a point: either

get its x coordinate or its y coordinate.
* We offer two possible ways to instantiating a 2-D point:
o make_cartisian (nx: REAL; ny: REAL)
o make_polar (nr: REAL; np: REAL)
e Features x and y, from the client’s point of view, cannot tell
whether it is implemented via:
o Storage [x and y stored as real-valued attributes |

o Computation [x and y defined as queries returning real values]
3of13

LASSONDE

ooooooooooooooooo

Uniform Access Principle (3)
Let’s say the supplier decides to adopt strategy Imp. 1.

class POINT —— V.
feature —— Attri
x : REAL
vy : REAL
feature —— Constructors
make cartisian(nx: REAL; nx: REAL)
do
x -
Vv :
end
end

nx
ny

o Attributes x and y represent the Cartesian system
e Aclient accesses apointpviap.xandp.y.
o No Extra Compuftations: just returning current values of x and y.
¢ However, it’s harder to implement the other constructor: the
body of make polar (nr: REAL; np: REAL) hasto

compute and store x and y according to the inputs nr and np.
40f13

LASSONDE

Uniform Access Principle (4) = Lssonee
Let’s say the supplier decides (secretly) to adopt strategy Imp. 2.

class POINT V 1 2
feature —— Attri
r : REAL
p : REAL
feature - Constructors
make_polar(nr: REAL; np: REAL)
do
r -
p
end
feature —— Queries
x : REAL do Result
y : REAL do Result
end

nr
np

rx cos(p) end
rx sin(p) end

¢ Attributes r and p represent the Polar system
¢ A client still accesses apointpviap.xandp.y.
o Extra Computations: computing x and y according to the current

values of r and p.
50f 13

LASSONDE

ooooooooooooooooo

Uniform Access Principle (5.1)

Let’'s consider the following scenario as an example:

A
(a-V3, a)
/*
P |
// l
e |
e |
// I
2a - |)
7 1 2a - 5in30° =[a]
/// :
-7 |
/// |
rd
-730° r_ﬁ -~
2a - cos30° :

Note: 360° = 27

60f13

—_

Uniform Access Principle (5.2) LASSONDE

ooooooooooooooooo

- O OWoONOOOPAWN =

test_points: BOOLEAN

local
A, X, Y: REAL
pl, p2: POINT

do
comment ("test: two systems of points")
A :=5; X := Ax\3; v := A
create {POINT} pl.make_cartisian (X, Y)
create {POINT} p2.make_polar (2xA, %W)
Result := pl.x = p2.x and pl.y = p2.y

end

o If strategy Imp. 1 is adopted:
o L8 is computationally cheaper than L9. [x and y attributes]
o L10 requires no computations to access x and y.
If strategy Imp. 2 is adopted:
o L9 is computationally cheaper than L8.

o L10 requires computations to access x and y.
7 of 13

[r and p attributes]

UAP in Java: Interface (1) :::ASSONDE

ooooooooooooooooo

interface Point {
double getX();
double getY();

An interface Point defines how users may access a point:
either get its x coordinate or its y coordinate.

Methods getX () and getY () have no implementations, but
signatures only.

e . Point cannot be used as a dynamic type
Writing new Point (...) is forbidden!

8of13

UAP in Java: Interface (2) :::ASSONDE

ooooooooooooooooo

public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint (double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

* CartesianPoint is a possible implementation of Point.
¢ Attributes x and y declared according to the Cartesian system
* CartesianPoint can be used as a dynamic type

o Point p = new CartesianPoint (3, 4) allowed!
o p.getX () and p.getY () return storage values

90f13

UAP in Java: Interface (3) :::ASSONDE

ooooooooooooooooo

public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint (double r, double phi) {
this.r = r;
this.phi = phi;
}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }
}

e PolarPoint is a possible implementation of Point.
¢ Attributes phi and r declared according to the Polar system
e PolarPoint can be used as a dynamic type

© Point p = new PolarPoint (3, %) allowed!

o p.getX () and p.getY () return computation results

[360° = 27]

100f 13

assertEquals (pl.getX(), p2.getX());
assertEquals (pl.getY(), p2.getY());

UAP in Java: Interface (4) LASSONDE
1 | @Test
2 |public void testPoints() {
3 double A = 5;
4 double X = A * Math.sqgrt(3);
5 double Y = A;
6 Point pl = new CartisianPoint (X, Y); /% polymorphism x*/
7 Point p2 = new PolarPoint (2 x A, Math.toRadians (30)), /+* polymorpHism
8
9
0

—_

How does dynamic binding work in L9 and L10?

o pl.getX () andpl.getY () return storage values
o p2.getX () and p2.getY () return computation results

110f13

LASSONDE

ooooooooooooooooo

Uniform Access Principle (6)

The Uniform Access Principle :
¢ Allows clients to use services (e.g., p.x and p.y) regardless of
how they are implemented.

¢ Gives suppliers complete freedom as to how to implement the
services (e.g., Cartesian vs. Polar).

o No right or wrong implementation; it depends!

calculation efficient inefficient
access
frequent COMPUTATION || STORAGE
infrequent STORAGE if “convenient” to keep its value up to date
q COMPUTATION otherwise

¢ Whether it's storage or computation, you can always change
secretly , since the clients’ access to the services is uniform .

120f13

Index (1)

ooooooooooooooooo

Uniform Access Principle (1)
Uniform Access Principle (2)
Uniform Access Principle (3)
Uniform Access Principle (4)
Uniform Access Principle (5.1)
Uniform Access Principle (5.2)
UAP in Java: Interface (1)

UAP in Java: Interface (2)

UAP in Java: Interface (3)

UAP in Java: Interface (4)

Uniform Access Principle (6)
13 of 13

Void Safety

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

cic
z|z
<|<
mim
D=
wlwn
==
<Im

Java Program: Example 1 LASSONDE Java Program: Example 3
1 |class Point { 1 |class PointCollector { 1 |class Point { 1 |class PointCollector {
2 double x; 2 ArrayList<Point> points; 2 double x; 2 Arr'ayLlst<P01nt> points;
3 | double y; 3 | Pointcollector() { } 3 | double y; 3 | PointCollector() {
4 Point (double x, double y) { 4 void addPoint (Point p) { 4 Point (double x, double y) { 4 points = new ArrayList<>(); }
5 this.x = x; 5 points.add(p); } 5 this.x - x; 5 vo:Ld' addPoint (Point p) {
6 this.y = y; 6 Point getPointAt (int 1) ({ 6 this.y = y; 6 points.add(p); } ’
7 1y 7 return points.get(i); } } 7) 7 Point getPo.J.ntAt(:Lntl 1) |
8 return points.get(i); } }
The above Java code compiles. But anything wrong? 1 |public void test3() {
2 PointCollector pc = new PointCollector();
1 | @Test 3 Scanner input = new Scanner (System.in);
2 |public void testl() { 4 System.out.println("Ener an integer:");
3 PointCollector pc = new PointCollector(); 5 int i = iInput.nextInt();
4 pc.addPoint (new Point (3, 4)); 6 if(i < 0) { pc = null; }
5 Point p = pc.getPointAt (0); 7 pc.addPoint (new Point (3, 4));
6 assertTrue (p.x == 3 && p.y == 4); } 8 assertTrue (pc.getPointAt (0) .x == 3 && pc.getPointAt(0).y == 4);
9 |1
L3 calls PointCollector constructor not initializing points. The above Java code compiles. But anything wrong?
- NullPointerException when L4 calls L5 of PointCollector. NullPointerException when user’s input at L5 is non-positive.

20f12 4 0f 12

Java Program: Example 2 LASSONDE Limitation of Java’s Type System
1 [class point | 1 |class PointCollector { ¢ A program that compiles does not guarantee that it is free from
5 doubl . 2 ArrayList<Point> points; NullPointerE. fi B
3 double X’ 3 PointCollector() { UHIZOIMIerEXCEPUONS |-

OL?' e ¥ 4 points = new ArrayList<>(); } o Uninitialized attribut i t 1
4 | Point (double x, double y) { ninitialized attributes (in constructors).
5 this.x = x; g V‘?;natdsdpa";;(;(ﬁ Oi}”t P i o Passing nullable variable as a method argument.
? : this.y = y; 7 | Point getPointat(int 1) { o Calling methods on nullable local variables.
8 | mweturn points.get(d); }) * The notion of Nu11 references was back in 1965 in ALGO W.
1 |@rest e Tony Hoare (inventor of Quick Sort), introduced this notion of
2 |public void test2() { Gt f : »”
3 | PointCollector pe — new PointCollector(); Null references “simply because it was so easy to implement”.
g Point p = null; » But he later considers it as his “billion-dollar mistake”.
.addPoint (p) ; . . .

6 icfpc_ ;éipofnmt (0); o When your program manipulates reference/object variables whose
7 | assertTrue(p.x == 3 && p.y == 4); } types include the legitimate value of Null or void, then there is

always a possibility of having a NullPointerExceptions .
o For undisciplined programmers, this means the final software
product crashes often!

The above Java code compiles. But anything wrong?
L5 adds p (which stores null).

.. NullPointerException when L7 calls p. x.
3of12 5o0f 12

Eiffel’s Type System for Void Safety

LASSONDE

ooooooooooooooooo

¢ By default, a reference variable is non-detachable.

e.g.,|acc: ACCOUNT |means that acc is always attached to
some valid ACCOUNT point.

e VOID is an illegal value for non-detachable variables.

= Scenarios that might make a reference variable detached

are considered as compile-time errors:

o Non-detachable variables can only be re-assigned to
non-detachable variables.

e.g., l acc2: ACCOUNT‘ = l acc := acc?2 ‘ comp/'lab/e
e.g., l acc3: detachable ACCOUNT ‘ = l acc := acc3 ‘ non-compilable
o Creating variables (e.g., [create acc.make)) compilable

o Non-detachable attribute not explicitly initialized (via creation or
assignment) in all constructors is non-compilable.

6 of 12

Eiffel Program: Example 1

O©CoOo~NO O~ WN =

class 1 |class
POINT 2 POINT_COLLECTOR_1
create 3 |create
make 4 make
feature 5 | feature
x: REAL 6 points: LINKED_LIST[POINT]
y: REAL 7 | feature
feature 8 make do end
make (nx: REAL; ny: REAL) 9 | add_point (p: POINT)
do x := nx 10 do points.extend (p) end
y := ny 11 | get_point_at (i: INTEGER): POINT
end 12 do Result := points [i] end
end 13 | end

¢ Above code is semantically equivalent to Example 1 Java code.
» Eiffel compiler won’t allow you to run it.

" L8 of POINT_COLLECTOR_1 does not compile
- Itis void safe [Possibility of NullPointerException ruled out]

7 of 12

Eiffel Program: Example 2

LASSONDE
ooooooooooooooooo

1 class 1 class

2 POINT 2 POINT_COLLECTOR_2

3 | create 3 | create

4 make 4 make

5 | feature 5 | feature

6 x: REAL 6 points: LINKED_LIST[POINT]

7 y: REAL 7 feature

8 | feature 8 make do create points.make end

9 make (nx: REAL; ny: REAL) 9 | add_point (p: POINT)

10 do x := nx 10 do points.extend (p) end

1 y := ny 1 get_point_at (i: INTEGER): POINT

12 end 12 do Result := points [i] end

13 | end 13 | end

1 test_2: BOOLEAN

2 local

3 pc: POINT_COLLECTOR_2 ; p: POINT

4 do

5 create pc.make

6 pc := Void

7 pc.add_point (p)

8 p := pc.get_point_at (0)

9 Result := p.x = 3 and p.y = 4

10 end

¢ Above code is semantically equivalent to Example 2 Java code.

L7 does not compile - pc might be void.

8of 12

[void safe |

Eiffel Program: Example 3

LASSONDE
ooooooooooooooooo

1 class 1 class

2 POINT 2 POINT_COLLECTOR_2

3 | create 3 | create

4 make 4 make

5 | feature 5 | feature

6 x: REAL 6 points: LINKED_LIST[POINT]

7 y: REAL 7 feature

8 | feature 8 make do create points.make end

9 make (nx: REAL; ny: REAL) 9 | add_point (p: POINT)

10 do x := nx 10 do points.extend (p) end

1 y := ny 1 get_point_at (i: INTEGER): POINT

12 end 12 do Result := points [i] end

13 | end 13 | end

1 test_3: BOOLEAN

2 local pc: POINT_COLLECTOR_2 ; p: POINT ; i: INTEGER

3 do create pc.make

4 io.print ("Enter an integer:%N")

5 io.read_integer

6 if jo.last_integer < 0 then pc := Void end

7 pc.add_point (create {POINT}.make (3, 4))

8 p := pc.get_point_at (0)

9 Result := p.x = 3 and p.y = 4

10 end

¢ Above code is semantically equivalent to Example 3 Java code.

L7 and L8 do not compile - pc might be void.

9of 12

[void safe |

Lessons from Void Safety LASSONDE

ooooooooooooooooo

e |t is much more costly to recover from crashing programs (due
to NullPointerException) than to fix uncompilable
programs.

e.g., You'd rather have a void-safe design for an airplane,
rather than hoping that the plane won’t crash after taking off.

« If you are used to the standard by which Eiffel compiler checks
your code for void safety , then you are most likely to write

Java/C/C++/C#/Python code that is void-safe (i.e., free from
NullPointerExceptions).

10 0f 12

Beyond this lecture. .. o

ooooooooooooooooo

e Tutorial Series on Void Safety by Bertrand Meyer (inventor of
Eiffel):
o The End of Null Pointer Dereferencing
o The Object Test
o The Type Rules
o Final Rules
¢ Null Pointer as a Billion-Dollar Mistake by Tony Hoare

¢ More notes on void safety

11 of 12

Index (1) :ASSONDE

ooooooooooooooooo

Java Program: Example 1

Java Program: Example 2

Java Program: Example 3
Limitation of Java’s Type System
Eiffel’s Type System for Void Safety
Eiffel Program: Example 1

Eiffel Program: Example 2

Eiffel Program: Example 3

Lessons from Void Safety

Beyond this lecture. ..

