
Test-Driven Development (TDD)

EECS3311 A: Software Design
Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

DbC: Supplier
DbC is supported natively in Eiffel for supplier:
class ACCOUNT
create

make
feature -- Attributes

owner : STRING
balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive balance: nb > 0

do
owner := nn
balance := nb

end
feature -- Commands

withdraw(amount: INTEGER)
require -- precondition

non negative amount: amount > 0
affordable amount: amount <= balance -- problematic, why?

do
balance := balance - amount

ensure -- postcondition
balance deducted: balance = old balance - amount

end
invariant -- class invariant

positive balance: balance > 0
end

2 of 35

DbC: Contract View of Supplier
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):
class ACCOUNT
create

make
feature -- Attributes

owner : STRING
balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive balance: nb > 0

end
feature -- Commands

withdraw(amount: INTEGER)
require -- precondition

non negative amount: amount > 0
affordable amount: amount <= balance -- problematic, why?

ensure -- postcondition
balance deducted: balance = old balance - amount

end
invariant -- class invariant

positive balance: balance > 0
end

3 of 35

DbC: Testing Precondition Violation (1.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
alan: ACCOUNT

do
-- A precondition violation with tag "positive_balance"
create {ACCOUNT} alan.make ("Alan", -10)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"positive balance").

4 of 35

DbC: Testing for Precondition Violation (1.2)

5 of 35

DbC: Testing for Precondition Violation (2.1)

class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
mark: ACCOUNT

do
create {ACCOUNT} mark.make ("Mark", 100)
-- A precondition violation with tag "non_negative_amount"
mark.withdraw(-1000000)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non negative amount").

6 of 35

DbC: Testing for Precondition Violation (2.2)

7 of 35

DbC: Testing for Precondition Violation (3.1)

class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
tom: ACCOUNT

do
create {ACCOUNT} tom.make ("Tom", 100)
-- A precondition violation with tag "affordable_amount"
tom.withdraw(150)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable amount").

8 of 35

DbC: Testing for Precondition Violation (3.2)

9 of 35

DbC: Testing for Class Invariant Violation (4.1)

class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
jim: ACCOUNT

do
create {ACCOUNT} tom.make ("Jim", 100)
jim.withdraw(100)
-- A class invariant violation with tag "positive_balance"

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance").

10 of 35

DbC: Testing for Class Invariant Violation (4.2)

11 of 35

DbC: Testing for Class Invariant Violation (5.1)

class BANK_APP
inherit ARGUMENTS
create make
feature -- Initialization
make
-- Run application.

local
jeremy: ACCOUNT

do
-- Faulty implementation of withdraw in ACCOUNT:
-- balance := balance + amount
create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy.withdraw(150)
-- A postcondition violation with tag "balance_deducted"

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
"balance deducted").

12 of 35

DbC: Testing for Class Invariant Violation (5.2)

13 of 35

TDD: Test-Driven Development (1)
● How we have tested the software so far:
○ Executed each test case manually (by clicking Run in EStudio).
○ Compared with our eyes if actual results (produced by program)

match expected results (according to requirements).
● Software is subject to numerous revisions before delivery.

⇒ Testing manually, repetitively, is tedious and error-prone.
⇒We need automation in order to be cost-effective.

● Test-Driven Development

○ Test Case :
● normal scenario (expected outcome)
● abnormal scenario (expected contract violation).

○ Test Suite : Collection of test cases.
⇒ A test suite is supposed to measure “correctness” of software.
⇒ The larger the suite, the more confident you are.

14 of 35

TDD: Test-Driven Development (2)
● Start writing tests as soon as your code becomes executable :
○ with a unit of functionality completed
○ or even with headers of your features completed

class STACK[G]
create make
-- No implementation
feature -- Queries
top: G do end

feature -- Commands
make do end
push (v: G) do end
pop do end

end

class TEST_STACK
. . .
test_lifo: BOOLEAN
local s: STACK[STRING]
do create s.make

s.push ("Alan") ; s.push ("Mark")
Result := s.top ∼ "Mark"
check Result end
s.pop
Result := s.top ∼ "Alan"

end
end

● Writing tests should not be an isolated, last-staged activity.
● Tests are a precise, executable form of documentation that

can guide your design.
15 of 35

TDD: Test-Driven Development (3)
● The ESpec (Eiffel Specification) library is a framework for:
○ Writing and accumulating test cases

Each list of relevant test cases is grouped into an ES TEST class,
which is just an Eiffel class that you can execute upon.

