Abstractions via Mathematical Models

EECS3311 A: Software Design

YORK ' Fall 2018

CHEN-WEI WANG

cic
z|z
=
<Im

\
\

mim
D |
wlwn

Motivating Problem: Complete Contracts Jssono:

ooooooooooooooooo

¢ Recall what we learned in the Complete Contracts lecture:

o In post-condition , for each attribute , specify the relationship
between its pre-state value and its posi-state value.

o Use the old keyword to refer to posi-state values of expressions.

o For a composite-structured attribute (e.g., arrays, linked-lists,
hash-tables, etc.), we should specify that after the update:

1. The intended change is present; and
2. The rest of the structure is unchanged .

e Let’s now revisit this technique by specifying a L/IFO stack.

20f35

Motivating Problem: LIFO Stack (1)

¢ Let’s consider three different implementation strategies:

Arra Linked List
Stack Feature v
Strategy 1 Strategy 2 ‘ Strategy 3
count imp.count
top imp[imp.count] imp.first imp.last
push(g) imp.force(g, imp.count + 1) | imp.put_font(g) | imp.extend(g)
imp.list.remove_tail (1) list.start imp.finish
pop . .

list.remove imp.remove

¢ Given that all strategies are meant for implementing the same
ADT, will they have identical contracts?

30f35

Motivating Problem: LIFO Stack (2.1) LASSONDE
class LIFO STACK[G] create make
feature {NONE} Strategy 1: array
imp: ARRAY[G]
feature —— Initialization
make do create imp.make_empty ensure imp.count = 0 end
feature Commands
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ~ g
unchanged: across 1 |..| count - 1 as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end
end
pop
do imp.remove_tail(l)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end

4 0of 35

Motivating Problem: LIFO Stack (2.2) LASSONDE

ooooooooooooooooo

class LIFO STACK[G] create make
feature {NONE } St
imp: LINKED_LIST[G]

trategy 2: linked-list first item as tor

feature - Initialization
make do create imp.make ensure imp.count = 0 end
feature Con 1ds
push(g: G)
do imp.put_front (g)
ensure

changed: imp.first ~ g
unchanged: across 2 |..| count as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end

end
pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1

unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item + 1] end
end

50f35

Motivating Problem: LIFO Stack (2.3) LASSONDE

ooooooooooooooooo

class LIFO STACK[G] create make
feature {NONE } S

Sstrategy 3: linked-list last item as
imp: LINKED_LIST[G]

feature - Initialization
make do create imp.make ensure imp.count = 0 end

feature Con 1ds
push(g: G)
do imp.extend(qg)
ensure
changed: imp.last ~ g
unchanged: across 1 |..| count - 1 as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end

end
pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1

unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end

6 of 35

Motivating Problem: LIFO Stack (3)

e Postconditions of all 3 versions of stack are complete .
i.e., Not only the new item is pushed/popped, but also the
remaining part of the stack is unchanged.

¢ But they violate the principle of information hiding :
Changing the secret, internal workings of data structures
should not affect any existing clients.

e How so?
The private attribute imp is referenced in the postconditions ,

exposing the implementation strategy not relevant to clients:
o Top of stack may be’ imp [count] ‘ ’ imp.first ‘ or’ imp.last ‘

e Remaining part of stack may be’across 1 |..| count - 1‘or

’across 2 |..| count ‘
= Changing the implementation strategy from one to another will
also change the contracts for all features .

roras = This also violates the Single Choice Principle .

Math Models: Command vs Query

o Use MATHMODELS library to create math objects (SET, REL, SEQ).
o State-changing commands: Implement an Abstraction Function

class LIFO STACK[G —-> attached ANY] create make
feature {NONE} - Imp!
imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
model: SEQ[G]

do create Result.make_empty

across Imp as cursor loop Result.append(cursor.item) end
end

o Side-effect-free queries: Write Complete Contracts

class LIFO_STACKI[G -> attached ANY] create make

feature - Abstrac f
model: SEQ[G]
feature Con

push (g: G)
ensure model ~ (old model.deep_twin) .appended(g) end

8of 35

Implementing an Abstraction Function (1) L

class LIFO_STACK[G —> attached ANY] create make
feature {NONE} - Implem t
imp: ARRAY[G]
feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_from.array (imp)

ategy

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Co ds
make do create imp.make_empty ensure model.count = 0 end

push (g: G) do imp.force(g, imp.count + 1)

‘ ensure pushed: model ~ (old model.deep_-twin) .appended(g) end ‘
‘ pop do imp.remove_tail (1) ‘
‘ ensure popped: model ~ (old model.deep_-twin).front end ‘
| |

