Abstractions via Mathematical Models

EECS3311 A: Software Design

YORK ' Fall 2018
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Motivating Problem: Complete Contracts  Jssono:

ooooooooooooooooo

¢ Recall what we learned in the Complete Contracts lecture:

o In post-condition , for each attribute , specify the relationship
between its pre-state value and its posi-state value.

o Use the old keyword to refer to posi-state values of expressions.

o For a composite-structured attribute (e.g., arrays, linked-lists,
hash-tables, etc.), we should specify that after the update:

1. The intended change is present; and
2. The rest of the structure is unchanged .

e Let’s now revisit this technique by specifying a L/IFO stack.
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Motivating Problem: LIFO Stack (1)

¢ Let’s consider three different implementation strategies:

Arra Linked List
Stack Feature v
Strategy 1 Strategy 2 ‘ Strategy 3
count imp.count
top imp[imp.count] imp.first imp.last
push(g) imp.force(g, imp.count + 1) | imp.put_font(g) | imp.extend(g)
imp.list.remove_tail (1) list.start imp.finish
pop . .

list.remove imp.remove

¢ Given that all strategies are meant for implementing the same
ADT, will they have identical contracts?
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Motivating Problem: LIFO Stack (2.1) LASSONDE
class LIFO STACK[G] create make
feature {NONE} Strategy 1: array
imp: ARRAY[G]
feature —— Initialization
make do create imp.make_empty ensure imp.count = 0 end
feature Commands
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ~ g
unchanged: across 1 |..| count - 1 as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end
end
pop
do imp.remove_tail(l)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end
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Motivating Problem: LIFO Stack (2.2) LASSONDE

ooooooooooooooooo

class LIFO STACK[G] create make
feature {NONE } St
imp: LINKED_LIST[G]

trategy 2: linked-list first item as tor

feature - Initialization
make do create imp.make ensure imp.count = 0 end
feature Con 1ds
push(g: G)
do imp.put_front (g)
ensure

changed: imp.first ~ g
unchanged: across 2 |..| count as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end

end
pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1

unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item + 1] end
end
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Motivating Problem: LIFO Stack (2.3) LASSONDE

ooooooooooooooooo

class LIFO STACK[G] create make
feature {NONE } S

Sstrategy 3: linked-list last item as
imp: LINKED_LIST[G]

feature - Initialization
make do create imp.make ensure imp.count = 0 end

feature Con 1ds
push(g: G)
do imp.extend(qg)
ensure
changed: imp.last ~ g
unchanged: across 1 |..| count - 1 as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end

end
pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1

unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end
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Motivating Problem: LIFO Stack (3)

e Postconditions of all 3 versions of stack are complete .
i.e., Not only the new item is pushed/popped, but also the
remaining part of the stack is unchanged.

¢ But they violate the principle of information hiding :
Changing the secret, internal workings of data structures
should not affect any existing clients.

e How so?
The private attribute imp is referenced in the postconditions ,

exposing the implementation strategy not relevant to clients:
o Top of stack may be’ imp [count ] ‘ ’ imp.first ‘ or’ imp.last ‘

e Remaining part of stack may be’across 1 |..| count - 1‘or

’across 2 |..| count ‘
= Changing the implementation strategy from one to another will
also change the contracts for all features .

roras = This also violates the Single Choice Principle .

Math Models: Command vs Query

o Use MATHMODELS library to create math objects (SET, REL, SEQ).
o State-changing commands: Implement an Abstraction Function

class LIFO STACK[G —-> attached ANY] create make
feature {NONE} - Imp!
imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
model: SEQ[G]

do create Result.make_empty

across Imp as cursor loop Result.append(cursor.item) end
end

o Side-effect-free queries: Write Complete Contracts

class LIFO_STACKI[G -> attached ANY] create make

feature - Abstrac f
model: SEQ[G]
feature Con

push (g: G)
ensure model ~ (old model.deep_twin) .appended(g) end
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Implementing an Abstraction Function (1) L

class LIFO_STACK[G —> attached ANY] create make
feature {NONE} - Implem t
imp: ARRAY[G]
feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_from.array (imp)

ategy

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Co ds
make do create imp.make_empty ensure model.count = 0 end

push (g: G) do imp.force(g, imp.count + 1)