12 of 12

The State Design Pattern
Readings: OOSC2 Chapter 20

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

Motivating Problem LASSONDE

ooooooooooooooooo

Consider the reservation panel of an online booking system:

-- Enquiry on Flights --

Flight sought from:[Toronto | To:
Departure on or after: On or before:

Preferred airline (s):
Special requirements:

AVAILABLE FLIGHTS: 1
FIt#AA 42 Dep 8:25 Arr 7:45 Thru: Chicago

Choose next action:
0 - Exit
1 - Help
2 - Further enquiry
3 - Reserve a seat

20f28

State Transition Diagram LASSONDE

ooooooooooooooooo

Characterize interactive system as: 1) A set of states; and 2)
For each state, its list of applicable transitions (i.e., actions).
e.g., Above reservation system as a finite state machine :

@

(5)
Confirmation

(3)
Seat Enquiry

(4)
Reservation

Design Challenges LASSONDE

ooooooooooooooooo

1. The state-transition graph may /arge and sophisticated.
A large number N of states has O(N?) transitions
2. The graph structure is subject to extensions/modifications.
e.g., To merge “(2) Flight Enquiry” and “(3) Seat Enquiry”:
Delete the state “(3) Seat Enquiry”.
Delete its 4 incoming/outgoing transitions.

e.g., Add a new state “Dietary Requirements”
3. A general solution is needed for such interactive systems .
e.g., taobao, eBay, amazon, etc.

4 0f 28

A First Attem pt LASSONDE

ooooooooooooooooo

T 1
‘ 3_Seat_Enquiry_panel:
from
Display Seat Enquiry Panel
until
not (wrong answer or wrong choice)
do
Read user’s answer for current panel
Read user’s choice for next step
if wrong answer or wrong choice then
Output error messages
end
end
Process user’s answer

case in

2: goto 2. Flight_ Enquiry_panel

3: goto 4_Reservation_panel
end

S——

A First Attempt: Good Design? e

ooooooooooooooooo

¢ Runtime execution ~ a “bowl of spaghetti”.
= The system’s behaviour is hard to predict, trace, and debug.
e Transitions hardwired as system’s central control structure.

= The system is vulnerable to changes/additions of
states/transitions.

¢ All labelled blocks are largely similar in their code structures.
= This design “smells” due to duplicates/repetitions!

¢ The branching structure of the design exactly corresponds to
that of the specific transition graph.

= The design is application-specific and not reusable for
other interactive systems.

6 of 28

LASSONDE

ooooooooooooooooo

A Top-Down, Hierarchical Solution

e | Separation of Concern |Declare the transition table as a

feature the system, rather than its central control structure:

transition (src: INTEGER; choice: INTEGER): INTEGER
) o

—-— Return state by taking transition ’choice’ from ’src’ stateg.
require valid source_state: 1 < src < 6
valid _choice: 1 < choice < 3

ensure valid target_state: 1 < Result < 6

e We may implement transition via a 2-D array.

choice

CHOICE 1 2 3
SRC STATE 112183 ///"\;x 6 5 2
1 (Initial) 6] 5] 2 2 1 3
2 (Flight Enquiry) -111]3 3 2 P
3 (Seat Enquiry) -1 214 stata 3 s
4 (Reservation) -1 3|5
5 (Confirmation) - 4|1 5 4 1
6 (Final) - - = 6

7 of 28

LASSONDE

ooooooooooooooooo

Hierarchical Solution: Good Design?

e This is a more general solution.

-+ State transitions are separated from the system’s central
control structure.

= Reusable for another interactive system by making
changes only to the transition feature.

e How does the central control structure look like in this design?

8of28

Hierarchical Solution:
Top-Down Functional Decomposition

LASSONDE

ooooooooooooooooo

Level 3 execute_
session
Level 2
P o execute . "
initial transition state is_final
Level 1
display read correct message process

Modules of execute_session and execute_state are general

enough on their control structures. = reusable
9 of 28

Hierarchical Solution: System Control

LASSONDE

ooooooooooooooooo

All interactive sessions share the following control pattern:

o Start with some initial state.

o Repeatedly make state transitions (based on choices read from
the user) until the state is final (i.e., the user wants to exit).

execute_session
—— Execute a full interactive
local
current_state , choice: INTEGER
do
from
current_state := initial
until
is_final (current_state)
do
choice := execute_state (current_state)
current_state := transition (current_state, choice)
end
end

S——

Hierarchical Solution: State Handling (1)

LASSONDE

ooooooooooooooooo

The following control pattern handles all states:

execute_state (current_state : INTEGER): INTEGER
1t tF n state.

local
answer: ANSWER; valid_answer: BOOLEAN; choice: INTEGER
do
from
until
valid _answer
do
display(current_state)
answer := read answer(current_state)
choice := read choice(current_state)
valid _answer := correct(current_state , answer)
if not valid answer then message(current_state , answer)
end
process(current_state , answer)
Result := choice
end

e —

Hierarchical Solution: State Handling (2)

LASSONDE

ooooooooooooooooo

FEATURE CALL

FUNCTIONALITY

display(s)

Display screen outputs associated with state s

read answer(s)

Read user’s input for answers associated with state s

read _choice(S)

Read user’s input for exit choice associated with state s

correct(s, answer)

Is the user’s answer valid w.r.t. state s?

process(s, answer)

Given that user’s answer is valid w.r.t. state s,
process it accordingly.

message(s, answer)

Given that user’s answer is not valid w.r.t. state s,
display an error message accordingly.

Q: How similar are the code structures of the above
state-dependant commands or queries?

12 of 28

Hierarchical Solution: State Handling (3)

LASSONDE

ooooooooooooooooo

A: Actions of all

such state-dependant features must explicitly

discriminate on the input state argument.

display(current_
require
valid state:
do

elseif curren

Display I

if current_st
—— Display Init

state: INTEGER)

1 < current_state < 6

anel

ate = 1 then

t_state

o Such design smells !

-~ Same list of

conditional repeats for all state-dependant features.

o Such design violates the Single Choice Principle .
e.g., To add/delete a state = Add/delete a branch in all such features.

e

LASSONDE

ooooooooooooooooo

Hierarchical Solution: Visible Architecture

Level 3 execute_
session
Level 2
P P execute_ . "
initial transition state is_final
Level 1 %
display read correct message process

14 of 28

LASSONDE

ooooooooooooooooo

Hierarchical Solution: Pervasive States

Level 3 execute_
session

Level 2 m
g L execute . .
initial transition state — is_final

state
Level 1 St state state state
display read correct message process

Too much data transmission: current_state is passed
o From execute_session (Level 3) 1o execute_state (Level 2)

o From execute_state (Level 2) to all features at Level 1
15 of 28

LASSONDE

ooooooooooooooooo

Law of Inversion

If your routines exchange too many data, then
put your routines in your data.
e.g.,
execute_state (Level 2) and all features at Level 1:
e Pass around (as inputs) the notion of current _state
e Build upon (via discriminations) the notion of current state
execute state (S:INTEGER)

display (s:INTEGER)
read_answer (s:INTEGER)
read_choice (s: INTEGER)
correct (s: INTEGER ; answer: ANSWER)
process (s: INTEGER ; answer: ANSWER)

message (s: INTEGER ; answer: ANSWER)
= Modularize the notion of state as class STATE.
= Encapsulate state-related information via a STATE interface.

= Notion of current state becomes implicit: the Current class.
16 of 28

LASSONDE

Grouping by Data Abstractions

ooooooooooooooooo

Level 3 execute_ APPLICATION
session
Level 2
initial transition gg’l:g”te— is_final
STATE
Level 1
display read correct message process

17 of 28

EaSaRNDE

EaSaRNDE

Architecture of the State Pattern

+
APPLICATION

The Template Design Pattern

execute+
read*
display*
correct*
process*
message*

Consider the following fragment of Eiffel code:

s: STATE
create {SEAT ENQUIRY} s.make
s.execute
create {CONFIRMATION} s.make
s.execute

state_implementations

s wnN =

[}

[}

i L2 and L4: the same version of effective feature execute

: (from the deferred class STATE) is called. [template]
i L2: specific version of effective features display, process,

! etc., (from the effective descendant class SEAT ENQUIRY) is
[}
]
[}
[}
[}
I
[}
[}

called. [template instantiated for SEAT ENQUIRY |
L4: specific version of effective features display, process,
ete., (from the effective descendant class CONFIRMATION) is
[template instantiated for CONFIRMATION]

called.

18 of 28 20 of 28

The STATE ADT APPLICATION Class: Array of STATE

19 of 28

deferred class STATE execute
xecu i
ead choice
. A local ! 2 i
T good: BOOLEAN i 5 2
Set ’answ ce do 1 3
deferred end
answe ANSWER from 2 -
wer:
A - , , until 3 s
—-— Answer for current state
A er for cu ent ste q 2 1
choice: INTEGER goo app —
. -)) loop APPLICATION
cnoice ror next step .
disola - display transition: ARRAY2[INTEGER] 2 3 4 5 6
1
P ,Vy ,)) —-— set answer and choice states: ARRAY[STATE] 3pp-states ‘ ‘ ‘ ‘ ‘ ‘
—-— Display current state
D1is] y q
deferred end riid .= correct
correct: BOOLEAN ff ot oo then
deferred end g
message
process end FLIGHT.
require correct and INITIAL | | ENQUIRY RELE
deferred end
process
message end
require not correct end
deferred end

21 of 28

APPLICATION Class (1) LASSONDE Example Test: Non-Interactive Session LASSONDE

100L OF ENGINEERING HOOL OF ENGINEERING.

\wy

class APPLICATION create make test_application: BOOLEAN
feature {NONE} —— ion of Transition G >h local
transition: ARRAYZ|[INTEGER] app: APPLICATION ; current_state: STATE ; index: INTEGER
—-— State tr itions: t it tate, choice] do
states: ARRAY[STATE] create app.make (6, 3)
—-— State for each index, constrained by size of ‘tr: i app.put_state (create {INITIAL}.make, 1
feature —— Simile y for other 5 states.
initial: INTEGER app.choose_initial
number._of states: INTEGER -—- T it to FINAL g s and 1
number._of_choices: INTEGER app.put_transition (6, 1, 1
make (n, m: INTEGER) —= ilarly for other 10 transitions
do number_of_states := n
number._of_choices := m index := app.initial
create transition.make filled(0, n, m) current_state := app.states [index]
create states.make_empty Result := attached {INITIAL} current_state
end check Result end
invariant —-— Say 1 r’s e 1s 3:
transition.height = number_ of_states index := app.transition.item (index, 3)
L. § X current_state := app.states [index]
ensransmlon'mdth = pumber-of-choices Result :- attached {FLIGHT_ENQUIRY} current_state
end

2

22 of 28 4 of 28

APPLICATION Class (2) e APPLICATION Class (3): Interactive Session jsow

STHOOL OF ENGINEERING. L OF ENGINEERING

class APPLICATION

feature {NONE} -
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

class APPLICATION

feature {NONE } Imy
transition: ARRAYZ[INTEGER]
states: ARRAY|[STATE]

feature feature
put_state(s: STATE; index: INTEGER) execute_session
local

require 1 < index < number_of_states
do states.force(s, index) end
choose_initial (index: INTEGER)

current_state: STATE
index: INTEGER

require 1 < index < number_of_states do
do initial := index end from
put_transition(tar, src, choice: INTEGER) index := initial
require until
1 < src < number_of_states is_final (index)
1 < tar < number_of_states loop
1 < choice < number_of choices current_state := states[index] -- polymorphism
do current_state.execute -- dynamic binding
transition.put(tar, src, choice) index := transition.item (index, current_state.choice)
end end
end end
end

L 25ef28 — _____|

23 of 28

Building an Application LASSONDE
o Create instances of STATE.

sl: STATE
create {INITIAL} sl.make

o Initialize an APPLICATION.

’create app.make (number_of_states, number_of_choices) ‘

o Perform polymorphic assignments on app.states.

’ app.put_state(initial, 1) ‘

o Choose an initial state.

app.choose_initial(l) ‘

o Build the transition table.

’app.put_transition(& 1, 1) ‘

o Run the application.

Lapp.execute_session ‘

26 of 2

Top-Down, Hierarchical vs. OO Solutions Jssowes

¢ In the second (top-down, hierarchy) solution, it is required for
every state-related feature to explicitly and manually
discriminate on the argument value, via a a list of conditionals.

e.g., Given ’ display (current_state: INTEGER) |, the

calls | display(1)| and | display(2) | behave differently.

e The third (OO) solution, called the State Pattern, makes such
conditional implicit and automatic, by making STATE as a
deferred class (whose descendants represent all types of
states), and by delegating such conditional actions to

dynamic binding .

e.g., Given[s: STATE], behaviour of the call | s.display

depends on the dynamic type of s (such as INITIAL vs.

FLIGHT _ENQUIRY).
27 of 28

Index (1) :AssoNDE

Motivating Problem

State Transition Diagram

Design Challenges

A First Attempt

A First Attempt: Good Design?

A Top-Down, Hierarchical Solution

Hierarchical Solution: Good Design?
Hierarchical Solution:
Top-Down Functional Decomposition

Hierarchical Solution: System Control
Hierarchical Solution: State Handling (1)
Hierarchical Solution: State Handling (2)
Hierarchical Solution: State Handling (3)
Hierarchical Solution: Visible Architecture

Index (2) :AssoNDE

Hierarchical Solution: Pervasive States
Law of Inversion

Grouping by Data Abstractions
Architecture of the State Pattern

The STATE ADT

The Template Design Pattern
APPLICATION Class: Array of STATE
APPLICATION Class (1)

APPLICATION Class (2)

Example Test: Non-Interactive Session
APPLICATION Class (3): Interactive Session
Building an Application

Top-Down, Hierarchical vs. OO Solutions
29 of 28

The Composite Design Pattern

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

UNI
U NI

mim
D |
wlwn
==
<Im

LASSONDE

ooooooooooooooooo

Motivating Problem (1)

¢ Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.
e.g., A computer system is composed of:
« Individual pieces of equipment (hard drives, cd-rom drives)
Each equipment has properties : e.g., power consumption and cost.
e Composites such as cabinets, busses, and chassis
Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

¢ Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

20f20

Motivating Problem (2)

Design for free structures with whole-part hierarchies.