○ Executing the test suite whenever software undergoes a change
e.g., a bug fix
e.g., extension of a new functionality

● ESpec tests are helpful client of your classes, which may:
○ Either attempt to use a feature in a legal way (i.e., satisfying its

precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected:

e.g., state of object has not been updated properly
e.g., a postcondition violation or class invariant violation occurs

○ Or attempt to use a feature in an illegal way (e.g., not satisfying
its precondition), and report:
● Success if precondition violation occurs.
● Failure if precondition violation does not occur.

16 of 35

TDD: Test-Driven Development (4)

ESpec
Framework

Elffel Classes
(e.g., ACCOUNT, BANK)

ESpec Test Suite
(e.g., TEST_ACCOUT,

TEST_BANK)

derive (re-)run as
espec test suite

add more tests

fix the Eiffel class under test

when all tests pass

when some test failsextend, maintain

17 of 35

Adding the ESpec Library (1)
Step 1: Go to Project Settings.

18 of 35

Adding the ESpec Library (2)

Step 2: Right click on Libraries to add a library.

19 of 35

Adding the ESpec Library (3)
Step 3: Search for espec and then include it.

This will make two classes available to you:
● ES TEST for adding test cases
● ES SUITE for adding instances of ES TEST.
○ To run, an instance of this class must be set as the root.

20 of 35

ES TEST: Expecting to Succeed (1)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Add tests in constructor
5 make
6 do
7 add boolean case (agent test_valid_withdraw)
8 end
9 feature -- Tests

10 test_valid_withdraw: BOOLEAN
11 local
12 acc: ACCOUNT
13 do
14 comment("test: normal execution of withdraw feature")
15 create {ACCOUNT} acc.make ("Alan", 100)
16 Result := acc.balance = 100
17 check Result end
18 acc.withdraw (20)
19 Result := acc.balance = 80
20 end
21 end

21 of 35

ES TEST: Expecting to Succeed (2)
● L2: A test class is a subclass of ES TEST.
● L10 – 20 define a BOOLEAN test query . At runtime:
○ Success: Return value of test valid withdraw (final value of

variable Result) evaluates to true upon its termination.
○ Failure:
● The return value evaluates to false upon termination; or
● Some contract violation (which is unexpected) occurs.

● L7 calls feature add boolean case from ES TEST, which
expects to take as input a query that returns a Boolean value.
○ We pass query test valid withdraw as an input.
○ Think of the keyword agent acts like a function pointer.
● test invalid withdraw alone denotes its return value
● agent test invalid withdraw denotes address of query

● L14: Each test feature must call comment(. . .) (inherited
from ES TEST) to include the description in test report.

● L17: Check that each intermediate value of Result is true.
22 of 35

ES TEST: Expecting to Succeed (3)
● Why is the check Result end statement at L7 necessary?
○ When there are two or more assertions to make, some of which

(except the last one) may temporarily falsify return value Result.
○ As long as the last assertion assigns true to Result, then the

entire test query is considered as a success.
⇒ A false positive is possible!

● For the sake of demonstrating a false positive, imagine:
○ Constructor make mistakenly deduces 20 from input amount.
○ Command withdraw mistakenly deducts nothing.

1 test_query_giving_false_positive: BOOLEAN
2 local acc: ACCOUNT
3 do comment("Result temporarily false, but finally true.")
4 create {ACCOUNT} acc.make ("Jim", 100) -- balance set as 80
5 Result := acc.balance = 100 -- Result assigned to false
6 acc.withdraw (20) -- balance not deducted
7 Result := acc.balance = 80 -- Result re-assigned to true
8 -- Upon termination, Result being true makes the test query
9 -- considered as a success ==> false positive!

