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DbC: Supplier
DbC is supported natively in Eiffel for supplier:
class ACCOUNT
create

make
feature -- Attributes

owner : STRING
balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive balance: nb > 0

do
owner := nn
balance := nb

end
feature -- Commands

withdraw(amount: INTEGER)
require -- precondition

non negative amount: amount > 0
affordable amount: amount <= balance -- problematic, why?

do
balance := balance - amount

ensure -- postcondition
balance deducted: balance = old balance - amount

end
invariant -- class invariant

positive balance: balance > 0
end
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DbC: Contract View of Supplier
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):
class ACCOUNT
create

make
feature -- Attributes

owner : STRING
balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive balance: nb > 0

end
feature -- Commands

withdraw(amount: INTEGER)
require -- precondition

non negative amount: amount > 0
affordable amount: amount <= balance -- problematic, why?

ensure -- postcondition
balance deducted: balance = old balance - amount

end
invariant -- class invariant

positive balance: balance > 0
end
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DbC: Testing Precondition Violation (1.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
alan: ACCOUNT

do
-- A precondition violation with tag "positive_balance"
create {ACCOUNT} alan.make ("Alan", -10)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"positive balance").
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DbC: Testing for Precondition Violation (1.2)
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DbC: Testing for Precondition Violation (2.1)

class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
mark: ACCOUNT

do
create {ACCOUNT} mark.make ("Mark", 100)
-- A precondition violation with tag "non_negative_amount"
mark.withdraw(-1000000)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non negative amount").
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DbC: Testing for Precondition Violation (2.2)
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DbC: Testing for Precondition Violation (3.1)

class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
tom: ACCOUNT

do
create {ACCOUNT} tom.make ("Tom", 100)
-- A precondition violation with tag "affordable_amount"
tom.withdraw(150)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable amount").
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DbC: Testing for Precondition Violation (3.2)
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DbC: Testing for Class Invariant Violation (4.1)

class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
jim: ACCOUNT

do
create {ACCOUNT} tom.make ("Jim", 100)
jim.withdraw(100)
-- A class invariant violation with tag "positive_balance"

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance").
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DbC: Testing for Class Invariant Violation (4.2)
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DbC: Testing for Class Invariant Violation (5.1)

class BANK_APP
inherit ARGUMENTS
create make
feature -- Initialization
make
-- Run application.

local
jeremy: ACCOUNT

do
-- Faulty implementation of withdraw in ACCOUNT:
-- balance := balance + amount
create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy.withdraw(150)
-- A postcondition violation with tag "balance_deducted"

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
"balance deducted").
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DbC: Testing for Class Invariant Violation (5.2)
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TDD: Test-Driven Development (1)
● How we have tested the software so far:
○ Executed each test case manually (by clicking Run in EStudio).
○ Compared with our eyes if actual results (produced by program)

match expected results (according to requirements).
● Software is subject to numerous revisions before delivery.

⇒ Testing manually, repetitively, is tedious and error-prone.
⇒We need automation in order to be cost-effective.

● Test-Driven Development

○ Test Case :
● normal scenario (expected outcome)
● abnormal scenario (expected contract violation).

○ Test Suite : Collection of test cases.
⇒ A test suite is supposed to measure “correctness” of software.
⇒ The larger the suite, the more confident you are.
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TDD: Test-Driven Development (2)
● Start writing tests as soon as your code becomes executable :
○ with a unit of functionality completed
○ or even with headers of your features completed

class STACK[G]
create make
-- No implementation
feature -- Queries
top: G do end

feature -- Commands
make do end
push (v: G) do end
pop do end

end

class TEST_STACK
. . .
test_lifo: BOOLEAN
local s: STACK[STRING]
do create s.make

s.push ("Alan") ; s.push ("Mark")
Result := s.top ∼ "Mark"
check Result end
s.pop
Result := s.top ∼ "Alan"

end
end

● Writing tests should not be an isolated, last-staged activity.
● Tests are a precise, executable form of documentation that

can guide your design.
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TDD: Test-Driven Development (3)
● The ESpec (Eiffel Specification) library is a framework for:
○ Writing and accumulating test cases

Each list of relevant test cases is grouped into an ES TEST class,
which is just an Eiffel class that you can execute upon.