CABINET

CHASSIS

POWER SUPPLY

o

DVD-CDROM

CHASSIS

CARD HARD_DRIVE

Challenge : There are base and recursive modelling artifacts.

30f20

ooooooooooooooooo

A class may have two more parent classes.
address

pay_taxes

SWISS™
TAXPAYER

address w, Swiss_address
tax_id ~, swiss_tax_id
pay_taxes n, pay_swiss_taxes

UsS
TAXPAYER
address w, USs_address
WISS US>
TAXPAYER

tax_id ~, us_tax_id
pay_taxes n, pay_us_taxes
o Features not renamed along the inheritance paths will be shared.
[e.g., age]
o Features renamed along the inheritance paths will be replicated.
[e.g., tax_id, address, pay-taxes]
Exercise: Design the class for a smart watch, both a watch and an
. activity tracker.

4 of 2

MI: Combining Abstractions (1) LASSONDE MI: Combining Abstractions (2) LASSONDE
A: Separating Graphical features and Hierarchical features

" class RECTANGLE
feature Queries
MPARABLE ; RE,
width, height: REAL| |C13Ss TREE[G]
feature —— Queries

: REAL
Xpos, ypos parent: TREE[G]

feature nands
make (w, h: REAL) descendants LIS:[D[TREE[G]]

. feature —— C«¢
change_width add_child (c: TREE[G])
change_height
end
move
end
class WINDOW test_window: BOOLEAN
. . local wil, w2, w3, w4: WINDOW
inherit do
ﬁ;ﬁiﬁgom create wl.make(8, 6) ; create w2.make (4, 3)
feature create w3.make(l, 1) ; create w4.make(1l, 1)
dd (w: WINDOW) w2.add(w4) ; wl.add(w2) ; wl.add(w3)
@ v Result := wl.descendants.count = 2
end
end
MI: Combining Abstractions (2.1) LASSONDE MI: Name Clashes LASSONDE

Q: How do you design class(es) for nested windows?

foo OO

In class ¢, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window
6 of 20 8 of 20

MI: ReSOIVing Name Clashes LASSONDE

foo

rename foo as zoo

rename foo as fog

class C o.foo | o.fog | 0.z00
inherit
A rename foo as fog end o: A v X a
B rename foo as zoo end o: B v X X
o C X v v
90f20

Solution: The Composite Pattern LASSONDE

ooooooooooooooooo

J : Categorize into base artifacts or recursive artifacts.

Build a tree structure representing the whole-part hierarchy .

* [Runtime |
Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

J

= | Polymorphism |: leafs and nodes are “substitutable”.

= | Dynamic Binding |: Different versions of the same

operation is applied on individual objects and composites.
e.g., Given|e: EQUIPMENT |:
o may return the unit price of a DTSk DRIVE.

o |e.price|may sum prices of a cHasIs’ containing equipments.
10 of 20

Composite Architecture: Design (1.1) LASSONDE

ooooooooooooooooo

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

children: LIST[...]

+
@ COMPOSITE_
EQUIPMENT

~do

Composite Architecture: Design (1.2) LASSONDE
The client uses Class EQUIPMENT defines an interface for all
abstract class objects in the composition: both the composite

EQUIPMENT to and leaf nodes.
manipulate objects May implement default behavior for add(child)
in the composition. etc.
price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

£
EQUIPMENT

A leaf has no children.—>

Class

children: LIST[...] COMPOSITE ‘s
role is (a)
implement leaf
related ops
such as price
and (b) to
define
component
behaviour such
as storing a
child.

+
COMPOSITE_
EQUIPMENT

Note that the leaf also
inherits features like
children and add that
don’ t necessarily make

all that sense for a leaf
node.

CHASSIS

ASSONDE

ooooooooooooooooo

—

Composite Architecture: Design (1.3)

Q: Any flaw of this first design?
A: Two “composite” features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]
© add(child: EQUIPMENT)

= Inherited to all base equipments (e.g., HARD_DRIVE) that do
not apply to such features.

13 of 20

LASSONDE

ooooooooooooooooo

COMPOSITE_
EQUIPMENT

Composite Architecture: Design (2.1)

14 of 20

Composite Architecture: Design (2.2)

LASSONDE
Put the tree behavior
such as adding a child
Put the price & and list of children
power consumption here where it is needed
behavior here l
@ e # children: LIST[...]
———»{_EQUIPMENT /
1 :
/ COMPOSITE
DS IDIRIYE EQUIPMENT
CABINET @X@ @
15 of 20
Implementing the Composite Pattern (1) LASSONDE

deferred class

EQUIPMENT
feature

name: STRING

price: REAL uniform access principle
end

class
CARD
inherit
EQUIPMENT
feature
make (n: STRING; p: REAL)
do
name := n
price := p —- price is an attribute
end
end

16 of 20

Implementing the Composite Pattern (2.1) ssonoe

ooooooooooooooooo

deferred class
COMPOSITE[T]

feature
children: LINKED_ LIST|[T]

add (c: T)
do
children.extend (c) —-- Polymorphism
end
end

Exercise: Make the COMPOSITE class iterable.

17 of 20

Implementing the Composite Pattern (2.2) .ssonoe

ooooooooooooooooo

class
COMPOSITE _EQUIPMENT
inherit
EQUIPMENT
COMPOSITE [EQUIPMENT]
create
make
feature
make (n: STRING)
do name := n ; create children.make end
price : REAL —— p 2]

Sum the ne

do
across
children as cursor
loop
Result := Result + cursor.item.price -- dynamic binding
end
end
end

18 of 20

Testing the Composite Pattern LASSONDE

ooooooooooooooooo

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET —— hold
chassis: CHASSIS ——
bus: BUS holds a
do
create {CARD} card.make("l6Mbs Token Ring", 200)
create {DISK DRIVE} drive.make("500 GB harddrive", 500)
create bus.make ("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)

chassis.add(bus)

chassis.add(drive)

cabinet.add(chassis)

Result := cabinet.price = 700
end

19 of 20

Index (1) :ASSONDE

Motivating Problem (1)

Motivating Problem (2)

Multiple Inheritance: Sharing vs. Replication
MI: Combining Abstractions (1)

MI: Combining Abstractions (2.1)

MI: Combining Abstractions (2)

MI: Name Clashes

MI: Resolving Name Clashes
Solution: The Composite Pattern
Composite Architecture: Design (1.1)
Composite Architecture: Design (1.2)
Composite Architecture: Design (1.3)
Composite Architecture: Design (2.1)
Cop;oposite Architecture: Design (2.2)

S—

|
Index (2)

LASSONDE
Implementing the Composite Pattern (1)

ooooooooooooooooo

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

21 of 20

The Visitor Design Pattern

EECS3311 A: Software Design

' Fall 2018

TE CHEN-WEI WANG
TY

Motivating Problem (1) LASSONDE

ooooooooooooooooo

Based on the composite pattern you learned, design classes

to model structures of arithmetic expressions
(e.g., 341, 2, 341 + 2).

(EXPERSSION*] (COMPOSITE*]
value INTEGER [eft right: EXPRESSION

(consTanT+ ADDITION+

|

20f13

Motivating Problem (2) LASSONDE

ooooooooooooooooo

Extend the composite pattern to support operations such as

evaluate, pretty printing (print prefix, print_postfix),
and type_check.

(EXPERSSION*

value: INTEGER
evaluate*
print_prefix*
print_postfix*
type_check*

COMPOSITE* W
e/‘t right: EXPRESSION

[consTANT+ ADDITION+)

evaluate+ evaluate+
print_prefix+ print_prefix+
D

print_postfix+ rint_postfix+
type_check+ type_check+

3of13

LASSONDE

ooooooooooooooooo

Problems of Extended Composite Pattern

¢ Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :

To add/delete/modify an operation
= Change of all descendants of EXPRESSION

e Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.
= Confusing to mix codes for evaluation, pretty printing, and type
checking.

= We want to avoid “polluting” the classes with these various
unrelated operations.

40f13

Open/Closed Principle e

ooooooooooooooooo

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

= When extending the behaviour of a system, we:

o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.
e.g., In designing the application of an expression language:
o Alternative 1:
Syntactic constructs of the language may be closed, whereas

operations on the language may be open.
o Alternative 2:

Syntactic constructs of the language may be open, whereas
operations on the language may be closed.

50f13

Visitor Pattern A cono:

ooooooooooooooooo

e Separation of concerns

o Set of language constructs
o Set of operations

= Classes from these two sets are decoupled and organized
into two separate clusters.

e Open-Closed Principle (OCP) :

o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations

= OCP helps us determine if Visitor Pattern is applicable .

= If it was decided that language constructs are open and
operations are closed, then do not use Visitor Pattern.

60f13

™

B
iz

o

Visitor Pattern: Architecture

g

EXPERSSION* NS
et (o)
v Visit_constant(c: CONSTANT)*
COMPOSITES)

visit_addition(a: ADDITION)*
lef,right: EXPRESSION. | !

accept(v: VISITOR)*

(_apbpmons)

! [constant+) EVALUATOR+) (erertv.eRiNtER+ | [TYPE CHECKER+)
' ! [Vt constant(c: CONSTANT)+| [Visit_constant(c: CONSTANT)+| [visit_constant(c: CONSTANT)+] |
accept(v: VISITOR)+ ! i|visit_addition(a: ADDITION)+ visit_addition(a: ADDITION)+ | | visit_addition(a: ADDITION)+) !

1 | accept(v: VISITOR)+

70f13

ooooooooooooooooo

Cluster expression_language
o Declare deferred feature] accept (v: VISITOR) \in EXPRSSION.

o Implement accept feature in each of the descendant classes.

class CONSTANT inherit EXPRESSION

accept(v: VISITOR)
do
v.visit_ constant (Current)
end
end

class ADDITION
inherit EXPRESSION COMPOSITE

accept (v: VISITOR)
do
v.visit_ addition (Current)
end
end

8 of 13

ooooooooooooooooo

Cluster expression_operations
o For each descendant class C of EXPRESSION, declare a deferred

feature m in the deferred class VISITOR.

deferred class VISITOR
visit_constant (c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end
end

o Each descendant of vISITOR denotes a kind of operation.

’class EVALUATOR inherit VISITOR ‘

| : INTEGER |
visit_constant (c: CONSTANT) do 1= c.value end

visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)
a.right.accept (eval_right)
:= eval_ left.value + eval_right.value
end
end
9 of 13

Testing the Visitor Pattern LASSONDE

ooooooooooooooooo

test_expression_evaluation: BOOLEAN
local add, cl, c2: EXPRESSION ; v: VISITOR
do
create {CONSTANT} cl.make (1) ; create {CONSTANT} c2.make (2)
create {ADDITION} add.make (cl, c2)
create {EVALUATOR} v.make
| add.accept (v) |
check attached {EVALUATOR} v as eval then
Result := eval.value = 3
end
end

0O OWoOO NOoOOh~WwWN =

—_

Double Dispatch in Line 7:

1. DT of add is apprrron = Call accept in apprrron

v.visit_addition (add)

2. DT of vis evarvaror = Call visit_addition in Evaruaror
’visiting result of add.left ‘ + ’ visiting result of add. right ‘

100f 13

LASSONDE

To Use or Not to Use the Visitor Pattern issonce

¢ In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?

o Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | C_CODE_GENERATOR | of VISITOR,
then implement how to handle each language element in that class.
= Single Choice Principle is obeyed.

o Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSTION,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new ’ visitmultiplication ‘operation.

= Single Choice Principle is violated.
e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations applied to structure change often.

= Do not use visitor if the structure change often.
11 0of 13

Beyond this Lecture. ..

LASSONDE

ooooooooooooooooo

Learn about implementing the Composite and Visitor Patterns,
from scratch, in this tutorial series:
https://www.youtube.com/playlist?list=PL5dxAmCmjv__
475eXGW-ZBgsS2WZTyBHY2

120f 13

Index (1)

ooooooooooooooooo

Motivating Problem (1)

Motivating Problem (2)

Problems of Extended Composite Pattern
Open/Closed Principle

Visitor Pattern

Visitor Pattern: Architecture

Visitor Pattern Implementation: Structures
Visitor Pattern Implementation: Operations
Testing the Visitor Pattern

To Use or Not to Use the Visitor Pattern
Beyond this Lecture. ..

Abstractions via Mathematical Models

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

cic
z|z
<|<
mim
D=
wlwn
==
<Im

LASSONDE

ooooooooooooooooo

Motivating Problem: Complete Contracts

¢ Recall what we learned in the Complete Contracts lecture:

o In post-condition , for each attribute , specify the relationship
between its pre-state value and its posi-state value.

o Use the old keyword to refer to posi-state values of expressions.

o For a composite-structured attribute (e.g., arrays, linked-lists,
hash-tables, etc.), we should specify that after the update:

1. The intended change is present; and
2. The rest of the structure is unchanged .

¢ Let’s now revisit this technique by specifying a L/IFO stack.

E———

|
Motivating Problem: LIFO Stack (1)

st e

¢ Let’s consider three different implementation strategies:
Arra Linked List
Stack Feature ray : :
Strategy 1 Strategy 2 ‘ Strategy 3
count imp.count
top imp[imp.count] imp.first imp.last
push(g) imp.force(g, imp.count + 1) | imp.put_font(g) | imp.extend(g)
imp.list.remove_tail (1) list.start imp.finish
pop . .
list.remove imp.remove

¢ Given that all strategies are meant for implementing the same
ADT, will they have identical contracts?