‘ ensure pushed: model ~ (old model.deep_-twin) .appended(g) end ‘
‘ pop do imp.remove_tail (1) ‘
‘ ensure popped: model ~ (old model.deep_-twin).front end ‘
| |

Abstracting ADTs as Math Models (1) L’égsésom

‘push(g: G)’ feature of LIFO_STACK ADT

[ public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction
JSunction

abstraction
Sfunction

imp: ARRAY[G]

e | Strategy 1| Abstraction function : Convert the implementation
array to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

convert the current array
into a math sequence

convert the current array
into a math sequence

old imp: ARRAY[G]

private/hidden (implementor’s view)

imp.force(g, imp.count + 1)

’ model ~ (old model.deep_twin) .appended(qg) ‘
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Implementing an Abstraction Function (2) LSSONDE

class LIFO_STACK[G —-> attached ANY] create make

feature {NONE} - Impl! ategy 2 2s top)
imp: LINKED LIST[G]
feature Abstraction tion of the stack

model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.prepend(cursor.item) end

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result([i.item] ~ imp[count - i.item + 1]
end
feature - C S
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.put_front (g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.start ; imp.remove
‘ ensure popped: model ~ (old model.deep-twin).front end ‘
’ end ‘
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Abstracting ADTs as Math Models (2) L’égsésom

‘push(g: G)’ feature of LIFO_STACK ADT
[ public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction | convert the current liked list
Sfunction into a math sequence

convert the current linked list | abstraction

into a math sequence Sfunction
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
prlvate/hldden (implementor’s view)

Strategy 2| Abstraction function : Convert the /mp/ementat/on

list (first item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

imp.put_front(g)

’ model ~ (old model.deep_twin) .appended(qg) ‘
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Implementing an Abstraction Function (3)

class LIFO_STACK[G —-> attached ANY] create make

feature {NONE} - Implementation Strategy 3 (last as top)
imp: LINKED LIST[G]
feature Abstraction »f the

model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Com ds
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.extend(g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.finish ; imp.remove
‘ ensure popped: model ~ (old model.deep-twin).front end ‘
’ end ‘
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Abstracting ADTs as Math Models (3) LASSOND

‘push(g: G)’ feature of LIFO_STACK ADT
[ public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current linked list | abstraction

into a math sequence function
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
private/hidden (implementor’s view)
L

o | Strategy 3| Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

abstraction | convert the current liked list
Sfunction into a math sequence

imp.extend(g)

’ model ~ (old model.deep_twin) .appended(qg) ‘
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Solution: Abstracting ADTs as Math Models ssonoe

e Writing contracts in terms of implementation attributes (arrays,
LLs, hash tables, efc.) violates information hiding principle.

¢ Instead:
o For each ADT, create an abstraction via a mathematical model.
e.g., Abstract a LIFO_STACK as a mathematical .
o For each ADT, define an abstraction function (i.e., a query
whose return type is a kind of mathematical model.
e.g., Convert implementation array to mathematical sequence
o Write contracts in terms of the abstract math model.
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.
o Upon changing the implementation:
¢ No change on what the abstraction is, hence no change on contracts.
e Only change how the abstraction is constructed, hence changes on
the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
= The Single Choice Principle is obeyed.
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Math Review: Set Definitions and Membershifo.:

e A set is a collection of objects.

o Objects in a set are called its elements or members.

o Order in which elements are arranged does not matter.

o An element can appear at most once in the set.

We may define a set using:

o Set Enumeration: Explicitly list all members in a set.

e.g., {1,3,5,7,9}

o Set Comprehension: Implicitly specify the condition that all
members satisfy.
eg., {x|1<x<10Ax is an odd number}

An empty set (denoted as {} or @) has no members.

We may check if an element is a member of a set:
e.g.,5¢{1,3,5,7,9} [true]
eg.,4¢{x|x<1<10,x is an odd number} [true]

e The number of elements in a set is called its cardinality.

e.9.,12]=0,[{x|x<1<10,x is an odd number}|=5
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Math Review: Set Relations

LASSONDE

ooooooooooooooooo

Given two sets Sy and S:
e S, is a subset of S, if every member of S; is a member of S,.