10 end

Fix? [insert check Result end] between L6 and L7.23 of 35

ES TEST: Expecting to Fail Precondition (1)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Add tests in constructor
5 make
6 do
7 add violation case with tag ("non_negative_amount",
8 agent test_withdraw_precondition_violation)
9 end

10 feature -- Tests
11 test_withdraw_precondition_violation
12 local
13 acc: ACCOUNT
14 do
15 comment("test: expected precondition violation of withdraw")
16 create {ACCOUNT} acc.make ("Mark", 100)
17 -- Precondition Violation
18 -- with tag "non_negative_amount" is expected.
19 acc.withdraw (-1000000)
20 end
21 end

24 of 35

ES TEST: Expecting to Fail Precondition (2)
● L2: A test class is a subclass of ES TEST.
● L11 – 20 define a test command . At runtime:
○ Success: A precondition violation (with tag
"non negative amount") occurs at L19 before its termination.

○ Failure:
● No contract violation with the expected tag occurs before its

termination; or
● Some other contract violation (with a different tag) occurs.

● L7 calls feature add violation case with tag from

ES TEST, which expects to take as input a command .
○ We pass command test invalid withdraw as an input.
○ Think of the keyword agent acts like a function pointer.
● test invalid withdraw alone denotes a call to it
● agent test invalid withdraw denotes address of command

● L15: Each test feature must call comment(. . .) (inherited
from ES TEST) to include the description in test report.

25 of 35

ES TEST: Expecting to Fail Postcondition (1)

tests

TEST_ACCOUNT
feature ­­ Test Commands for Contract Violations
 test_withdraw_postcondition_violation
 local
 acc: BAD_ACCOUNT_WITHDRAW
 do
 create acc.make ("Alan", 100)
 ­­ Violation of Postcondition
 ­­ with tag "balance_deduced" expected
 acc.withdraw (50)
 end

acc

BAD_ACCOUNT_WITHDRAW
feature ­­ Redefined Commands
 withdraw (amount: INTEGER) ++
 do
 Precursor (amount)
 ­­ Wrong Implementation
 balance := balance + 2 * amount
 end

ACCOUNT
feature ­­ Commands
 withdraw (amount: INTEGER)
 require
 non_negative_amount: amount > 0
 affordable_amount: amount ≤ balance
 do
 balance := balance ­ amount
 ensure
 balance_deduced: balance = old balance ­ amount
 end

model

26 of 35

ES TEST: Expecting to Fail Postcondition (2.1)
1 class
2 BAD_ACCOUNT_WITHDRAW
3 inherit
4 ACCOUNT
5 redefine withdraw end
6 create
7 make
8 feature -- redefined commands
9 withdraw(amount: INTEGER)

10 do
11 Precursor(amount)
12 -- Wrong implementation
13 balance := balance + 2 * amount
14 end
15 end

○ L3–5: BAD ACCOUNT WITHDRAW.withdraw inherits postcondition
from ACCOUNT.withdraw: balance = old balance - amount.

○ L11 calls correct implementation from parent class ACCOUNT.
○ L13 makes overall implementation incorrect .

27 of 35

ES TEST: Expecting to Fail Postcondition (2.2)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Constructor for adding tests
5 make
6 do
7 add violation case with tag ("balance_deducted",
8 agent test_withdraw_postcondition_violation)
9 end

10 feature -- Test commands (test to fail)
11 test_withdraw_postcondition_violation
12 local
13 acc: BAD_ACCOUNT_WITHDRAW
14 do
15 comment ("test: expected postcondition violation of withdraw")
16 create acc.make ("Alan", 100)
17 -- Postcondition Violation with tag "balance_deduced" to occur.
18 acc.withdraw (50)
19 end
20 end

●
28 of 35

Exercise
Recall from the “Writing Complete Postconditions” lecture:
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
do . . . -- Put Correct Implementation Here.
ensure
. . .

others unchanged :

across old accounts.deep twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end

How do you create a “bad” descendant of BANK that violates
this postcondition?
class BAD_BANK_DEPOSIT
inherit BANK redefine deposit end
feature -- redefined feature
deposit_on_v5 (n: STRING; a: INTEGER)
do Precursor (n, a)

accounts[accounts.lower].deposit(a)
end

end

29 of 35

ES SUITE: Collecting Test Classes

1 class TEST_SUITE
2 inherit ES SUITE
3 create make
4 feature -- Constructor for adding test classes
5 make
6 do
7 add test (create {TEST_ACCOUNT}.make)
8 show_browser
9 run_espec

10 end
11 end

● L2: A test suite is a subclass of ES SUITE.
● L7 passes an anonymous object of type TEST ACCOUNT to
add test inherited from ES SUITE).