30f33

Motivating Problem: LIFO Stack (2.1)

class LIFO _STACK|[G]
feature {NONE } St

imp: ARRAY|[G]
feature —— Initialization
make do create imp.make_empty ensure imp.count = 0 end
feature Cc s
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ~ g
unchanged: across 1 |..| count - 1 as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end
end
pop
do imp.remove_tail(l)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end
4 of 33

Motivating Problem:

EaSaRNDE

LIFO Stack (2.2)

unchanged: across 1 |..|
imp[i.item]
end

class LIFO STACK[G] create make
feature {NONE } Strategy 2: 11 item as top
imp: LINKED_LIST[G]
feature —— I ialization
make do create imp.make ensure imp.count = 0 end
feature C is
push(g: G)
do imp.put_front (g)
ensure
changed: imp.first ~ g
unchanged: across 2 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end

end
pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1

count as i all
~ (old imp.deep_twin) [i.item + 1] end

50f33

Motivating Problem

st e

: LIFO Stack (2.3)

class LIFO STACK[G] create make
feature {NONE } S Jy 3: tor
imp: LINKED_LIST[G]
feature —— Initialization
make do create imp.make ensure imp.count = 0 end
feature Cor is
push(g: G)
do imp.extend(qg)
ensure
changed: imp.last ~ g
unchanged: across 1 |..| count - 1 as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end
end
pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end
6 of 33

e
Motivating Problem: LIFO Stack (3) LASSONDE
e Postconditions of all 3 versions of stack are complete .
i.e., Not only the new item is pushed/popped, but also the
remaining part of the stack is unchanged.
e But they violate the principle of information hiding :
Changing the secret, internal workings of data structures

should not affect any existing clients.
e How so?
The private attribute imp is referenced in the postconditions ,

exposing the implementation strategy not relevant to clients:
o Top of stack may be’ imp [count] ‘ ’ imp.first ‘ or’ imp.last ‘

o Remaining part of stack may be’across 1 |..| count - 1‘or

’across 2 |..| count ‘
= Changing the implementation strategy from one to another will
also change the contracts for all features .

roras ™ This also violates the Single Choice Principle .

EaSaRNDE

Math Models: Command vs Query

o Use MATHMODELS library to create math objects (SET, REL, SEQ).
o State-changing commands: Implement an Abstraction Function

class LIFO_STACK[G —-> attached ANY] create make

feature {NONE} - Implementation
imp: LINKED_LIST[G]
feature - Abstraction function of the stack ADT

model: SEQ[G]
do create Result.make_empty
across Imp as cursor loop Result.append(cursor.item) end
end

o Side-effect-free queries: Write Complete Contracts

class LIFO_STACK[G -> attached ANY] create make

feature —— Al f n of the stack ADT
model: SEQ/[G]

feature Co.
push (g: G)

ensure model ~ (old model.deep_twin) .appended(g) end

80f33

Implementing an Abstraction Function (1)

class LIFO_STACK[G —-> attached ANY] create make
feature {NONE} - Implementation Strategy 1
imp: ARRAY[G]
feature —— Ab
model: SEQ[G]
do create Result.make_from.array (imp)

ion of the st

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Co is

make do create imp.make_empty ensure model.count = 0 end
push (g: G) do imp.force(g, imp.count + 1)

‘ ensure pushed: model ~ (old model.deep_-twin) .appended(g) end ‘
‘ pop do imp.remove_tail (1) ‘
‘ ensure popped: model ~ (old model.deep_-twin).front end ‘

Abstracting ADTs as Math Models (1)

‘push(g: G)’ feature of LIFO_STACK ADT

[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current array
into a math sequence

imp: ARRAY[G]

e | Strategy 1| Abstraction function : Convert the implementation
array to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

abstraction
Sfunction

abstraction | convert the current array
JSunction into a math sequence

old imp: ARRAY[G]

private/hidden (implementor’s view)

imp.force(g, imp.count + 1)

’ model ~ (old model.deep_twin) .appended(qg) ‘

10 of 33

Implementing an Abstraction Function (2) L’égsésom

class LIFO_STACK[G —-> attached ANY] create make
feature {NONE} —— -
imp: LINKED_LIST[G]
feature Abstraction
model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.prepend(cursor.item) end

tion of the

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result([i.item] ~ imp[count - i.item + 1]
end
feature - C ds
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.put_front (g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.start ; imp.remove

‘ ensure popped: model ~ (old model.deep-twin).front end ‘

’end

110f33

Abstracting ADTs as Math Models (2) L’égsésom

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction | convert the current liked list
Sfunction into a math sequence

convert the current linked list | abstraction

into a math sequence Sfunction
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
prlvate/hldden (implementor’s view)

Strategy 2| Abstraction function : Convert the /mp/ementat/on

list (first item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:
’ model ~ (old model.deep_twin) .appended(qg) ‘

imp.put_front(g)

120f 33

Implementing an Abstraction Function (3) L’égsésom

class LIFO_STACK[G —> attached ANY] create make
feature {NONE} - t
imp: LINKED_ LIST[G]
feature Abstraction
model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

ategy 3 (last as top)

ck ADI

tion of the

sta

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - C S
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.extend(g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.finish ; imp.remove

‘ ensure popped: model ~ (old model.deep-twin).front end ‘

’end

130f 33

Abstracting ADTs as Math Models (3) L’égsésom

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction | convert the current liked list
Sfunction into a math sequence

convert the current linked list | abstraction

into a math sequence function
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
prlvate/hldden (implementor’s view)

Strategy 3| Abstraction function : Convert the /mplementat/on
list (last item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:
’ model ~ (old model.deep_twin) .appended(qg) ‘

imp.extend(g)

14 of 33

ooooooooooooooooo

¢ Writing contracts in terms of implementation attributes (arrays,
LLs, hash tables, efc.) violates information hiding principle.

¢ Instead:
o For each ADT, create an abstraction via a mathematical model.
e.g., Abstract a LIFO_STACK as a mathematical .
o For each ADT, define an abstraction function (i.e., a query
whose return type is a kind of mathematical model.
e.g., Convert implementation array to mathematical sequence
o Write contracts in terms of the abstract math model.
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.
o Upon changing the implementation:
¢ No change on what the abstraction is, hence no change on contracts.
e Only change how the abstraction is constructed, hence changes on
the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
= The Single Choice Principle is obeyed.

150f 33

Math Review: Set Definitions and Membershi.

ooooooooooooooo

e A set is a collection of objects.
o Objects in a set are called its elements or members.
o Order in which elements are arranged does not matter.
o An element can appear at most once in the set.
¢ We may define a set using:
o Set Enumeration: Explicitly list all members in a set.
e.g., {1,3,5,7,9}
o Set Comprehension: Implicitly specify the condition that all
members satisfy.
eg.,{x|1<x<10Ax is an odd number}

An empty set (denoted as {} or @) has no members.

We may check if an element is a member of a set:
e.g.,5¢{1,3,5,7,9} [true]
eg.,4¢{x|x<1<10,x is an odd number} [true]

The number of elements in a set is called its cardinality.

e.9.,12|=0,[{x|x<1<10,x is an odd number}|=5
16 of 33

Math Review: Set Relations

ooooooooooooooooo

Given two sets Sy and S:
e S, is a subset of S, if every member of S; is a member of S,.

S1€8S = (Vx e xeSy=x€8p)

e S; and S, are equal iff they are the subset of each other.

S1=Sg <~ 51932/\82981

e S, is a proper subset of S, if it is a strictly smaller subset.
SicS <« 5 cSA|S1<]S2

17 of 33

LASSONDE

ooooooooooooooooo

Math Review: Set Operations

Given two sets Sy and S:
e Union of Sy and S, is a set whose members are in either.

S1U82={X|XES1VX€SQ}

¢ Intersection of S; and S, is a set whose members are in both.

S1ﬁSg={X|XES1/\X€SQ}

e Difference of S; and S, is a set whose members are in S; but
not So.
S1 \82={X|XES1/\X¢82}

18 of 33

Math Review: Power Sets

LASSONDE

ooooooooooooooooo

The power set of a set Sis a set of all S’ subsets.

P(S)={s|sc S}

The power set contains subsets of cardinalities 0,1, 2, ..., |S|.

e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

9z,

{1}, {2}, {3},
{1.2}, {2,3}, {3,1},
{1,2,3}

S——

Math Review: Set of Tuples

LASSONDE

ooooooooooooooooo

Given nsets Sy, Sy, ..., Sp, @ cross product of theses sets is
a set of n-tuples.
Each n-tuple (eq, e, ..., €en) contains n elements, each of

which a member of the corresponding set.

SixSox--xSy={(e1,6€2,...,en) | €eSian1<i<n}

e.g., {a b} x{2,4} x {$,&} is a set of triples:

{a,b} x {2,4} x {$,&}
{(e1,e2,€3) | e1e{abfrerec{2,4f nese{$,&} }
{(a,2,%),(a,2,&),(a,4,9%),(a,4,&),
(b,2,$),(b,2,&),(b,4,%),(b,4,&)}

E——

LASSONDE

ooooooooooooooooo

Math Models: Relations (1)

e A relation is a collection of mappings, each being an ordered
pair that maps a member of set S to a member of set T.
e.g.,Say S={1,2,3}and T = {a, b}

o @ is an empty relation.

o Sx T is arelation (say r1) that maps from each member of S to
each memberin T: {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

o {(x,y):SxT|x=+1}isarelation (say r») that maps only some
members in S to every member in T: {(2,a),(2,b),(3,a),(3,b)}.

¢ Given a relation r:

o Domain of r is the set of S members that r maps from.

dom(r)={s:S|(3te(s,t)er)}

e.g., dom(ry) = {1,2,3}, dom(r2) = {2,3}
o Range of ris the set of T members that r maps to.

ran(r)={t: T|(3se(s,t)er)}
e.g., ran(ry) = {@, b} =ran(rz)

210f 33 _

LASSONDE

ooooooooooooooooo

Math Models: Relations (2)

¢ We use the power set operator to express the set of all possible

relationson Sand T:
P(SxT)

¢ To declare a relation variable r, we use the colon (:) symbol to
mean set membership:

r:P(SxT)

¢ Or alternatively, we write:
r:S< T

where the set S <> T is synonymous to the set P(Sx T)

22 of 33 _

]
Math Models: Relations (3.1)

ooooooooooooooooo

Say r={(a1),(b,2),(c,3),(a4).(b,5),(c.6),(d,1),(e,2),(f,3)}
o [r.domain|: set of first-elements from r

o rdomain={d|(d,r)er}
o e.g.,, rdomain={a,b,c,d,e,f}

. : set of second-elements from r
orrange={r|(d,r)er}
o e.g., rrange = {1,2,3,4,5,6}

« [rinversel: a relation like r except elements are in reverse order
o rinverse = { (r,d)|(d,r)er}
o e.g., rinverse = {(1,a),(2,b), (3,¢), (4,a), (5 b),(6,¢),(1,d),(2,e), (3,1}

23 of 33

Math Models: Relations (3.2)

ooooooooooooooooo

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
r.domain_restricted(ds) ‘: sub-relation of r with domain ds.

o r.domain_restricted(ds) = { (d,r) | (d,r)erndeds}

o e.g., r.domain_restricted({a, b}) = {(a, 1), (b,2),(a,4), (b,5)}
r.domain_subtracted(ds) ‘: sub-relation of r with domain not ds.
o r.domain_subtracted(ds) = { (d,r) | (d,r)ernd¢ds}

o e.g., .domain_subtracted({a, b}) = {(¢,6),(d,1),(e,2),(f,3)}
r.range_restricted(rs) ‘: sub-relation of r with range rs.

o rrrange_restricted(rs) = { (d,r) | (d,r)erarers}

o e.g., r.range_restricted({1,2}) = {(a,1),(b,2),(d,1),(e,2)}
r.range_subtracted(ds) \: sub-relation of r with range not ds.

o rrrange_subtracted(rs) = { (d,r) | (d,r)eranr¢rs}
o e.g., r.range_subtracted({1, 2}) = {(c,3),(a,4),(b,5),(c,6)}

24 of 33

]
Math Models: Relations (3.3)

ooooooooooooooooo

Say r={(a,1).(b,2),(c,3).(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
e |r.overridden(t) . a relation which agrees on r outside domain of

t.domain, and agrees on t within domain of t.domain

o r.overridden(t) = { u r.domain_subtracted(t.domain)

[e]

r.overridden({(a,3),(c,4)})

{(a,3), (074)}U{(b72t)7 (b,5),(d,1),(e,2),(f,3)}

t r.domain_subtracted(f.domain)
[—
{a,c}

{(a,3),(c,4),(b,2),(b,5),(d,1),(e;2),(f,3)}

25 of 33

Math Review: Functions (1)

LASSONDE

ooooooooooooooooo

A function fon sets Sand T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T.

VSis;t12T;t21TO(S,t1)€f/\(S,t2)Ef=>t1=t2

e.g., Say S={1,2,3} and T = {a, b}, which of the following
relations are also functions?

o SxT [No]
o (SxT)-{(x,y) | (x,¥)eSxTarx=1} [No]
° {(1,a),(2,b),(3,a)} [Yes]
° {(1,a),(2,b)} [Yes]

26 of 33

LASSONDE

ooooooooooooooooo

Math Review: Functions (2)

e We use sef comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

(r:SeT|
(VSIS;HIT;tg:TO(S,t1)EI‘/\(S,t2)EI’=>t1 =t2)}

e This set (of possible functions) is a subset of the set (of
possible relations): P(Sx T) and S« T.