Abstracting ADTs as Math Models (1) L’égsésom

‘push(g: G)’ feature of LIFO_STACK ADT

[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction
JSunction

abstraction
Sfunction

imp: ARRAY[G]

e | Strategy 1| Abstraction function : Convert the implementation
array to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

convert the current array
into a math sequence

convert the current array
into a math sequence

old imp: ARRAY[G]

private/hidden (implementor’s view)

imp.force(g, imp.count + 1)

’ model ~ (old model.deep_twin) .appended(qg) ‘

10 of 35

Implementing an Abstraction Function (2) LSSONDE

class LIFO_STACK[G —-> attached ANY] create make

feature {NONE} - Impl! ategy 2 2s top)
imp: LINKED LIST[G]
feature Abstraction tion of the stack

model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.prepend(cursor.item) end

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result([i.item] ~ imp[count - i.item + 1]
end
feature - C S
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.put_front (g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.start ; imp.remove
‘ ensure popped: model ~ (old model.deep-twin).front end ‘
’ end ‘

110f 35

Abstracting ADTs as Math Models (2) L’égsésom

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction | convert the current liked list
Sfunction into a math sequence

convert the current linked list | abstraction

into a math sequence Sfunction
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
prlvate/hldden (implementor’s view)

Strategy 2| Abstraction function : Convert the /mp/ementat/on

list (first item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

imp.put_front(g)

’ model ~ (old model.deep_twin) .appended(qg) ‘

120f 35

EaSaRNDE

Implementing an Abstraction Function (3)

class LIFO_STACK[G —-> attached ANY] create make

feature {NONE} - Implementation Strategy 3 (last as top)
imp: LINKED LIST[G]
feature Abstraction »f the

model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Com ds
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.extend(g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.finish ; imp.remove
‘ ensure popped: model ~ (old model.deep-twin).front end ‘
’ end ‘

13 0f 35

Abstracting ADTs as Math Models (3) LASSOND

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current linked list | abstraction

into a math sequence function
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
private/hidden (implementor’s view)
L

o | Strategy 3| Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

abstraction | convert the current liked list
Sfunction into a math sequence

imp.extend(g)

’ model ~ (old model.deep_twin) .appended(qg) ‘

14 of 35

Solution: Abstracting ADTs as Math Models ssonoe

e Writing contracts in terms of implementation attributes (arrays,
LLs, hash tables, efc.) violates information hiding principle.

¢ Instead:
o For each ADT, create an abstraction via a mathematical model.
e.g., Abstract a LIFO_STACK as a mathematical .
o For each ADT, define an abstraction function (i.e., a query
whose return type is a kind of mathematical model.
e.g., Convert implementation array to mathematical sequence
o Write contracts in terms of the abstract math model.
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.
o Upon changing the implementation:
¢ No change on what the abstraction is, hence no change on contracts.
e Only change how the abstraction is constructed, hence changes on
the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
= The Single Choice Principle is obeyed.

150f 35

Math Review: Set Definitions and Membershifo.:

e A set is a collection of objects.

o Objects in a set are called its elements or members.

o Order in which elements are arranged does not matter.

o An element can appear at most once in the set.

We may define a set using:

o Set Enumeration: Explicitly list all members in a set.

e.g., {1,3,5,7,9}

o Set Comprehension: Implicitly specify the condition that all
members satisfy.
eg., {x|1<x<10Ax is an odd number}

An empty set (denoted as {} or @) has no members.

We may check if an element is a member of a set:
e.g.,5¢{1,3,5,7,9} [true]
eg.,4¢{x|x<1<10,x is an odd number} [true]

e The number of elements in a set is called its cardinality.

e.9.,12]=0,[{x|x<1<10,x is an odd number}|=5
16 of 35

Math Review: Set Relations

LASSONDE

ooooooooooooooooo

Given two sets Sy and S:
e S, is a subset of S, if every member of S; is a member of S,.

S1€8S = (Vx e xeSy=>x€8p)

e S; and S, are equal iff they are the subset of each other.

S1=Sg <~ 51932/\82981

e S, is a proper subset of S, if it is a strictly smaller subset.

SicS, « S cSn|S1<|S2

LASSONDE

ooooooooooooooooo

Math Review: Set Operations

Given two sets Sy and S:
e Union of Sy and S, is a set whose members are in either.

S1U82={X|XES1VX€SQ}

¢ Intersection of S; and S, is a set whose members are in both.

S1ﬁSg={X|XES1/\X€SQ}

e Difference of S; and S, is a set whose members are in S; but

not So.
S1\82={X|XES1/\X¢82}

S——

Math Review: Power Sets

LASSONDE

ooooooooooooooooo

The power set of a set Sis a set of all S’ subsets.