● L8 & L9 have to be entered in this order!
30 of 35

Running ES SUITE (1)
Step 1: Change the root class (i.e., entry point of execution) to be
TEST SUITE.

31 of 35

Running ES SUITE (2)

Step 2: Run the Workbench System.

32 of 35

Running ES SUITE (3)

Step 3: See the generated test report.

33 of 35

Beyond this lecture...

● Study this tutorial series on DbC and TDD:
https://www.youtube.com/playlist?list=PL5dxAmCmjv_

6r5VfzCQ5bTznoDDgh__KS

34 of 35

https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS

Index (1)
DbC: Supplier
DbC: Contract View of Supplier
DbC: Testing for Precondition Violation (1.1)
DbC: Testing for Precondition Violation (1.2)
DbC: Testing for Precondition Violation (2.1)
DbC: Testing for Precondition Violation (2.2)
DbC: Testing for Precondition Violation (3.1)
DbC: Testing for Precondition Violation (3.2)
DbC: Testing for Class Invariant Violation (4.1)
DbC: Testing for Class Invariant Violation (4.2)
DbC: Testing for Class Invariant Violation (5.1)
DbC: Testing for Class Invariant Violation (5.2)
TDD: Test-Driven Development (1)
TDD: Test-Driven Development (2)

35 of 35

Index (2)
TDD: Test-Driven Development (3)
TDD: Test-Driven Development (4)
Adding the ESpec Library (1)
Adding the ESpec Library (2)
Adding the ESpec Library (3)
ES TEST: Expecting to Succeed (1)
ES TEST: Expecting to Succeed (2)
ES TEST: Expecting to Succeed (3)
ES TEST: Expecting to Fail Precondition (1)
ES TEST: Expecting to Fail Precondition (2)
ES TEST: Expecting to Fail Postcondition (1)
ES TEST: Expecting to Fail Postcondition (2.1)
ES TEST: Expecting to Fail Postcondition (2.2)
Exercise

36 of 35

Index (3)
ES SUITE: Collecting Test Classes

Running ES SUITE (1)

Running ES SUITE (2)

Running ES SUITE (3)

Beyond this lecture...

37 of 35

	DbC: Supplier
	DbC: Contract View of Supplier
	DbC: Testing for Precondition Violation (1.1)
	DbC: Testing for Precondition Violation (1.2)
	DbC: Testing for Precondition Violation (2.1)
	DbC: Testing for Precondition Violation (2.2)
	DbC: Testing for Precondition Violation (3.1)
	DbC: Testing for Precondition Violation (3.2)
	DbC: Testing for Class Invariant Violation (4.1)
	DbC: Testing for Class Invariant Violation (4.2)
	DbC: Testing for Class Invariant Violation (5.1)
	DbC: Testing for Class Invariant Violation (5.2)
	TDD: Test-Driven Development (1)
	TDD: Test-Driven Development (2)
	TDD: Test-Driven Development (3)
	TDD: Test-Driven Development (4)
	Adding the ESpec Library (1)
	Adding the ESpec Library (2)
	Adding the ESpec Library (3)
	ES_TEST: Expecting to Succeed (1)
	ES_TEST: Expecting to Succeed (2)
	ES_TEST: Expecting to Succeed (3)
	ES_TEST: Expecting to Fail Precondition (1)
	ES_TEST: Expecting to Fail Precondition (2)
	ES_TEST: Expecting to Fail Postcondition (1)
	ES_TEST: Expecting to Fail Postcondition (2.1)
	ES_TEST: Expecting to Fail Postcondition (2.2)
	Exercise
	ES_SUITE: Collecting Test Classes
	Running ES_SUITE (1)
	Running ES_SUITE (2)
	Running ES_SUITE (3)
	Beyond this lecture...