¢ We abbreviate this set of possible functions as S — T and use it
to declare a function variable f:

f:S->T

27 of 33

LASSONDE

ooooooooooooooooo

Math Review: Functions (3.1)

Given a function f: S—T:
e fis injective (or an injection) if f does not map a member of S
to more than one members of T.
f is injective «—
(VS1 : 8,8, :S;t: TO(S1,t)EI’/\(32,t)€I’:>S1 232)

e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

e fis surjective (or a surjection) if f maps to all members of T.

f is surjective <= ran(f)=T

e fis bijective (or a bijection) if f is both injective and surjective.
28 of 33

LASSONDE

ooooooooooooooooo

Math Review: Functions (3.2)

X Y X Y

X Y X

1 D

2 B -»
3 c

4

29 of 33

ooooooooooooooooo

Command I Query

domain_restricted
domain_restricted by

domain_subtracted
domain_subtracted by

domain_restrict
domain_restrict. by

domain_subtract
domain_subtract. by

range_restricted
range_restricted._by

range_subtracted
range_subtracted._by

range_restrict
range_restrict_by

range_subtract
range_subtract by

overridden
overridden_by

override
override_by

Say r={(a1).(b,2),(c.3),(a4).(b,5),(c.6),(d,1), (e 2),(f,3)}
e Commands modify the context relation objects.
’ r.domain restrict ({a}) ‘ Changes rto{(a1),(a4)}

e Queries return new relations without modifying context objects.
’ r.domain restricted ({a}) ‘ returns {(a,1),(a,4)} with r untouched

S——

Math Models: Example Test

EaSaRNDE

test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]
do
create r.make from tuple_array (
<<["a", 11, ["b", 2], ["c", 31,
("a", 41, ["b", 5], ["c", 6],
[lldll, 1]’ [lleH’ 2], [llfll, 3]>>)
create ds.make from array (<<"a">>)
—-— r 1s not changed by the query ‘domain_subtracted’
t := r.domain_subtracted (ds)
Result :=
t /~ r and not t.domain.has ("a") and r.domain.has ("a")
check Result end
-— r 1s changed by the command ‘domain_subtract’
r.domain_subtract (ds)
Result :=
t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
end

310f33

EaSaRNDE

Beyond this lecture ...

Familiarize yourself with the features of classes REL and SET
for the exam.

320f 33

Index (1)

EaSaRNDE

Motivating Problem:
Motivating Problem:
Motivating Problem:
Motivating Problem:
Motivating Problem:
Motivating Problem:
Math Models:

Complete Contracts
LIFO Stack (1)

LIFO Stack (2.1)
LIFO Stack (2.2)
LIFO Stack (2.3)
LIFO Stack (3)
Command vs Query

Implementing an Abstraction Function (1)
Abstracting ADTs as Math Models (1)
Implementing an Abstraction Function (2)
Abstracting ADTs as Math Models (2)
Implementing an Abstraction Function (3)
Abstracting ADTs as Math Models (3)
Solution: Abstracting ADTs as Math Models

33 0f 33

Index (2)

EaSaRNDE

Math Review:
Math Review:
Math Review:
Math Review:
Math Review:
Math Models:
Math Models:
Math Models:
Math Models:
Math Models:
Math Review:
Math Review:
Math Review:
Math Review:

34 of 33

Set Definitions and Membership
Set Relations
Set Operations
Power Sets
Set of Tuples
Relations (1)
Relations (2)
Relations (3.1)
Relations (3.2)
Relations (3.3)
Functions (1)
Functions (2)
Functions (3.1)
Functions (3.2)

Index (3) Lassonpe
Math Models: Command-Query Separation

Math Models: Example Test

Beyond this lecture ...

35 of 33

Subcontracting
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

Aspects of Inheritance

LASSONDE

ooooooooooooooooo

e Code Reuse

¢ Substitutability
o Polymorphism and Dynamic Binding
[compile-time type checks]
o Sub-contracting
[runtime behaviour checks]

20f16

Background of Logic (1)

LASSONDE

ooooooooooooooooo

Given preconditions P; and P», we say that

’ P> requires less than P; ‘if
P> is less strict on (thus allowing more) inputs than Py does.

{x[P10 }e{x|Pa(x) }

More concisely:
P1 = P2

e.g., Forcommand withdraw (amount: amount),
| P> : amount > 0| requires less than | Py : amount > 0|

What is the precondition that requires the least? [true]

3of16

LASSONDE

ooooooooooooooooo

Background of Logic (2)

Given postconditions or invariants Qq and Q», we say that

’ Q> ensures more than Qq ‘if
Q» is stricter on (thus allowing less) outputs than Qy does.

{x[Q(x) pe{x[Qi(x)}

More concisely:
Qz = Q1

e.g., Forquery g (i: INTEGER): BOOLEAN,
’ Qo :Result = (i>0)A(imod2=0) ‘ ensures more than

|Qy:Result =(i>0)v(imod2=0)]
What is the postcondition that ensures the mosit?

[false]
40f 16

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (1)
e The fact that we allow polymorphism :

local my_phone: SMART PHONE
i_phone: IPHONE_6S_PLUS
samsung_phone: GALAXY S6 _EDGE
htc_phone: HTC_ONE A9
do my_phone := i_phone
my_phone samsung_phone
my_phone := htc_phone

suggests that these instances may substitute for each other.
e Intuitively, when expecting SMART PHONE, we can substitute it
by instances of any of its descendant classes.
- Descendants accumulate code from its ancestors and can thus
meet expectations on their ancestors.

e Such substitutability can be reflected on contracts, where a

substitutable instance will:
o Not require more from clients for using the services.

o Not ensure less to clients for using the services.
5 of 16

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.1)

) (SMART PHONE]

my_phone
get_reminders: LIST[EVENT]
require ??
) ensure ??

(PHONE USER

tny _phone: SMART PHONE

[1PHONE 65 PLUS)

get_reminders: LIST[EVENT]
require else ??
ensure then ??

6 of 16

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.2)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today
end

class IPHONE_6S_PLUS
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery level > 0.15 —— 15%
ensure then
0: Ve:Result | e happens today or tomorrow
end

Contracts in descendant class rrxzone_ss_prus are not suitable.
(battery _level > 0.1 = battery_level > 0.15) is not a tautology.

e.g., A client able to get reminders on a smart_pHone, when battery

16 level is 12%, will fail to do so on an repronE 65 _prLus.
(2]

e —

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.3)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_6S_PLUS
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.15 —— 15%
ensure then
0: Ve:Result | e happens today or tomorrow

end

Contracts in descendant class rruone_6s_prus are not suitable.
(e happens ty. or tw.)= (e happens ty.) nottautology.
e.g., A client receiving today’s reminders from smarT_prHoONE are

Bof 16 shocked by tomorrow-only reminders from rrprone 65 PLUs.

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (2.4)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_6S_PLUS
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery level > 0.05 —— 5%
ensure then
0: Ve:Result | e happens today between 9am and 5pm

end

Contracts in descendant class rrrons_ss_prus are suitable.

o Require the same or less o=
Clients satisfying the precondition for smarr_pronE are not shocked
by not being to use the same feature for rrronE 65 PrUs.

e

Inheritance and Contracts (2.5)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
a: battery_level > 0.1 10%
ensure
B: Ve:Result | e happens today

end

class IPHONE_6S_PLUS
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery level > 0.05 —— 5%
ensure then
0: Ve:Result | e happens today between 9am and 5pm
end

Contracts in descendant class rrrons_ss_prus are suitable.
o Ensure the same or more =7
Clients benefiting from smarr_pHONE are not shocked by failing to
6gain at least those benefits from same feature in rpronE 65 _PrLUS.

10 of 1

Contract Redeclaration Rule (1)

¢ |In the context of some feature in a descendant class:

o Use to redeclare its precondition.
o Use to redeclare its precondition.

e The resulting runtime assertions checks are:

o ’original_pre or else new_pre‘

= Clients able to satisfy original _pre will not be shocked.
.- true v new _pre = true
A precondition violation will not occur as long as clients are able
to satisfy what is required from the ancestor classes.
o ’original_post and then new_post‘
= Failing to gain original_post will be reported as an issue.
-+ false A new _post = false
A postcondition violation occurs (as expected) if clients do not
receive at least those benefits promised from the ancestor classes.

11 0f 16

LASSONDE

ooooooooooooooooo

Contract Redeclaration Rule (2.1)

1 FOO class BAR
¢ ;ss inherit FOO redefine f end
do f require else new_pre
do ...
end
end end
end

e Unspecified original_pre is as if declaring

-+ true v new_pre = true

class BAR
class FOO inherit FOO redefine f end
£ £
do ... do ...
end ensure then new_post
end end

end

* Unspecified original_post is as if declaring

-+ true n new_post = new_post
120f 16

LASSONDE

ooooooooooooooooo

Contract Redeclaration Rule (2.2)

class FOO class BAR
f require inherit FOO redefine f end
original pre f
do ... do ...
end end
end end

* Unspecified new_pre is as if declaring [require eise false|
-+ original_pre v false = original_pre

1
€ ;ss Foo class BAR
do inherit FOO redefine f end
. £
ensure
original_post do
- end
end end
end

* Unspecified new_post is as if declaring [ensure then true|
-+ original_post A true = original_post
13 0f 16

LASSONDE

Invariant Accumulation Lssonee

e Every class inherits invariants from all its ancestor classes.
¢ Since invariants are like postconditions of all features, they are
“conjoined” to be checked at runtime.

class POLYGON
vertices: ARRAY[POINT]
invariant
vertices.count > 3
end

class RECTANGLE
inherit POLYGON
invariant

vertices.count = 4
end

e What is checked on a RECTANGLE instance at runtime:
(vertices.count > 3) A (vertices.count = 4) = (vertices.count = 4)
e Can PENTAGON be a descendant class of RECTANGLE?

ror1 (vertices.count = 5) A (vertices.count = 4) = false

LASSONDE

ooooooooooooooooo

Inheritance and Contracts (3)

class FOO class BAR
£ inherit FOO redefine f end
require r
qu. . require else
original pre
new._pre
ensure
. ensure then
original post
new_post
end
end end
end

(Static) Design Time :

(o]

original_pre = new,pre‘ should be proved as a tautology

o

new_posi = original,post‘ should be proved as a tautology

(Dynamic) Runtime :
original_pre v new,pre‘ is checked

o

o

original_post A new,post‘ is checked

150f 16

|
Index (1) Lassonoe
Aspects of Inheritance
Background of Logic (1)
Background of Logic (2)
Inheritance and Contracts (1)
Inheritance and Contracts (2.1)
Inheritance and Contracts (2.2)
Inheritance and Contracts (2.3)
Inheritance and Contracts (2.4)
Inheritance and Contracts (2.5)
Contract Redeclaration Rule (1)
Contract Redeclaration Rule (2.1)
Contract Redeclaration Rule (2.2)
Invariant Accumulation

Inheritance and Contracts (3)
16 of 16

Observer Design Pattern
Event-Driven Design

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

Motivating Problem

~

NNNNNNN

e A weather station maintains weather data such as temperature,
humidity, and pressure.

¢ Various kinds of applications on these weather data should
regularly update their displays:
o Condition: temperature in celsius and humidity in percentages.
o Forecast: if expecting for rainy weather due to reduced pressure.

o Statistics: minimum/maximum/average measures of temperature.
20f33

First Design: Weather Station

LASSONDE
SEHOOL OF ENGINEERING
r
FORECAST+
feature
display +
-- Retrieve and display the latest data.
current_pressure: REAL
weather_data
_last_pressure: REAL)

(WEATHER DATA+)

temperature: REAL
humidity: REAL
pressure: REAL
correct_limits (t, p, h): BOOLEAN
-- Are current data within legal limits?
invariant
correct_limits (temperature, humidity, pressuure)

([CURRENT_CONDITIONS+ |

feature
display +

weather_data

-- Retrieve and display the latest data.
temperature: REAL
_fumidity: REAL)

(STATISTICS+

weather_data

feature
display +
- Retrieve and display the latest data.
_iemperaiure: REAL

J

Whenever the display feature is called, retrieve the current
values of temperature, humidity, and/or pressure via the

weather_data reference.
30f33

Implementing the First Design (1) LASSONDE

100L OF ENGINEERING

\wy

class WEATHER _DATA create make

feature -
temperature: REAL
humidity: REAL
pressure: REAL

feature - ries
correct_limits(t,p,hh: REAL): BOOLEAN
ensure

Result implies -36 <=t and t <= 60
Result implies 50 <= p and p <= 110
Result implies 0.8 <= h and h <= 100

feature C S
make (t, p, h: REAL)
require

correct_limits (temperature, pressure, humidity)

ensure
temperature = t and pressure = p and humidity = h
invariant
correct_limits (temperature, pressure, humidity)

end

S

\wy

Implementing the First Design (2.1) LASSONDE

100L OF ENGINEERING

class FORECAST create make

feature - Attr
current_pressure: REAL
last_pressure: REAL
weather_data: WEATHER_DATA

es

feature - Cc¢ 5

make (wd: WEATHER_DATA)
ensure weather_data = a-weather_data

update
do last_pressure := current_pressure

current_pressure := weather_data.pressure

end

display
do update

if current_pressure > last_pressure then
print ("Improving weather on the way!S%N")
elseif current_pressure = last_pressure then
print ("More of the same%N")
else print("Watch out for cooler, rainy weather$N") end
end
end

e

I —
Implementing the First Design (2.2) LASSONDE

\wy

100L OF ENGINEERING

class CURRENT _CONDITIONS create make

feature - A
temperature: REAL
humidity: REAL
weather_data: WEATHER DATA

feature -
make (wd: WEATHER DATA)

ensure weather_data = wd

ites

1s

update
do temperature := weather_data.temperature
humidity := weather_data.humidity
end
display
do update
io.put_string("Current Conditions: ")
io.put_real (temperature) ; io.put_string (" degrees C and ")
io.put_real (humidity) ; io.put_string (" percent humidity%sN"
end
end

\wy

100L OF ENGINEERING

Implementing the First Design (2.3) LASSONDE

class STATISTICS create make
feature Attributes
weather _data: WEATHER_DATA
current_temp: REAL
max, min, sum_so_far: REAL
num_readings: INTEGER
feature - ¢ is
make (wd: WEATHER_DATA)

ensure weather_data = a.-weather_data

5

update
do current_temp

weather_data.temperature
nax 1f 7

ecess

end
display
do update
print ("Avg/Max/Min temperature = ")
print(sum_so_far / num_readings + "/" + max + "/" min + "%N")
end
end