P(S)={s|sc S}

The power set contains subsets of cardinalities 0, 1, 2, ..., |S|.

e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

z,

{1}, {2}, {3},
{1.2}, {2,3}, {3,1},
{1,2,3}

S———

LASSONDE

ooooooooooooooooo

Math Review: Set of Tuples

Given nsets Sy, Sy, ..., Sp, @ cross product of theses sets is
a set of n-tuples.
Each n-tuple (eq, e, ..., €en) contains n elements, each of

which a member of the corresponding set.

SixSox--xSp={(e1,6€2,...,en) | €eSian1<i<n}

e.g., {a b} x{2,4} x {$,&} is a set of triples:

{a,b} x {2,4} x {$,&}
{(e1,e2,€3) | ere{abfrerec{2,4f nese{$,&} }
{(a,2,%),(a,2,&),(a,4,9%),(a,4,&),
(b,2,%$),(b,2,&),(b,4,%),(b,4,&)}

E—

Math Models: Relations (1) o

ooooooooooooooooo

e A relation is a collection of mappings, each being an ordered
pair that maps a member of set S to a member of set T.
e.g.,,Say S={1,2,3}and T = {a, b}

o @ is an empty relation.

o Sx T is arelation (say r1) that maps from each member of S to
each memberin T: {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

o {(x,y):SxT|x=+1}isarelation (say r.) that maps only some
members in S to every member in T: {(2,a),(2,b),(3,a),(3,b)}.

¢ Given a relation r:

o Domain of r is the set of S members that r maps from.

dom(r)={s:S|(3te(s,t)er)}
e.g., dom(ry) = {1,2,3}, dom(rz) = {2,3}
o Range of ris the set of T members that r maps to.
ran(r)={t: T | (3se(s,t)er)}

e.g., ran(ry) = {@, b} =ran(rz)
21 of 35

Math Models: Relations (2)

ooooooooooooooooo

¢ We use the power set operator to express the set of all possible
relations on Sand T:
P(SxT)

¢ To declare a relation variable r, we use the colon (:) symbol to

mean set membership:

r:P(SxT)

¢ Or alternatively, we write:
r:S< T

where the set S <> T is synonymous to the set P(Sx T)
22 of 35

]
Math Models: Relations (3.1)

ooooooooooooooooo

Say r={(a1),(b,2),(c.3),(a4).(b,5),(c.6),(d,1),(e,2),(,3)}
o [r.domain|: set of first-elements from r

o rdomain={d|(d,r)er}
o e.g., r.domain = {a,b,c,d,e,f}

. : set of second-elements from r
orrange={r|(d,r)er}
o e.g., rrange = {1,2,3,4,5,6}

« [rinversel: a relation like r except elements are in reverse order
o rinverse = { (r,d)|(d,r)er}
o e.g., rinverse = {(1,a), (2,b), (3,¢), (4,a), (5 b), (6,¢),(1,d),(2,e), (3,1}

23 of 35

Math Models: Relations (3.2)

ooooooooooooooooo

Say r={(a,1).(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
r.domain_restricted(ds) ‘: sub-relation of r with domain ds.

o r.domain_restricted(ds) = { (d,r) | (d,r)erndeds}

o e.g., r.domain_restricted({a, b}) = {(a, 1), (b,2),(a,4), (b,5)}
r.domain_subtracted(ds) ‘: sub-relation of r with domain not ds.
o r.domain_subtracted(ds) = { (d,r) | (d,r)ernd¢ds}

o e.g., r.domain_subtracted({a, b}) = {(c,6),(d,1),(e,2),(f,3)}
r.range_restricted(rs) ‘: sub-relation of r with range rs.

o rrrange_restricted(rs) = { (d,r) | (d,r)erarers}

o e.g., r.range restricted({1, 2}) = {(a,1),(b,2),(d,1),(e,2)}
r.range_subtracted(ds) \: sub-relation of r with range not ds.

o rrrange_subtracted(rs) = { (d,r) | (d,r)eranr¢rs}
o e.g., r.range_subtracted({1, 2}) = {(c,3),(a.4),(b,5),(c,6)}

24 of 35

]
Math Models: Relations (3.3)

ooooooooooooooooo

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
. : a relation which agrees on r outside domain of

t.domain, and agrees on t within domain of t.domain
o r.overridden(t) = { u r.domain_subtracted(t.domain)

[e]

r.overridden({(a,3),(c,4)})

{(a,3), (074)}U{(b72t)7 (b,5),(d,1),(e,2),(f,3)}

t r.domain_subtracted(f.domain)
[—
{a,c}

{(a,3),(c,4),(b,2),(b,5),(d,1),(e;2),(f,3)}

25 of 35

Math Review: Functions (1)

LASSONDE

ooooooooooooooooo

A function fon sets Sand T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T.