○ Executing the test suite whenever software undergoes a change
e.g., a bug fix
e.g., extension of a new functionality

● ESpec tests are helpful client of your classes, which may:
○ Either attempt to use a feature in a legal way (i.e., satisfying its

precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected:

e.g., state of object has not been updated properly
e.g., a postcondition violation or class invariant violation occurs

○ Or attempt to use a feature in an illegal way (e.g., not satisfying
its precondition), and report:
● Success if precondition violation occurs.
● Failure if precondition violation does not occur.
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TDD: Test-Driven Development (4)

ESpec 
Framework

Elffel Classes
(e.g., ACCOUNT, BANK)

ESpec Test Suite
(e.g., TEST_ACCOUT, 

TEST_BANK)

derive (re-)run as 
espec test suite

add more tests

fix the Eiffel class under test

when all tests pass

when some test failsextend, maintain
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Adding the ESpec Library (1)
Step 1: Go to Project Settings.
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Adding the ESpec Library (2)

Step 2: Right click on Libraries to add a library.
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Adding the ESpec Library (3)
Step 3: Search for espec and then include it.

This will make two classes available to you:
● ES TEST for adding test cases
● ES SUITE for adding instances of ES TEST.
○ To run, an instance of this class must be set as the root.
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ES TEST: Expecting to Succeed (1)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Add tests in constructor
5 make
6 do
7 add boolean case (agent test_valid_withdraw)
8 end
9 feature -- Tests

10 test_valid_withdraw: BOOLEAN
11 local
12 acc: ACCOUNT
13 do
14 comment("test: normal execution of withdraw feature")
15 create {ACCOUNT} acc.make ("Alan", 100)
16 Result := acc.balance = 100
17 check Result end
18 acc.withdraw (20)
19 Result := acc.balance = 80
20 end
21 end
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ES TEST: Expecting to Succeed (2)
● L2: A test class is a subclass of ES TEST.
● L10 – 20 define a BOOLEAN test query . At runtime:
○ Success: Return value of test valid withdraw (final value of

variable Result) evaluates to true upon its termination.
○ Failure:
● The return value evaluates to false upon termination; or
● Some contract violation (which is unexpected ) occurs.

● L7 calls feature add boolean case from ES TEST, which
expects to take as input a query that returns a Boolean value.
○ We pass query test valid withdraw as an input.
○ Think of the keyword agent acts like a function pointer.
● test invalid withdraw alone denotes its return value
● agent test invalid withdraw denotes address of query

● L14: Each test feature must call comment(. . .) (inherited
from ES TEST) to include the description in test report.

● L17: Check that each intermediate value of Result is true.
22 of 35



ES TEST: Expecting to Succeed (3)
● Why is the check Result end statement at L7 necessary?
○ When there are two or more assertions to make, some of which

(except the last one) may temporarily falsify return value Result.
○ As long as the last assertion assigns true to Result, then the

entire test query is considered as a success.
⇒ A false positive is possible!

● For the sake of demonstrating a false positive, imagine:
○ Constructor make mistakenly deduces 20 from input amount.
○ Command withdraw mistakenly deducts nothing.

1 test_query_giving_false_positive: BOOLEAN
2 local acc: ACCOUNT
3 do comment("Result temporarily false, but finally true.")
4 create {ACCOUNT} acc.make ("Jim", 100) -- balance set as 80
5 Result := acc.balance = 100 -- Result assigned to false
6 acc.withdraw (20) -- balance not deducted
7 Result := acc.balance = 80 -- Result re-assigned to true
8 -- Upon termination, Result being true makes the test query
9 -- considered as a success ==> false positive!

10 end

Fix? [ insert check Result end ] between L6 and L7.23 of 35



ES TEST: Expecting to Fail Precondition (1)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Add tests in constructor
5 make
6 do
7 add violation case with tag ("non_negative_amount",
8 agent test_withdraw_precondition_violation)
9 end

10 feature -- Tests
11 test_withdraw_precondition_violation
12 local
13 acc: ACCOUNT
14 do
15 comment("test: expected precondition violation of withdraw")
16 create {ACCOUNT} acc.make ("Mark", 100)
17 -- Precondition Violation
18 -- with tag "non_negative_amount" is expected.
19 acc.withdraw (-1000000)
20 end
21 end
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ES TEST: Expecting to Fail Precondition (2)
● L2: A test class is a subclass of ES TEST.
● L11 – 20 define a test command . At runtime:
○ Success: A precondition violation (with tag
"non negative amount") occurs at L19 before its termination.