S1€8S = (Vx e xeSy=>x€8p)

e S; and S, are equal iff they are the subset of each other.

S1=Sg <~ 51932/\82981

e S, is a proper subset of S, if it is a strictly smaller subset.

SicS, « S cSn|S1<|S2

LASSONDE

ooooooooooooooooo

Math Review: Set Operations

Given two sets Sy and S:
e Union of Sy and S, is a set whose members are in either.

S1U82={X|XES1VX€SQ}

¢ Intersection of S; and S, is a set whose members are in both.

S1ﬁSg={X|XES1/\X€SQ}

e Difference of S; and S, is a set whose members are in S; but

not So.
S1\82={X|XES1/\X¢82}

S——

Math Review: Power Sets

LASSONDE

ooooooooooooooooo

The power set of a set Sis a set of all S’ subsets.

P(S)={s|sc S}

The power set contains subsets of cardinalities 0, 1, 2, ..., |S|.

e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

z,

{1}, {2}, {3},
{1.2}, {2,3}, {3,1},
{1,2,3}

S———

LASSONDE

ooooooooooooooooo

Math Review: Set of Tuples

Given nsets Sy, Sy, ..., Sp, @ cross product of theses sets is
a set of n-tuples.
Each n-tuple (eq, e, ..., €en) contains n elements, each of

which a member of the corresponding set.

SixSox--xSp={(e1,6€2,...,en) | €eSian1<i<n}

e.g., {a b} x{2,4} x {$,&} is a set of triples:

{a,b} x {2,4} x {$,&}
{(e1,e2,€3) | ere{abfrerec{2,4f nese{$,&} }
{(a,2,%),(a,2,&),(a,4,9%),(a,4,&),
(b,2,%$),(b,2,&),(b,4,%),(b,4,&)}

E—



Math Models: Relations (1) o

ooooooooooooooooo

e A relation is a collection of mappings, each being an ordered
pair that maps a member of set S to a member of set T.
e.g.,,Say S={1,2,3}and T = {a, b}

o @ is an empty relation.

o Sx T is arelation (say r1) that maps from each member of S to
each memberin T: {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

o {(x,y):SxT|x=+1}isarelation (say r.) that maps only some
members in S to every member in T: {(2,a),(2,b),(3,a),(3,b)}.

¢ Given a relation r:

o Domain of r is the set of S members that r maps from.

dom(r)={s:S|(3te(s,t)er)}
e.g., dom(ry) = {1,2,3}, dom(rz) = {2,3}
o Range of ris the set of T members that r maps to.
ran(r)={t: T | (3se(s,t)er)}

e.g., ran(ry) = {@, b} =ran(rz)
21 of 35

Math Models: Relations (2)

ooooooooooooooooo

¢ We use the power set operator to express the set of all possible
relations on Sand T:
P(SxT)

¢ To declare a relation variable r, we use the colon (:) symbol to

mean set membership:

r:P(SxT)

¢ Or alternatively, we write:
r:S< T

where the set S <> T is synonymous to the set P(Sx T)
22 of 35
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Math Models: Relations (3.1)

ooooooooooooooooo

Say r={(a1),(b,2),(c.3),(a4).(b,5),(c.6),(d,1),(e,2),(,3)}
o [r.domain|: set of first-elements from r

o rdomain={d|(d,r)er}
o e.g., r.domain = {a,b,c,d,e,f}

. : set of second-elements from r
orrange={r|(d,r)er}
o e.g., rrange = {1,2,3,4,5,6}

« [rinversel: a relation like r except elements are in reverse order
o rinverse = { (r,d)|(d,r)er}
o e.g., rinverse = {(1,a), (2,b), (3,¢), (4,a), (5 b), (6,¢),(1,d),(2,e), (3,1}
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Math Models: Relations (3.2)

ooooooooooooooooo

Say r={(a,1).(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
r.domain_restricted(ds) ‘: sub-relation of r with domain ds.

o r.domain_restricted(ds) = { (d,r) | (d,r)erndeds}

o e.g., r.domain_restricted({a, b}) = {(a, 1), (b,2),(a,4), (b,5)}
r.domain_subtracted(ds) ‘: sub-relation of r with domain not ds.
o r.domain_subtracted(ds) = { (d,r) | (d,r)ernd¢ds}

o e.g., r.domain_subtracted({a, b}) = {(c,6),(d,1),(e,2),(f,3)}
r.range_restricted(rs) ‘: sub-relation of r with range rs.