VSis;t12T;t21TO(S,t1)€f/\(S,t2)Ef=>t1=t2

e.g., Say S={1,2,3} and T = {a, b}, which of the following
relations are also functions?

o SxT [No]
o (SxT)-{(x,y) | (x,¥)eSxTArx=1} [No]
° {(1,a),(2,b),(3,a)} [Yes]
° {(1,a),(2,0)} [Yes]

26 of 35

Math Review: Functions (2)

LASSONDE

ooooooooooooooooo

e We use sef comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

(r:SeT|
(VSIS;HIT;tg:TO(S,t1)EI‘/\(S,t2)EI’=>t1 =t2)}

e This set (of possible functions) is a subset of the set (of
possible relations): P(Sx T) and S« T.

¢ We abbreviate this set of possible functions as S — T and use it
to declare a function variable f:

f:S-T

27 of 35

LASSONDE

ooooooooooooooooo

Math Review: Functions (3.1)

Given a function f: S— T:
e fis injective (or an injection) if f does not map a member of S
to more than one members of T.
f is injective «—
(VS1 :8;8:5;t: TO(S1,t)EI’/\(32,t)€I’:>S1 232)

e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

e fis surjective (or a surjection) if f maps to all members of T.

f is surjective <= ran(f)=T

e fis bijective (or a bijection) if f is both injective and surjective.
28 of 35

Math Review: Functions (3.2)

LASSONDE

ooooooooooooooooo

X Y

X Y
1 D
2 B
3 .o
4

29 of 35

X

<

/]
> 0 w O

ooooooooooooooooo

Command

Query

domain_restrict
domain_restrict_ by

domain_subtract
domain_subtract. by

domain_restricted
domain_restricted by

domain_subtracted
domain_subtracted by

range_restrict
range_restrict_by

range_subtract
range_subtract by

range_restricted
range_restricted._by

range_subtracted
range_subtracted._by

override
override_by

overridden
overridden_by

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f3)}
e Commands modify the context relation objects.

| £ domain restrict ({a}) | changes r to {(a.1),(a,4)}
e Queries return new relations without modifying context objects.

’ r.domain_ restricted ({a}) ‘ returns {(a,1),(a,4)} with r untouched
30 of 35

Math Models: Example Test

EOSONDE
test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]
do
create r.make from tuple_array (
<<["a", 11, ["b", 2], ["c", 31,
("a", 41, ["b", 5], ["c", 6],
[lldll, 1]’ [lleH’ 2], ["fll, 3]>>)
create ds.make from array (<<"a">>)
—-— r 1s not ci ged by the query ‘domain_subtrac
t := r.domain _subtracted (ds)
Result :=
t /~ r and not t.domain.has ("a") and r.domain.has ("a")
check Result end
-— r 1s changed by the command ‘domain_subtract’
r.domain_subtract (ds)
Result :=
t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
end
31 of 35

LASSONDE

ooooooooooooooooo

Beyond this lecture ...

Familiarize yourself with the features of classes REL and SET
for the exam.

320f 35

Index (1) Lassonoe Index (3) Lassonoe
Motivating Problem: Complete Contracts Math Models: Command-Query Separation

Motivating Problem: LIFO Stack (1)
Motivating Problem: LIFO Stack (2.1)
Motivating Problem: LIFO Stack (2.2)
Motivating Problem: LIFO Stack (2.3)
Motivating Problem: LIFO Stack (3)

Math Models: Command vs Query
Implementing an Abstraction Function (1)
Abstracting ADTs as Math Models (1)
Implementing an Abstraction Function (2)
Abstracting ADTs as Math Models (2)
Implementing an Abstraction Function (3)
Abstracting ADTs as Math Models (3)
Solution: Abstracting ADTs as Math Models

33 of 35 35 of 35

Math Models: Example Test

Beyond this lecture ...

Index (2) :AssoNDE

Math Review:
Math Review:
Math Review:
Math Review:
Math Review:
Math Models:
Math Models:
Math Models:
Math Models:
Math Models:
Math Review:
Math Review:
Math Review:
Math Review:

34 of 35

Set Definitions and Membership
Set Relations
Set Operations
Power Sets
Set of Tuples
Relations (1)
Relations (2)
Relations (3.1)
Relations (3.2)
Relations (3.3)
Functions (1)
Functions (2)
Functions (3.1)
Functions (3.2)