S——

Implementing the First Design (3) LASSONDE Observer Pattern: Architecture LASSONDE
1 | ctame gmarmzn_smasion ereate noke A = S A e B
3 | cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS v isToBs e (ST
4 | wd: WEATHER DATA : (oY ot e :
5 | feature —- Co Is ! s ! H i .
6 make ' _ M ' ! :
7 do create wd.make (9, 75, 25) ' : ‘ :
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd i E E E
10 wd.set_measurements (15, 60, 30.4) M e . SN .
11 cc.display ; fd.display ; sd.display : : . :
12 o dioplay + fd.dieplay . od.dieplay e Observer (publish-subscribe) pattern: one-to-many relation.
13 o Observers (subscribers) are attached to a subject (publisher).
14 wd.set_measurements (11, 90, 20) o The subject notify its attached observers about changes.
]2 nd cec.display ; fd.display ; sd.display » Some interchangeable vocabulary:
17 |ena o subscribe » attach ~ register
o unsubscribe ~ detach ~ unregister
L14: Updates occur on cc, £d, sd even with the same data. o publish ~ notify
o handle ~ update
8 of 33 10 of 33
First Design: Good Design? LASSONDE Observer Pattern: Weather Station LASSONDE
_______ SUECTS e ol
e Each application (CURRENT_CONDITION, FORECAST, . .
1 \ ’
STATISTICS) cannot know when the weather data change. ! [SUBJECT+ : ! [osserver:) '
. iy . 1 feature -- { NONE } 1 1 feature * { SUBJECT } 1
= All applications have to periodically initiate updates in order R o e e !
eature - PRVEL ! attach, detach .
to keep the display results up to date. T [S — ' T feature - (SUBIECT) !
' ! ' T camem obarves u o it wih :
-~ Each inquiry of current weather data values is a remote call. : Vo sobservers oapdatto-due_vith sbect |1 I e et s of e ubiot? .
1 1 ! 1
.. Waste of computing resources (e.g., network bandwidth) : ! : :
1 1 1
when there are actually no changes on the weather data. : T I ! '
H . . _ + 1 ' :
¢ To avoid such overhead, it is better to let: : —— ! . .
o Each application is subscribed/attached/registered to the b et REAL E ! :
weather data. E | A amentdo it el i : : :
o The weather station publish/notify new changes. f | et s Gempersure, iy presaure | 1 k !
= Updates on the application side occur only when necessary . I =’
wd
90f 33 11 of 33

Implementing the Observer Pattern (1.1) LSONDE

class SUBJECT create make
feature —— A o5

observers LIST[OBSERVER]
feature —— C ds
make
do create {LINKED_LIST|[OBSERVER]} observers.make
ensure no._observers: observers.count = 0 end
feature —— Invoked by an OBSEH 2

to le obse

attach (o: OBSERVER)
require not_yet_attached: not observers.has (o)
ensure is attached: observers.has (o) end
detach (o: OBSERVER) ——- Add ‘o’ to the observers
require currently attached: observers.has (o)
ensure is_ attached not observers has (o) end
feature - 2] y

notify —— N t
do across observers as cursor loop cursor.item. update end

ensure all views_updated:
across observers as o all o.item.up_to_date_with_subject end

end
end

120133 _

Implementing the Observer Pattern (1.2) LSONDE

class WEATHER_DATA
inherit SUBJECT rename make as make_subject end
create make
feature T ave
temperature: REAL
humidity: REAL
pressure: REAL
correct_limits(t,p, h: REAL): BOOLEAN
feature - ion
make (t,
do
make_subject ini =
set_measurements (t, p, h)
end
feature Called by wea
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)
invariant
correct_limits (temperature, pressure, humidity)

> observe

end

S——

Implementing the Observer Pattern (2.1)

LASSONDE

0L OF ENGINEERING.

deferred class
OBSERVER

feature —— To be effe

up_to_ date w1th subject BOOLEAN

d by a descendar

deferred
end

update

—-—— L
deferred
ensure

up_to_date_with _subject: up_to_date_with_subject
end

end

Each effective descendant class of OBSERVDER should:

o Define what weather data are required to be up-to-date.
o Define how to update the required weather data.

Implementing the Observer Pattern (2.2)

LASSONDE

100L OF ENGINEERING

class FORECAST
inherit OBSERVER

feature - C s
make (a_weather_data: WEATHER DATA)

do weather_data := a_weather_data
weather_data.attach (Current)
ensure weather_ data = a_weather data
weather_data.observers.has (Current)

end
feature Queries

up_to_date_with _subject: BOOLEAN

ensure then

Result = current_pressure = weather_data.pressure

update

do —— S as lst desi

end
display

do \

7 on demand

Implementing the Observer Pattern (2.3) LASSONDE

ooooooooooooooooo

class CURRENT_CONDITIONS
inherit OBSERVER

feature —— C s
make (a_weather_data: WEATHER DATA)
do weather _data := a_weather_data

weather_data.attach (Current)
ensure weather_data = a_weather_data
weather_data.observers.has (Current)
end
feature Queries
up_to_date_with _subject: BOOLEAN
ensure then Result = temperature = weather_data.temperature and
humidity = weather_data.humidity
update
do —— S
end
display
do No need to
end
end
1601 33

on demand

Implementing the Observer Pattern (2.4) LASSONDE

ooooooooooooooooo

class STATISTICS
inherit OBSERVER

feature - C s
make (a_weather_data: WEATHER DATA)
do weather_data := a_weather_data

weather_data.attach (Current)
ensure weather_data = a_weather_data
weather_data.observers.has (Current)
end
feature Queries
up_to_date_with _subject: BOOLEAN
ensure then
Result = current_temperature = weather_data.temperature
update
do —— S
end
display
do No need to
end
end
170133

on demand

Implementing the Observer Pattern (3)

O©oONOOA~WN =

class WEATHER_STATION create make

feature —— Attributes
cc: CURRENT _CONDITIONS ; fd: FORECAST ; sd: STATISTICS
wd: WEATHER DATA

feature —— « is
make
do create wd.make (9, 75, 25)
create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd

wd.set_measurements (15, 60, 30.4)
wd.notify ‘
cc.display ; fd.display ; sd.display
cc.display ; fd.display ; sd.display

wd.set_measurements (11, 90, 20)
wd.notify
cc.display ; fd.display ; sd.display
end
end

18 I'.3133: cc, £d, sd make use of “cached” data values.
()

Observer Pattern: Limitation? (1)

e The observer design pattern is a reasonable solution to building
a one-to-many relationship: one subject (publisher) and
multiple observers (subscribers).

e But what if a many-to-many relationship is required for the
application under development?

o Multiple weather data are maintained by weather stations.

o Each application observes all these weather data.
o But, each application still stores the /atest measure only.
e.g., the statistics app stores one copy of temperature
o Whenever some weather station updates the temperature of its
associated weather data, all relevant subscribed applications (i.e.,
current conditions, statistics) should update their temperatures.
* How can the observer pattern solve this general problem?
o Each weather data maintains a list of subscribed applications.
o Each application is subscribed to multiple weather data.
19 of 33

Observer Pattern: Limitation? (2) LASSONDE

What happens at runtime when building a many-to-many
relationship using the observer pattern?

‘ wdi: WEATHER_DATA application; \

‘ wda: WEATHER_DATA

applications \

| wdm-—1: WEATHER_DATA

‘ wdm: WEATHER_DATA application,, \

(Erelg)h complexity, with m subjects and n observers? [O(m-n)]
0 of 33

Event-Driven Design (1) LASSONDE

ooooooooooooooooo

Here is what happens at runtime when building a many-to-many

relationship using the event-driven design.

application,—q
application,,

wdi: WEATHER_DATA

wdz: WEATHER_DATA publish subscribe

change_on_temperature: EVENT

wdn_1: WEATHER_DATA

wdn: WEATHER_DATA

Graph complexity, with m subjects and n observers? [O(m+n)]
Additional cost by adding a new subject? [O(1)]
Additional cost by adding a new observer? [O(1)]
Additional cost by adding a new event type? [O(m+ n)]

21 0f 33

Event-Driven Design (2)

In an event-driven design :

e Each variable being observed (e.g., temperature,
humidity, pressure) is called a monitored variable.

e.g., A nuclear power plant (i.e., the subject) has its
temperature and pressure being monitored by a shutdown
system (i.e., an observer): as soon as values of these
monitored variables exceed the normal threshold, the SDS will
be notified and react by shutting down the plant.

e Each monitored variable is declared as an event :
o An observer is attached/subscribed to the relevant events.

e CURRENT_CONDITION attached to events for temperature, humidity.
e FORECAST only subscribed to the event for pressure.
e STATISTICS only subscribed to the event for temperature.

o A subject notifies/publishes changes to the relevant events.
22 of 33

LASSONDE

ooooooooooooooooo

Event-Driven Design: Implementation

¢ Requirements for implementing an event-driven design are:
1. When an observer object is subscribed to an event, it attaches:
1.1 The reference/pointer to an update operation
Such reference/pointer is used for executions.
1.2 lItself (i.e., the context object for invoking the update operation)
2. For the subject object to publish an update to the event, it:

2.1 lterates through all its observers (or listeners)
2.2 Uses the operation reference/pointer (attached earlier) to update the
corresponding observer.

¢ Both requirements can be satisfied by Eiffel and Java.

e We will compare how an event-driven design for the weather
station problems is implemented in Eiffel and Java.

= It's much more convenient to do such design in Eiffel.

23 of 33

Event-Driven Design in Java (1) LASSONDE Event-Driven Design in Java (3) LASSONDE
1 |public class Event { 1 |public class CurrentConditions {
2 Hashtable<Object, MethodHandle> listenersActions; 2 private double temperature; private double humidity;
3 Event () { listenersActions = new Hashtable<>(); } 3 public void updateTemperature(double t) { temperature = t; }
4 void subscribe (Object listener, MethodHandle action) { 4 public void updateHumidity(double h) { humidity = h; }
5 listenersActions.put(listener , action); 5 public CurrentConditions() {
6 } 6 MethodHandles.Lookup lookup = MethodHandles.lookup();
7 void publish(Object arg) { 7 try {
8 for (Object listener : listenersActions.keySet()) { 8 MethodHandle ut = lookup.findVirtual(
9 MethodHandle action = listenersActions.get (listener); 9 this.getClass(), "updateTemperature",
10 try { 10 MethodType.methodType (void.class, double.class));
11 action .invokeWithArguments(listener , arg); 1.12 Ze‘:;hzgﬂaz‘z.ch:ngefn‘l"impe?z.lt;;g.:ubjfribe(this, ut);

ethodHandle uh = lookup.findVirtua
]g }} catch (Throwable e)) 13 this.getClass (), "updateHumidity",
14) 14 MethodType.methodType (void.class, double.class));
15 |} 15 WeatherData.changeOnHumidity. subscribe (this, uh);
16 } catch (Exception e) { e.printStackTrace(); }
e L5: Both the delayed action reference and its context object (or call O o
. \ 18 public void display() {
target) listener are stored into the table. 19 System.out.println("Temperature: " + temperature);
e L11: An invocation is made from retrieved 1istener and action. 20 System.out.println("Humidity: " + humidity); } }

24 of 33 26 of 33

Event-Driven Design in Java (2) LASSONDE Event-Driven Design in Java (4) LASSONDE
1 |public class WeatherData { . }
2 private double temperature; 1 publlc. class _Weath-ersta‘tlon {_
3 private double pressure; 2 public static void main(String[] args) {
4 private double humidity; 3 WeatherData.wg’ = new WeatherData(9, 75,' 2.5);
5 public WeatherData(double t, double p, double h) { 4 CurrentCondlt%ons cc = new CurrentConditions();
6 setMeasurements(t, h, p); 5 System.out.println("=======");
7 } 6 wd.setMeasurements (15, 60, 30.4);
8 public static Event changeOnTemperature = new Event(); 7 cc.display(); .
8 System.out.println("=======");
9 ‘ public static Event changeOnHumidity = new Event(); 9 wd.setMeasurements (11, 90, 20);
10 public static Event changeOnPressure = new Event(); 10 cc.display();
11 public void setMeasurements(double t, double h, double p) { 1 bl
12 temperature = t; .
13 humidity = h; L4 invokes
14 pressure = p; WeatherData.changeOnTemperature. subscribe (
15 | changeOnTemperature .publish(temperature); | cc, ‘‘updateTemperature handle’’)
16 ‘ changeOnHumidity .publish(humidity); ‘ L6 invokes .
i WeatherData.changeOnTemperature.publish(1l5)
17 changeOnPressure .publish(pressure); L .
18) which in turn invokes
19 |3 ‘‘updateTemperature handle’’ .invokeWithArguments (cc, 15)
25 of 33 27 of 33

Event-Driven Design in Eiffel (1)

EaSaRNDE

O©oOoO~NOO~WN =

class EVENT [ARGUMENTS -> TUPLE]
create make
feature - Initializat
actions: LINKED_LIST [PROCEDURE [ARGUMENTS]]
make do create actions.make end
feature
subscribe (an_action: PROCEDURE [ARGUMENTS])
require action_not_already subscribed: not actions.has(an_action
do actions.extend (an_action)
ensure action_subscribed: action.has(an_action) end
publish (args: ARGUMENTS)
do from actions.start until actions.after
loop actions.item.call (args) ; actions.forth end
end
end

® L1 constrains the generic parameter ARGUMENTS: any class that instantiates
ARGUMENTS must be a descendant of TUPLE.
® L4: The type PROCEDURE encapsulates both the context object and the

reference/pointer to some update operation.
28 of 33

Event-Driven Design in Eiffel (2)

0oL oF B

EaSaRNDE

0 N O WN =

class WEATHER DATA
create make

feature - Measurer ts
temperature: REAL ; humidity: REAL ; pressure: REAL
correct_limits(t,p, h: REAL): BOOLEAN do ... end
make (t, p, h: REAL) do ... end

feature - Event for data changes

change_on_temperature :
EVENT[TUPLE [REAL] Jonce create Result end
EVENT|[TUPLE [REAL] Jonce create Result end

EVENT|[TUPLE [REAL] Jonce create Result end
change_on_humidity :

change_on_pressure :

feature - C d
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)

do temperature := t ; pressure := p ; humidity := h

change_on_temperature .publish ([t])
change_on_humidity .publish ([p])
change_on_-pressure .publish ([h])

end
invariant correct_limits(temperature, pressure, humidity) end

29 of 33

Event-Driven Design in Eiffel (3)

EaSaRNDE

0oL oF B

1 class CURRENT_CONDITIONS

2 | create make

3 | feature - Initialization

4 make (wd: WEATHER_DATA)

5 do

6 wd.change_on_temperature.subscribe (agent update_ temperature)
7 wd.change_on_humidity.subscribe (agent update humidity)
8 end

9 | feature

10 temperature: REAL

11 humidity: REAL

12 update_temperature (t: REAL) do temperature := t end

13 update_humidity (h: REAL) do humidity := h end

14 display do ... end

15 | end

o retrieves the pointer to cmd and its context object.