o rrrange_restricted(rs) = { (d,r) | (d,r)erarers}

o e.g., r.range restricted({1, 2}) = {(a,1),(b,2),(d,1),(e,2)}
r.range_subtracted(ds) \: sub-relation of r with range not ds.

o rrrange_subtracted(rs) = { (d,r) | (d,r)eranr¢rs}
o e.g., r.range_subtracted({1, 2}) = {(c,3),(a.4),(b,5),(c,6)}
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]
Math Models: Relations (3.3)

ooooooooooooooooo

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
. : a relation which agrees on r outside domain of

t.domain, and agrees on t within domain of t.domain
o r.overridden(t) = { u r.domain_subtracted(t.domain)

[e]

r.overridden({(a,3),(c,4)})

{(a,3), (074)}U{(b72t)7 (b,5),(d,1),(e,2),(f,3)}

t r.domain_subtracted(f.domain)
[ —
{a,c}

{(a,3),(c,4),(b,2),(b,5),(d,1),(e;2),(f,3)}
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Math Review: Functions (1)

LASSONDE

ooooooooooooooooo

A function fon sets Sand T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T.

VSis;t12T;t21TO(S,t1)€f/\(S,t2)Ef=>t1=t2

e.g., Say S={1,2,3} and T = {a, b}, which of the following
relations are also functions?

o SxT [No]
o (SxT)-{(x,y) | (x,¥)eSxTArx=1} [No]
° {(1,a),(2,b),(3,a)} [Yes]
° {(1,a),(2,0)} [Yes]
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Math Review: Functions (2)

LASSONDE

ooooooooooooooooo

e We use sef comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

(r:SeT|
(VSIS;HIT;tg:TO(S,t1)EI‘/\(S,t2)EI’=>t1 =t2)}

e This set (of possible functions) is a subset of the set (of
possible relations): P(Sx T) and S« T.

¢ We abbreviate this set of possible functions as S — T and use it
to declare a function variable f:

f:S-T
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LASSONDE

ooooooooooooooooo

Math Review: Functions (3.1)

Given a function f: S— T:
e fis injective (or an injection) if f does not map a member of S
to more than one members of T.
f is injective «—
(VS1 :8;8:5;t: TO(S1,t)EI’/\(32,t)€I’:>S1 232)

e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

e fis surjective (or a surjection) if f maps to all members of T.

f is surjective <= ran(f)=T

e fis bijective (or a bijection) if f is both injective and surjective.
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Math Review: Functions (3.2)

LASSONDE

ooooooooooooooooo

X Y
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Command

Query

domain_restrict
domain_restrict_ by

domain_subtract
domain_subtract. by

domain_restricted
domain_restricted by

domain_subtracted
domain_subtracted by

range_restrict
range_restrict_by

range_subtract
range_subtract by

range_restricted
range_restricted._by

range_subtracted
range_subtracted._by

override
override_by

overridden
overridden_by

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f3)}
e Commands modify the context relation objects.

| £ domain restrict ({a}) | changes r to {(a.1),(a,4)}
e Queries return new relations without modifying context objects.

’ r.domain_ restricted ({a}) ‘ returns {(a,1),(a,4)} with r untouched
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Math Models: Example Test

EOSONDE
test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]
do
create r.make from tuple_array (
<<["a", 11, ["b", 2], ["c", 31,
("a", 41, ["b", 5], ["c", 6],
[lldll, 1]’ [lleH’ 2], ["fll, 3]>>)
create ds.make from array (<<"a">>)
—-— r 1s not ci ged by the query ‘domain_subtrac
t := r.domain _subtracted (ds)
Result :=
t /~ r and not t.domain.has ("a") and r.domain.has ("a")
check Result end
-— r 1s changed by the command ‘domain_subtract’
r.domain_subtract (ds)
Result :=
t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
end
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LASSONDE

ooooooooooooooooo

Beyond this lecture ...

Familiarize yourself with the features of classes REL and SET
for the exam.
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