Motivating Problem (2)
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Extend the composite pattern to support operations such as

. . evaluate, pretty printing (print prefix, print_postfix),
The Visitor Design Pattern and type_check.
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Motivating Problem (1) o Problems of Extended Composite Pattern  Jssono:

Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions
(e.q., 341, 2, 341 + 2). ¢ Distributing the various unrelated operations across nodes of

the abstract syntax tree violates the single-choice principle :
( EXPERSSION* ] ( COMPOSITE* ] . .
—NTEGER To add/delete/modify an operation
V“ e = Change of all descendants of EXPRESSION

e Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.
= Confusing to mix codes for evaluation, pretty printing, and type
checking.
= We want to avoid “polluting” the classes with these various

1

[left right: EXPRESSION

( CONSTANT+ ADDITION+ unrelated operations.

T )
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LASSONDE
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Open/Closed Principle

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

= When extending the behaviour of a system, we:

o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.

e.g., In designing the application of an expression language:
o Alternative 1:
Syntactic constructs of the language may be closed, whereas
operations on the language may be open.
o Alternative 2:
Syntactic constructs of the language may be open, whereas
operations on the language may be closed.
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Visitor Pattern LASSONDE

ooooooooooooooooo

e Separation of concerns

o Set of language constructs
o Set of operations

= Classes from these two sets are decoupled and organized
into two separate clusters.

e Open-Closed Principle (OCP) :

o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations

= OCP helps us determine if Visitor Pattern is applicable .

= If it was decided that language constructs are open and
operations are closed, then do not use Visitor Pattern.
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Visitor Pattern: Architecture

LASSONDE
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Cluster expression_language
o Declare deferred feature ] accept (v: VISITOR) \in EXPRSSION.

o Implement accept feature in each of the descendant classes.

class CONSTANT inherit EXPRESSION

accept (v: VISITOR)
do
v.visit_ constant (Current)
end
end

class ADDITION
inherit EXPRESSION COMPOSITE

accept (v: VISITOR)
do
v.visit_ addition (Current)
end
end
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Cluster expression_operations
o For each descendant class C of EXPRESSION, declare a deferred

feature in the deferred class VISITOR.

deferred class VISITOR
visit_constant (c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end
end

o Each descendant of vISITOR denotes a kind of operation.

’class EVALUATOR inherit VISITOR ‘

| : INTEGER |
visit_constant (c: CONSTANT) do 1= c.value end

visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)
a.right.accept (eval_right)

:= eval_left.value + eval_right.value

end
end
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Testing the Visitor Pattern LASSONDE

ooooooooooooooooo

test_expression_evaluation: BOOLEAN
local add, cl, c2: EXPRESSION ; v: VISITOR
do
create {CONSTANT} cl.make (1) ; create {CONSTANT} c2.make (2)
create {ADDITION} add.make (cl, c2)
create {EVALUATOR} v.make
| add.accept (v) |
check attached {EVALUATOR} v as eval then
Result := eval.value = 3
end
end
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Double Dispatch in Line 7:

1. DT of add is apprrron = Call accept in apprrron

v.visit_addition (add)

2. DT of vis evarvaror = Call visit_addition in Evaruaror
’visiting result of add.left ‘ + ’ visiting result of add. right ‘
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To Use or Not to Use the Visitor Pattern  ssonce

¢ In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?

o Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | C_CODE_GENERATOR ] of VISITOR,
then implement how to handle each language element in that class.
= Single Choice Principle is obeyed.

o Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSTON,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new ’ visitmultiplication ‘operation.

= Single Choice Principle is violated.
e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations applied to structure change often.

= Do not use visitor if the structure change often.
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Beyond this Lecture. .. LASSONDE

ooooooooooooooooo

Learn about implementing the Composite and Visitor Patterns,
from scratch, in this tutorial series:

https://www.youtube.com/playlist?list=PL5dxAmCmjv__
475eXCGW-7ZBgsS2WZTyBHY?2
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