° L6~ ’ ... (agent Current.update,temperature)‘

e Contrast L6 with L8-11 in Java class CurrentConditions.
30 of 33

Event-Driven Design in Eiffel (4)

EaSaRNDE

1 |class WEATHER _STATION create make
2 | feature
3 cc: CURRENT_CONDITIONS
4 make
5 do create wd.make (9, 75, 25)
6 create cc.make (wd)
7 wd. set_measurements (15, 60, 30.4)
8 cc.display
9 wd.set_measurements (11, 90, 20)
10 cc.display
11 end
12 | end
L6 invokes

wd.change_on_temperature. subscribe (
agent cc.update_temperature)
L7 invokes
wd.change on _temperature.publish([15])
which in turn invokes ’ cc.update_temperature (15) ‘
310f33

Event-Driven Design: Eiffel vs. Java LASSONDE

e Storing observers/listeners of an event
o Java, in the Event class:

’Hashtable<0bject, MethodHandle> listenersActions; ‘

o Eiffel, in the EVENT class:

actions: LINKED_LIST[PROCEDURE [ARGUMENTS]]

e Creating and passing function pointers
o Java, in the CurrentConditions class constructor:

MethodHandle ut = lookup.findVirtual(
this.getClass (), "updateTemperature",
MethodType.methodType (void.class, double.class));
WeatherData.changeOnTemperature.subscribe (this, ut);

o Eiffel, in the CURRENT_CONDITIONS class construction:

’ wd. change_on_temperature.subscribe (agent updateﬁtemperature)‘

= Eiffel's type system has been better thought-out for design .
32 of 33

Index (1) :AssoNDE

Motivating Problem

First Design: Weather Station
Implementing the First Design (1)
Implementing the First Design (2.1)
Implementing the First Design (2.2)
Implementing the First Design (2.3)
Implementing the First Design (3)

First Design: Good Design?

Observer Pattern: Architecture
Observer Pattern: Weather Station
Implementing the Observer Pattern (1.1)
Implementing the Observer Pattern (1.2)
Implementing the Observer Pattern (2.1)
Ig\gs!aementing the Observer Pattern (2.2)

Index (2) LassoNpE

Implementing the Observer Pattern (2.3)
Implementing the Observer Pattern (2.4)
Implementing the Observer Pattern (3)
Observer Pattern: Limitation? (1)
Observer Pattern: Limitation? (2)
Event-Driven Design (1)

Event-Driven Design (2)

Event-Driven Design: Implementation
Event-Driven Design in Java (1)
Event-Driven Design in Java (2)
Event-Driven Design in Java (3)
Event-Driven Design in Java (4)
Event-Driven Design in Eiffel (1)
Event-Driven Design in Eiffel (2)

34 of 33

Index (3) Sssonee

Event-Driven Design in Eiffel (3)

Event-Driven Design in Eiffel (4)

Event-Driven Design: Eiffel vs. Java

35 of 33

Program Correctness
OO0SC2 Chapter 11

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

\
\

c|c
z|z
mim
D |0
wlwn
==
<lm

LASSONDE

ooooooooooooooooooo

Weak vs. Strong Assertions

¢ Describe each assertion as a set of satisfying value.
x >3 has satisfying values { x | x>3 }={4,5,6,7,... }
X >4 has satisfying values { x | x>4 } ={5,6,7,... }

e An assertion p is stronger than an assertion q |if | p’s set of

satisfying values is a subset of g’s set of satisfying values.

o Logically speaking, p being stronger than g (or, g being weaker

than p) means p = q.

oceg,x>4=x>3

What’s the weakest assertion?

What'’s the strongest assertion?

e In Design by Contract :

[TRUE]
[FALSE]

o A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

o A weaker precondition has more acceptable input values

o A weaker postcondition has more acceptable output values
20f43

Motivating Examples (1)

LASSONDE

ooooooooooooooooooo

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i =1+ 9
ensure
i > 13
end
end

Q: Is i > 3 is too weak or too strong?
A: Too weak
- assertion i > 3 allows value 4 which would fail postcondition.

30f43

LASSONDE

ooooooooooooooooooo

Motivating Examples (2)

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i:=1+ 9
ensure
i > 13
end
end

Q: Is /i > 5 too weak or too strong?

A: Maybe too strong
- assertion /i > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.
4 0of 43

Software Correctness A

ooooooooooooooooo

e Correctness is a relative notion:

consistency of implementation with respect to specification.
= This assumes there is a specification!

¢ We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : | {Q} s {R}

oeg.,{i>3}i =1+ 9{i>13}

oeg.,{i>5}i :=1i + 9{i>13}

o If @ be proved TRUE, then the S is correct.
eg., {i>5}1 := i + 9 {i>13} can be proved TRUE.

o If cannot be proved TRUE, then the S is incorrect.
eg., {i>3}1 := 1 + 9 {i>13} cannot be proved TRUE.

50f 43

Hoare Logic o

ooooooooooooooooo

e Consider a program S with precondition @ and postcondition R.

o {Q} s {R} is a correctness predicate for program S

o {Q} s {R} is TRUE if program S starts executing in a state
satisfying the precondition Q, and then:
(a) The program S terminates.

(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

e Separation of concerns
(a) requires a proof of termination .
(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

6 of 43

LASSONDE

ooooooooooooooooo

Hoare Logic and Software Correctness

Consider the contract view of a feature f (whose body of

implementation is S) as a | Hoare Triple |:

{Q} s {R}

Qs the precondition of f.
S is the implementation of f.
Ris the postcondition of f.
o {true} s {R}

All input values are valid
o {false} s {R}

All input values are invalid
o {Q} s {true}

All output values are valid [Most risky for clients; Easiest for suppliers]
o {Q} s {false}

All output values are invalid
o {true} s {true}
All inputs/outputs are valid (No contracts)

[Most-user friendly]

[Most useless for clients]

[Most challenging coding task]

[Least informative]
7 of 43

Proof of Hoare Triple using wp e

ooooooooooooooooo

{@} s {R} = Q= wp(S,R)

e wp(S, R) isthe weakest precondition for S to establish R .
e Scan be:

o Assignments (x := y)

o Alternations (if ... then ... else ... end)

o Sequential compositions (S ; S»)

o Loops (from ... until ... loop ... end)

¢ We will learn how to calculate the wp for the above
programming constructs.

80f43

LASSONDE

ooooooooooooooooo

Hoare Logic A Simple Example

Given {??}n:=n+9{n>13}:

. is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

¢ Any precondition that is equal to or stronger than the wp
(n>4) will result in a correct program.

e.g., {n>5}n:=n+9{n> 13} can be proved TRUE.

¢ Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.

e.g., {n>3}n:=n+9{n> 13} cannot be proved TRUE.

Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n> 13.

9 0f 43

LASSONDE

ooooooooooooooooo

Denoting New and Old Values

In the postcondition , for a program variable x:

o We write to denote its pre-state (old) value.
o We write to denote its post-state (new) value.
Implicitly, in the precondition , all program variables have their
pre-state values.
eg.,{bp>atb := b - a{b=by-a}
¢ Notice that:

o We may choose to write “b” rather than “by” in preconditions
- All variables are pre-state values in preconditions

o We don’t write “by” in program
-+ there might be multiple intermediate values of a variable due to
sequential composition

10 0f 43

LASSONDE

ooooooooooooooooo

wp Rule: Assignments (1)

wp(x := e, R)=R[x:=¢]

R[x := e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

110f43

LASSONDE

ooooooooooooooooo

wp Rule: Assignments (2)

Recall:
{@} s {R} = Q= wp(S.R)

How do we prove {Q} x := e {R}?

{Q} x := e{R} — Q= R[x:=¢€]
—_—
wp(x := e,R)

120f43

wp Rule: Assignments (3) Exercise LASSONDE

ooooooooooooooooo

What is the weakest precondition for a program x := x + 110
establish the postcondition x > xo?
{7} x = x + 1{x>Xx0}

For the above Hoare triple to be TRUE, it must be that
M=>wp(x := x + 1,X>Xp)-

wp(x := x + 1,X>Xp)

= {Rule of Wp: Assignments}
X > Xo[X:=Xp+1]

= {Replacing X by Xo+1}

X0+1 > X0
= {1>0 always true}
True

Any precondition is OK. False is valid but not useful.

wp Rule: Assignments (4) Exercise LASSONDE

ooooooooooooooooo

What is the weakest precondition for a program x := x + 110
establish the postcondition x > x?

{7} x := x + 1{x=23}

For the above Hoare triple to be TRUE, it must be that
?=>wp(x := x + 1,x=23).

wp(x := x + 1,x=23)

= {Rule of Wp: Assignments}
x=23[x:=xp+1]

= {Replacing X by Xo+1}
Xo+1=23

= {arithmetic}
Xg = 22

Any precondition weaker than x = 22 is not OK.

wp Rule: Alternations (1) LASSONDE

ooooooooooooooooo

B = wp(S1, R)
wp(if B then S; else S; end, R)=| A
- B = wp(S,, R)

The wp of an alternation is such that all branches are able to
establish the postcondition R.

wp Rule: Alternations (2) LASSONDE

Recall: {@} s {R} = Q= wp(S,R)
How do we prove that {Q} if B then S; else S; end {R}?

{o}

if B then
{on B} S {R}

else

{for-B} S {R}

end

{r}

{@Q} if B then S; else S, end {R}
{QrnB }Si{R} (@ B) = wp(Sy, R)
| A | A

{Qr-B } S {R} (Qn-B) = wp(S:, R)

LASSONDE

ooooooooooooooooo

wp Rule: Alternations (3) Exercise

Is this program correct?

{x>0ny>0}
if x > y then
bigger := x ; smaller :=y
else
bigger := y ; smaller := x
end
{bigger > smaller}
{(x>0Ay>0)A(x>Yy)}
bigger := x ; smaller :=y
{bigger > smaller}
AN
{(x>0Ay>0)A=(x>Yy)}
bigger := vy ; smaller := x
{bigger > smaller}

17 of 43

LASSONDE

ooooooooooooooooo

wp Rule: Sequential Composition (1)

Wp(S'I 7 827 R) = Wp(S17 Wp(S27 R))

The wp of a sequential composition is such that the |first phase

establishes the wp for the ’ second phase ‘ to establish the
postcondition R.

18 of 43

LASSONDE

ooooooooooooooooo

wp Rule: Sequential Composition (2)

Recall:
{@Q} s{R} = Q= wp(S,R)

How do we prove {Q} Sy ; S {R}?

{@Q}S1 i S2{R} < Q= wp(Ss, wp(Sz, R))

wp(Sy ; S, R)

19 0f 43

ooooooooooooooooo

Is{ True } tmp := x; x := vy; y := tmp{ x>y } correct?
If and only if True = wp(tmp := x ; x =y ; y := tmp, X> V)
wp(tmp := x ; |x =y ; y := tmp|, X>Yy)

= {wp rule for seg. comp.}

wp(tmp := x, wp(x := vy ; ,x>y))
= {wp rule for seg. comp.}

wp(tmp := x, wp(x := y, wp(y := tmp,X>)))
= {wp rule for assignment}

wp(tmp := x, wp(x := y,[x]|>tmp))

= {wp rule for assignment}

wp(tmp := x, y>)

= {wp rule for assignment}
y>x
-+ True = y > x does not hold in general.

.. The above program is not correct.
20 of 43

Loops e Correctness of Loops o

ooooooooooooooooo

How do we prove that the following loops are correct?

¢ Aloop is a way to compute a certain result by successive éQ}
. . rom
approximations. S {s 0}
) : f : init
e.g. computing the maximum value of an array of integers ““gll while (- B) |
S
 Loops are needed and powerful 1o§p) e
. bod
« But loops very hard to get right: end (R)
o Infinite loops [termination] "
o “off-by-one” error [partial correctness |
o Improper handling of borderline cases [partial correctness] ¢ In case of C/Java, denotes the stay condition.
o Not establishing the desired condition [partial correctness]

« In case of Eiffel, | B| denotes the exit condition.
There is native, syntactic support for checking/proving the

total correctness of loops.

210f43 23 of 43

Loops: Binary Search LASSONDE Contracts for Loops: Syntax

ooooooooooooooooo LASSONDE

ooooooooooooooooo

o = s ound 5= 4 implementations for
e e binary search: published,
’ but wrong!

