Motivating Problem (2)

ooooooooooooooooooo

Extend the composite pattern to support operations such as

. . evaluate, pretty printing (print prefix, print_postfix),
The Visitor Design Pattern and type_check.

(EXPERSSION* COMPOSITE*]

value: INTEGER e/‘t right: EXPRESSION
evaluate*

print_prefix*
print_postfix*

EECS3311 A: Software Design Qe chec

YORK ' Fall 2018

UNIVERSITE CHEN-WEI WANG
UNITVERSITY (CONSTANT+ (apprront)
evaluate+ {valuate+
print_prefix+ print_prefix+
print_postfix+ print_postfix+
type_check+ type_check+
30f13
Motivating Problem (1) o Problems of Extended Composite Pattern Jssono:

Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions
(e.q., 341, 2, 341 + 2). ¢ Distributing the various unrelated operations across nodes of

the abstract syntax tree violates the single-choice principle :
(EXPERSSION*] (COMPOSITE*] . .
—NTEGER To add/delete/modify an operation
V“ e = Change of all descendants of EXPRESSION

e Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.
= Confusing to mix codes for evaluation, pretty printing, and type
checking.
= We want to avoid “polluting” the classes with these various

1

[left right: EXPRESSION

(CONSTANT+ ADDITION+ unrelated operations.

T)

20f13

40f13

LASSONDE

ooooooooooooooooo

Open/Closed Principle

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

= When extending the behaviour of a system, we:

o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.

e.g., In designing the application of an expression language:
o Alternative 1:
Syntactic constructs of the language may be closed, whereas
operations on the language may be open.
o Alternative 2:
Syntactic constructs of the language may be open, whereas
operations on the language may be closed.

50f13

Visitor Pattern LASSONDE

ooooooooooooooooo

e Separation of concerns

o Set of language constructs
o Set of operations

= Classes from these two sets are decoupled and organized
into two separate clusters.

e Open-Closed Principle (OCP) :

o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations

= OCP helps us determine if Visitor Pattern is applicable .

= If it was decided that language constructs are open and
operations are closed, then do not use Visitor Pattern.

60f13

Visitor Pattern: Architecture

LASSONDE
ooooooooooooooooooo
s YRR PGP | L L L L.
EXPERSSION* NS
e (vemoe)
accept(v: VISITOR)* ! H visit_constant(c: CONSTANT)*
cowpositer)1 ! visit_addition(a: ADDITION)*
lef,right: EXPRESSION. | !
1 [constant+) (_apbpmons) I EVALUATOR+) (erertv.eRiNtER+ | [TYPE CHECKER+)

1| visit_constant(c: CONSTANT)+ visit_constant(c: CONSTANT)+| visit_constant(c: CONSTANT)+| |
accept(v: VISITOR)+|

1 |accept(v: vISITOR)+ visit_addition(a: ADDITION)+ visit_addition(a: ADDITION)+ visit_addition(a: ADDITION)+ | |

70f13

ooooooooooooooooo

Cluster expression_language
o Declare deferred feature] accept (v: VISITOR) \in EXPRSSION.

o Implement accept feature in each of the descendant classes.

class CONSTANT inherit EXPRESSION

accept (v: VISITOR)
do
v.visit_ constant (Current)
end
end

class ADDITION
inherit EXPRESSION COMPOSITE

accept (v: VISITOR)
do
v.visit_ addition (Current)
end
end

8 of 13

ooooooooooooooooo

Cluster expression_operations
o For each descendant class C of EXPRESSION, declare a deferred

feature in the deferred class VISITOR.

deferred class VISITOR
visit_constant (c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end
end

o Each descendant of vISITOR denotes a kind of operation.

’class EVALUATOR inherit VISITOR ‘

| : INTEGER |
visit_constant (c: CONSTANT) do 1= c.value end

visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)
a.right.accept (eval_right)

:= eval_left.value + eval_right.value

end
end

9 of 13

Testing the Visitor Pattern LASSONDE

ooooooooooooooooo

test_expression_evaluation: BOOLEAN
local add, cl, c2: EXPRESSION ; v: VISITOR
do
create {CONSTANT} cl.make (1) ; create {CONSTANT} c2.make (2)
create {ADDITION} add.make (cl, c2)
create {EVALUATOR} v.make
| add.accept (v) |
check attached {EVALUATOR} v as eval then
Result := eval.value = 3
end
end

00w NOoOOO~wWN =

—_

Double Dispatch in Line 7:

1. DT of add is apprrron = Call accept in apprrron

v.visit_addition (add)

2. DT of vis evarvaror = Call visit_addition in Evaruaror
’visiting result of add.left ‘ + ’ visiting result of add. right ‘

100f 13

LASSONDE

To Use or Not to Use the Visitor Pattern ssonce

¢ In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?

o Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | C_CODE_GENERATOR] of VISITOR,
then implement how to handle each language element in that class.
= Single Choice Principle is obeyed.

o Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSTON,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new ’ visitmultiplication ‘operation.

= Single Choice Principle is violated.
e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations applied to structure change often.

= Do not use visitor if the structure change often.
11 0of 13

Beyond this Lecture. .. LASSONDE

ooooooooooooooooo

Learn about implementing the Composite and Visitor Patterns,
from scratch, in this tutorial series:

https://www.youtube.com/playlist?list=PL5dxAmCmjv__
475eXCGW-7ZBgsS2WZTyBHY?2

120f13

Index (1) Lassonoe
Motivating Problem (1)

Motivating Problem (2)

Problems of Extended Composite Pattern
Open/Closed Principle

Visitor Pattern

Visitor Pattern: Architecture

Visitor Pattern Implementation: Structures
Visitor Pattern Implementation: Operations
Testing the Visitor Pattern

To Use or Not to Use the Visitor Pattern
Beyond this Lecture. ..

