The Composite Design Pattern

EECS3311 A: Software Design

' Fall 2018

CHEN-WEI WANG

YORK

UNI
U NI

mim
D |
wlwn
==
<Im

LASSONDE

ooooooooooooooooo

Motivating Problem (1)

¢ Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.
e.g., A computer system is composed of:
« Individual pieces of equipment (hard drives, cd-rom drives)
Each equipment has properties : e.g., power consumption and cost.
e Composites such as cabinets, busses, and chassis
Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

¢ Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

2of21

Motivating Problem (2)

Design for free structures with whole-part hierarchies.

CABINET

CHASSIS

POWER SUPPLY

o

DVD-CDROM

CHASSIS

CARD HARD_DRIVE

Challenge : There are base and recursive modelling artifacts.

3of21

ooooooooooooooooo

A class may have two more parent classes.
address

pay_taxes

SWISS™
TAXPAYER

address w, Swiss_address
tax_id ~, swiss_tax_id
pay_taxes n, pay_swiss_taxes

UsS
TAXPAYER
address w, USs_address
WISS US>
TAXPAYER

tax_id ~, us_tax_id
pay_taxes n, pay_us_taxes
o Features not renamed along the inheritance paths will be shared.
[e.g., age]
o Features renamed along the inheritance paths will be replicated.
[e.g., tax_id, address, pay-taxes]
Exercise: Design the class for a smart watch, both a watch and an
; activity tracker.

4o0f 2

MI: Combining Abstractions (1) LASSONDE MI: Combining Abstractions (2) LASSONDE
A: Separating Graphical features and Hierarchical features

" class RECTANGLE
feature Queries
MPARABLE ; RE,
width, height: REAL| |C13Ss TREE[G]
feature —— Queries

: REAL
Xpos, ypos parent: TREE[G]

feature nands
make (w, h: REAL) descendants LIS:[D[TREE[G]]

. feature —— C«¢
change_width add_child (c: TREE[G])
change_height
end
move
end
class WINDOW test_window: BOOLEAN
. . local wil, w2, w3, w4: WINDOW
inherit do
ﬁ;ﬁiﬁgom create wl.make(8, 6) ; create w2.make (4, 3)
feature create w3.make(l, 1) ; create w4.make(1l, 1)
dd (w: WINDOW) w2.add(w4) ; wl.add(w2) ; wl.add(w3)
@ v Result := wl.descendants.count = 2
end
end
MI: Combining Abstractions (2.1) LASSONDE MI: Name Clashes LASSONDE

Q: How do you design class(es) for nested windows?

foo OO

In class ¢, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window
6 of 21 8 of 21

MI: ReSOIVing Name Clashes LASSONDE

foo

rename foo as zoo

rename foo as fog

class C o.foo | o.fog | 0.z00
inherit
A rename foo as fog end o: A v X a
B rename foo as zoo end o: B v X X
o C X v v
9 of 21

Solution: The Composite Pattern LASSONDE

ooooooooooooooooo

J : Categorize into base artifacts or recursive artifacts.

Build a tree structure representing the whole-part hierarchy .

* [Runtime |
Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

J

= | Polymorphism |: leafs and nodes are “substitutable”.

= | Dynamic Binding |: Different versions of the same

operation is applied on individual objects and composites.
e.g., Given|e: EQUIPMENT |:
o may return the unit price of a DTSk DRIVE.

o |e.price|may sum prices of a cHasIs’ containing equipments.
10 of 21

Composite Architecture: Design (1.1) LASSONDE

ooooooooooooooooo

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

children: LIST[...]

+
@ COMPOSITE_
EQUIPMENT

~do

Composite Architecture: Design (1.2) LASSONDE
The client uses Class EQUIPMENT defines an interface for all
abstract class objects in the composition: both the composite

EQUIPMENT to and leaf nodes.
manipulate objects May implement default behavior for add(child)
in the composition. etc.
price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

£
EQUIPMENT

A leaf has no children.—>

Class

children: LIST[...] COMPOSITE ‘s
role is (a)
implement leaf
related ops
such as price
and (b) to
define
component
behaviour such
as storing a
child.

+
COMPOSITE_
EQUIPMENT

Note that the leaf also
inherits features like
children and add that
don’ t necessarily make

all that sense for a leaf
node.

CHASSIS

ASSONDE

ooooooooooooooooo

—

Composite Architecture: Design (1.3)

Q: Any flaw of this first design?
A: Two “composite” features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]
© add(child: EQUIPMENT)

= Inherited to all base equipments (e.g., HARD_DRIVE) that do
not apply to such features.

13 of 21

LASSONDE

ooooooooooooooooo

COMPOSITE_
EQUIPMENT

Composite Architecture: Design (2.1)

14 of 21

Composite Architecture: Design (2.2)

LASSONDE
Put the tree behavior
such as adding a child
Put the price & and list of children
power consumption here where it is needed
behavior here l
@ e # children: LIST[...]
———»{_EQUIPMENT /
1 :
/ COMPOSITE
DS IDIRIYE EQUIPMENT
CABINET @X@ @
15 of 21
Implementing the Composite Pattern (1) LASSONDE

deferred class

EQUIPMENT
feature

name: STRING

price: REAL uniform access principle
end

class
CARD
inherit
EQUIPMENT
feature
make (n: STRING; p: REAL)
do
name := n
price := p —- price is an attribute
end
end

16 of 21

Implementing the Composite Pattern (2.1)

LASSONDE

ooooooooooooooooo

deferred class
COMPOSITE[T]

feature
children: LINKED_ LIST|[T]

add (c: T)
do
children.extend (c) —-- Polymorphism
end
end

Exercise: Make the COMPOSITE class iterable.

17 of 21

Implementing the Composite Pattern (2.2)

LASSONDE

ooooooooooooooooo

class
COMPOSITE _EQUIPMENT
inherit
EQUIPMENT
COMPOSITE [EQUIPMENT]
create
make
feature
make (n: STRING)
do name := n ; create children.make end
price : REAL —— p 2]

Sum the ne

do
across
children as cursor
loop
Result := Result + cursor.item.price -- dynamic binding
end
end
end

18 of 21

LASSONDE

ooooooooooooooooo

Testing the Composite Pattern

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET —— hold
chassis: CHASSIS ——
bus: BUS holds a
do
create {CARD} card.make("l6Mbs Token Ring", 200)
create {DISK DRIVE} drive.make("500 GB harddrive", 500)
create bus.make ("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)

chassis.add(bus)

chassis.add(drive)

cabinet.add(chassis)

Result := cabinet.price = 700
end

19 of 21

Index (1) :ASSONDE

Motivating Problem (1)

Motivating Problem (2)

Multiple Inheritance: Sharing vs. Replication
MI: Combining Abstractions (1)

MI: Combining Abstractions (2.1)

MI: Combining Abstractions (2)

MI: Name Clashes

MI: Resolving Name Clashes
Solution: The Composite Pattern
Composite Architecture: Design (1.1)
Composite Architecture: Design (1.2)
Composite Architecture: Design (1.3)
Composite Architecture: Design (2.1)
E(gp;posite Architecture: Design (2.2)

Index (2) LASSONDE
Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

21 of 21

