
Wrap-Up

EECS3311 A: Software Design
Fall 2018

CHEN-WEI WANG

What You Learned
● Design Principles:○ Abstraction [contracts, architecture, math models]

Think above the code level○ Information Hiding○ Single Choice Principle○ Open-Closed Principle○ Uniform Access Principle● Design Patterns:○ Singleton○ Iterator○ State○ Composite○ Visitor○ Observer○ Event-Driven Design○ Undo/Redo, Command [lab 4]○ Model-View-Controller [project]
2 of 8

Why Java Interfaces Unacceptable ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.● A reasonably intuitive overview of the ADT.
Java 8 List API

3 of 8

Why Java Interfaces Unacceptable ADTs (2)
Methods described in a natural language can be ambiguous:

4 of 8

Why Eiffel Contract Views are ADTs (1)
class interface ARRAYED_CONTAINER

feature -- Commands

assign_at (i: INTEGER; s: STRING)
-- Change the value at position ’i’ to ’s’.

require
valid_index: 1 <= i and i <= count

ensure
size_unchanged:

imp.count = (old imp.twin).count
item_assigned:

imp [i] ∼ s

others_unchanged:

across
1 |..| imp.count as j

all
j.item /= i implies imp [j.item] ∼ (old imp.twin) [j.item]

end
count: INTEGER

invariant
consistency: imp.count = count

end -- class ARRAYED_CONTAINER

5 of 8

Why Eiffel Contract Views are ADTs (2)
Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

6 of 8

Beyond this course. . . (1)
● How do I program in a language not supporting DbC natively?○ Document your contracts (e.g., JavaDoc)○ But, it’s critical to ensure (manually) that contracts are in sync

with your latest implementations.○ Incorporate contracts into your Unit and Regression tests
● How do I program in a language without a math library ?○ Again, before diving into coding, always start by

thinking above the code level .○ Plan ahead how you intend for your system to behaviour at
runtime, in terms of interactions among mathematical objects .○ Use efficient data structures to support the math operations.● SEQ refined to ARRAY or LINKED LIST● FUN refined to HASH TABLE● REL refined to a graph○ Document your code with contracts specified in terms of the
math models.○ Test!7 of 8

Beyond this course. . . (2)

● Software fundamentals:
collected papers by David L.
Parnas

● Design Techniques:○ Tabular Expressions○ Information Hiding

8 of 8