○ Failure:
● No contract violation with the expected tag occurs before its

termination; or
● Some other contract violation (with a different tag) occurs.

● L7 calls feature add violation case with tag from

ES TEST, which expects to take as input a command .
○ We pass command test invalid withdraw as an input.
○ Think of the keyword agent acts like a function pointer.
● test invalid withdraw alone denotes a call to it
● agent test invalid withdraw denotes address of command

● L15: Each test feature must call comment(. . .) (inherited
from ES TEST) to include the description in test report.

25 of 35



ES TEST: Expecting to Fail Postcondition (1)

tests

TEST_ACCOUNT
feature ­­ Test Commands for Contract Violations 
  test_withdraw_postcondition_violation 
        local 
            acc: BAD_ACCOUNT_WITHDRAW 
        do 
            create acc.make ("Alan", 100)
            ­­ Violation of Postcondition  
            ­­ with tag "balance_deduced" expected 
            acc.withdraw (50) 
        end 

acc

BAD_ACCOUNT_WITHDRAW
feature ­­ Redefined Commands 
  withdraw (amount: INTEGER) ++ 
        do
            Precursor (amount)
            ­­ Wrong Implementation
            balance := balance + 2 * amount
        end 

ACCOUNT
feature ­­ Commands 
  withdraw (amount: INTEGER) 
        require
            non_negative_amount: amount > 0
            affordable_amount: amount ≤ balance
        do
            balance := balance ­ amount 
        ensure 
              balance_deduced: balance = old balance ­ amount 
        end 

model
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ES TEST: Expecting to Fail Postcondition (2.1)
1 class
2 BAD_ACCOUNT_WITHDRAW
3 inherit
4 ACCOUNT
5 redefine withdraw end
6 create
7 make
8 feature -- redefined commands
9 withdraw(amount: INTEGER)

10 do
11 Precursor(amount)
12 -- Wrong implementation
13 balance := balance + 2 * amount
14 end
15 end

○ L3–5: BAD ACCOUNT WITHDRAW.withdraw inherits postcondition
from ACCOUNT.withdraw: balance = old balance - amount.

○ L11 calls correct implementation from parent class ACCOUNT.
○ L13 makes overall implementation incorrect .
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ES TEST: Expecting to Fail Postcondition (2.2)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Constructor for adding tests
5 make
6 do
7 add violation case with tag ("balance_deducted",
8 agent test_withdraw_postcondition_violation)
9 end

10 feature -- Test commands (test to fail)
11 test_withdraw_postcondition_violation
12 local
13 acc: BAD_ACCOUNT_WITHDRAW
14 do
15 comment ("test: expected postcondition violation of withdraw")
16 create acc.make ("Alan", 100)
17 -- Postcondition Violation with tag "balance_deduced" to occur.
18 acc.withdraw (50)
19 end
20 end

●
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Exercise
Recall from the “Writing Complete Postconditions” lecture:
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
do . . . -- Put Correct Implementation Here.
ensure
. . .

others unchanged :

across old accounts.deep twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end

How do you create a “bad” descendant of BANK that violates
this postcondition?
class BAD_BANK_DEPOSIT
inherit BANK redefine deposit end
feature -- redefined feature
deposit_on_v5 (n: STRING; a: INTEGER)
do Precursor (n, a)

accounts[accounts.lower].deposit(a)
end

end
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ES SUITE: Collecting Test Classes

1 class TEST_SUITE
2 inherit ES SUITE
3 create make
4 feature -- Constructor for adding test classes
5 make
6 do
7 add test (create {TEST_ACCOUNT}.make)
8 show_browser
9 run_espec

10 end
11 end

● L2: A test suite is a subclass of ES SUITE.
● L7 passes an anonymous object of type TEST ACCOUNT to
add test inherited from ES SUITE).

● L8 & L9 have to be entered in this order!
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Running ES SUITE (1)
Step 1: Change the root class (i.e., entry point of execution) to be
TEST SUITE.
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Running ES SUITE (2)

Step 2: Run the Workbench System.
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Running ES SUITE (3)

Step 3: See the generated test report.
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Beyond this lecture...

● Study this tutorial series on DbC and TDD:
https://www.youtube.com/playlist?list=PL5dxAmCmjv_

6r5VfzCQ5bTznoDDgh__KS
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