, it from
elsei x then
e und = tru Sinit

end invariant
i =) enc

invariant_tag: | -- Boolean expression for partial correc

until
B

BS3 I BS4 loop
o Shody
variant
variant_tag: vV — Integer expression for term
! ’ else end

See page 381 in Object Oriented
false ‘ Software Construction

22 0f 43 24 of 43

EaSaRNDE

Contracts for Loops

¢ Use of loop invariants (LI) and loop variants (LV).

o Invariants: | Boolean | expressions for partial correctness.

o Typically a special case of the postcondition.
e.g., Given postcondition “ Result is maximum of the array ”:

LI can be “ Result is maximum of the part of array scanned so far ”.
o Established before the very first iteration.
« Maintained TRUE after each iteration.
o Variants: expressions for termination

e Denotes the number of iterations remaining

e Decreased at the end of each subsequent iteration

e Maintained non-negative at the end of each iteration.

e As soon as value of LV reaches zero, meaning that no more iterations
remaining, the loop must exit.

e Remember:

total correctness = partial correctness + termination
25 of 43

EaSaRNDE

Contracts for Loops: Runtime Checks (1)

Loop
Invariant
Violation

Loop !
Variant N
Violation N

26 of 43

Contracts for Loops: Runtime Checks (2)

SO

1 | test
2 local
3 i: INTEGER
4 do
5 from
6 i =1
7 invariant
8 1 <=1 and i <= 6
9 until
10 i>5
11 loop
12 io.put_string ("iteration " + i.out + "%N")
13 i =1+ 1
14 variant
15 6 - 1
16 end
17 | end

L8: Changeto 1 <= i and i <= 5 fora Loop Invariant Violation.

L10: Changeto i > 0 to bypass the body of loop.

L15: Changeto 5 - i fora Loop Variant Violation.

27 of 43
Contracts for Loops: Visualization LASSONDE

Exit condition

Previous state

Initialization Invariant Postcondition

/
7
Bod
Body y Body
;
U

\
\

28 0f 43 Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
(o)

Contracts for Loops: Example 1.1 LASSONDE Contracts for Loops: Example 2.1 LASSONDE
find max (a: ARRAY [INTEGER]): INTEGER find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER local i: INTEGER
do do
from from
i := a.lower ; Result := a[i] i := a.lower ; Result := a[i]
invariant invariant
loop_invariant: —- Vj|a.lower<j<i e Result> a[j] loop_invariant: -- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| i as j all Result >= a [j.item] end across a.lower |..| (i - 1) as j all Result >= a [j.item] end
until until
i > a.upper i > a.upper
loop loop
if a [i] > Result then Result := a [i] end if a [i] > Result then Result := a [i] end
i =1+ 1 i =1+ 1
variant variant
loop_variant: a.upper — 1 + 1 loop_variant: a.upper - i
end end
ensure ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j] correct_result: Vj| a.lower < j < a.upper e Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item] across a.lower |..| a.upper as j all Result >= a [j.item]
end end
end end

29 of 43 310f43

Contracts for Loops: Example 1.2 LASSONDE Contracts for Loops: Example 2.2 e
Consider the feature call ’find,max(((20, 10, 40, 30))) ‘ given: Consider the feature call ’find,max(((20, 10, 40, 30))) ‘ given:
e Loop Invariant: V|| a.lower <j<i e Result > a[j] e Loop Invariant: V|| a.lower <j < i e Result > a[j]
e Loop Variant: a.upper — i + 1 e Loop Variant: a.upper — i
H AFTER ITERATION H i ‘ Result H LI ‘ EXIT (i > a.upper)? ‘ Lv H H AFTER ITERATION H i ‘ Result H L ‘ EXIT (i > a.upper)? ‘ Lv H
Initialization 1 20 N x - Initialization 1 20 v x -
1st 2 20 v x 3 1st 2 20 4 X 2
2nd 3 20 x - - 2nd 3 20 v x 1
3rd 4 40 v x 0
Loop invariant violation at the end of the 2nd iteration:
4th 5 40 v v -1

Vj|alower<j<|3|e |20|>a[j
/l wer=J U] Loop variant violation at the end of the 2nd iteration

evaluates to false -- 20 # a[3] = 40 -+ a.upper - i = 4 - 5 evaluates to non-zero.
30 of 43 320f 43

Contracts for Loops: Example 3.1

LASSONDE

ooooooooooooooooo

local i: INTEGER
do
from

invariant

until
i > a.upper
loop

i =1+ 1
variant

end
ensure
correct_result:

end
end

find max (a: ARRAY [INTEGER]) :

across a.lower |..|

i := a.lower ; Result := a[i]

if a [i] > Result then Result

loop_variant: a.upper — 1 + 1

INTEGER

loop_invariant: —- Vj|a.lower<j<i e Result> a[j]
(i -— 1) as j all Result

:= a [1] end

Vj | a.lower < j < a.upper e Result > alj]
a.upper as j all Result >= a [j.item]

across a.lower |..|

>= a [j.item]

end

330f43

Contracts for Loops: Example 3.2

LASSONDE
Consider the feature call ’find,max(((20, 10, 40, 30))) ‘ given:
e Loop Invariant: Vj | a.lower < j<i e Result > a[j]
e Loop Variant: a.upper — i+ 1
e Postcondition : Vj | a.lower < j < a.upper o Result > a[j]
AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X —
1st 2 20 v X 3
2nd 3 20 v X 2
3rd 4 40 v X 1
4th 5 40 v v 0
34 of 43

Contracts for Loops: Exercise LASSONDE

ooooooooooooooooo

class DICTIONARY[V, K]

feature {NONE} - Imp
values: ARRAY[K]
keys: ARRAY K]

feature - Abstraction
model: FUN[K, V]
feature - Queriec

get_keys(v: V): ITERABLE|[K]

local i: INTEGER; ks: LINKED_ LIST[K]
do
from i := keys.lower ; create ks.make_empty

invariant

until 1 > keys.upper

do if values[i] ~ v then ks.extend(keys[i]) end

end

Result := ks.new_cursor
ensure

result valid: VK| Kk eResult e model.item(k) ~ v

nomissing keys: Vk |k e model.domain e model.item(k) ~ v = k € Result
end

5 of 43

Proving Correctness of Loops (1) LASSONDE

ooooooooooooooooo

{0} from
Sinit
invariant
i
until
B
loop

Sbmw
variant

%4
end {R}

o Aloopis partially correct if:
o Given precondition Q, the initialization step Sjy; establishes L/ /.
¢ At the end of Sy, if Not yet to exit, L/ / is maintained.
¢ If ready to exit and L/ | maintained, postcondition R is established.
o Aloop terminates if:
¢ Given LI /, and not yet to exit, Spogy Maintains LV V as non-negative.
e Given LI I, and not yet to exit, Spoq, decrements LV V.

6 of 43

LASSONDE

ooooooooooooooooo

Proving Correctness of Loops (2)

{Q} from Sj;; invariant |/ until B loop Spoqy variant V end {R}

o Aloopis partially correct if:
o Given precondition Q, the initialization step Sj,; establishes L/ /.
o At the end of Spoqy, if Not yet to exit, L/ [is maintained.
| {17 =B} Swoay {1} |
« If ready to exit and L/ | maintained, postcondition R is established.

o Aloop terminates if:

e Given L/ I, and not yet to exit, Spoqy maintains LV V as non-negative.
] {I'A~B} Spoqy {V >0} \

e Given LI I, and not yet to exit, Spoqy decrements LV V.
] {IAn =B} Spogy {V < Vo} \

370f43

Proving Correctness of Loops: Exercise (1.1 '
Prove that the following program is correct:

INTEGER

find max (a: ARRAY [INTEGER]) :
local i: INTEGER
do
from
i := a.lower ; Result := al[i]
invariant
loop_invariant: Vj|a.lower <j<i e Result> a[j]
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant
loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj|a.lower <j< a.upper e Result> a[j]
end
end

e

Proving Correctness of Loops: Exercise (1.2}

Prove that each of the following Hoare Triples is TRUE.
1. Establishment of Loop Invariant:

{ True }
i := a.lower
Result := a[i]

{ Vj|alower<j<ie Result>a[j] }

2. Maintenance of Loop Invariant:

{ (Vj|a.lower <j<i e Result>alj])n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i =1+ 1

{ (Vj|alower<j<i e Result>alj]) }

3. Establishment of Postcondition upon Termination:

(Vj|a.lower <j<i e Result>alj])Ani>a.upper
= V)| a.lower <j< a.upper o Result > a[j]

S——

Proving Correctness of Loops: Exercise (1.3}sono

oooooooooooooooo

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

{ (Vj|alower<j<i e Result>alj|) n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i =1+ 1

{ a.upper-i+1>0 }

5. Loop Variant Keeps Decrementing before Exit:

{ (Vj|alower<j<i e Result>alj]) n-(i > a.upper) }
if a [i] > Result then Result := a [i] end
i:=1+1

{ a.upper-i+1<(aupper-i+1)y }

where (a.upper —i+1)o = a.uppery — ip + 1

40 of 43

Proof Tips (1) LASsONDE

{@Q}s{R}={QAP}s{R}

In order to prove {Q A P} s {R}, it is sufficient to prove a version
with a weaker precondition: {Q} s {R}.

Proof:
o Assume: {Q} s {R}

It's equivalent to assuming: @ = wp(s, R) (A1)
o Toprove: {QA P} s {R}

¢ It's equivalent to proving: Q A P = wp(s, R)

e Assume: Q A P, which implies

o According to (A1), we have wp(s, R). m

41 of 43

Proof Tips (2) Sssonne

When calculating wp(s, R), if either program s or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(s, a[i] > 0), augment it as

wp(s, a.lower < i < a.upper A a[i] > 0)

e.g., Before calculating wp(x := a[il, R), augmentit as

wp(x := alil, a.lower <i<a.uppernR)

42 of 43

Index (1) LassoNpE

Weak vs. Strong Assertions
Motivating Examples (1)
Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness
Proof of Hoare Triple using wp
Hoare Logic: A Simple Example
Denoting New and Old Values

wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise
wp Rule: Assignments (4) Exercise

wp Rule: Alternations (1)
43 of 43

Index (2) :AssoNDE

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise
Loops

Loops: Binary Search

Correctness of Loops

Contracts for Loops: Syntax

Contracts for Loops

Contracts for Loops: Runtime Checks (1)
Contracts for Loops: Runtime Checks (2)
Contracts for Loops: Visualization

(}Pmracts for Loops: Example 1.1

Index (3) LASSONDE What You Learned LASSONDE
Contracts for Loops: Example 1.2 ¢ Design Principles:
o Abstraction [contracts, architecture, math models]

Contracts for Loops: Example 2.1

Think above the code level
Contracts for Loops: Example 2.2

o Information Hiding

Contracts for Loops: Example 3.1 o Single Choice Principle
Contracts for Loops: Example 3.2 o Open-Closed Principle
Contracts for L . E . o Uniform Access Principle
ontracts for Loops: Exercise « Design Patterns:
Proving Correctness of Loops (1) o Singleton
Proving Correctness of Loops (2) o lterator
Proving Correct f Loops: Exercise (1.1 > State
roving Correctness of Loops: Exercise (1.1) o Composite
Proving Correctness of Loops: Exercise (1.2) o Visitor
Proving Correctness of Loops: Exercise (1.3) o Observer
Proof Ti 1 o Event-Driven Design
roof Tips (1) o Undo/Redo, Command [lab 4]
Proof Tips (2) o Model-View-Controller [project]
45 of 43 20f8

Why Java Interfaces Unacceptable ADTs (1) LASSONDE

Interface List<E>
Wrap-Up ‘E - the type of elements in this list'

All Superinterfaces:

Collection<E>, Iterable<E>

All Known Implementing Classes:
AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArraylList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

public interface List<E>
extends Collection<E>

E ECS33 1 1 A: SOftware DeSIQ n ‘An ordered collection (also known as a sequence].’ he user of this interface has precise control over where in the list each element is
Y O R K ' Fa” 20 1 8 nserted. The user can access elements by their integer index (position in the list), and search for elements in the list.
UNIVERSITE CHEN-WEI WANG It is useful to have:
UNIVERSITY

e A generic collection class where the homogeneous type of
elements are parameterized as E.

¢ A reasonably intuitive overview of the ADT.

30f8 Java 8 List API

e
Why Java Interfaces Unacceptable ADTs (2) L

SSONDE
Methods described in a natural language can be ambiguous:
E set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation).)

Parameters:

index - index of the element to replace

element - element to be stored at the specified position
Returns:

the element previously at the specified position

Throws:

UnsupportedOperationException - if the set operation is not supported by this list
ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOfBoundsException - if the index is out of range (index < @ || index >= slze[)))

40f8

Why Eiffel Contract Views are ADTs (1)

class interface ARRAYED CONTAINER
feature)
assign_at (i:

5 Ane

g

SRy

INTEGER; s: STRING)

e At position 747 fo 7af
1e at position “i’ to ’s’.

-— L
require
valid index: 1 <= 1 and 1 <= count
ensure
size_unchanged:
imp.count = (old imp.twin) .count
item _assigned:
imp [i] ~ s
others_unchanged:
across
1 |..| imp.count as j
all
j.item /= i implies imp [j.item] ~ (old imp.twin) [j.item]
end
count: INTEGER
invariant
consistency:
end —- class Al

50f8

Why Eiffel Contract Views are ADTs (2) e

Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

[ARRAYED_CONTAINER b

feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position 'i' to 's'.

require
validjnde

ensure
size_unchanged: imp.count = (old imp.twin).count
item_assigned: imp[il =5
others_unchanged@j : 1 <j<imp.count : j #i=>imp[j] ~ (old imp.twin) Li])

feature -- { NONE }
-- Implementation of an arrayed-container
imp: ARRAY[STRING]

invariant
consistency: imp.count = count

.
e

Beyond this course... (1) LASSONDE

e How do | program in a language not supporting DbC natively?
o Document your contracts (e.g., JavaDoc)
o But, it’s critical to ensure (manually) that contracts are in sync
with your latest implementations.
o Incorporate contracts into your Unit and Regression tests
e How do | program in a language without a math library ?
o Again, before diving into coding, always start by
thinking above the code level .
o Plan ahead how you intend for your system to behaviour at
runtime, in terms of interactions among mathematical objects .

o Use efficient data structures to support the math operations.
e SEQ refined to ARRAY Or LINKED_LIST
e FUN refined to HASH_TABLE
e REL refined to a graph
o Document your code with contracts specified in terms of the
math models.
708 Test!

Beyond this course. .. (2) LASSONDE

Software Fundamentals
Collected Papers by
David L. Parnas e Software fundamentals:
collected papers by David L.
Parnas
¢ Design Techniques:

o Tabular Expressions
o Information Hiding

