Test-Driven Development (TDD)

EECS3311 A: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

- =
]
DbC: Supplier LassonDE
DbC is supported natively in Eiffel for supplier:
class ACCOUNT
create
make
feature Attribute
owner : STRING
balance INTEGER
feature Cc I
make (n STRING nb INTEGER)
require n
p051tzve<balance nb > 0
do
owner = nn
balance := nb
feature —— «
w1thdraw(amount INTEGER)
require p.
non.. negatzve amount amount > 0
affordable_amount: amount <= balance problematic,
do
balance := balance - amount
ensure onditic
balance deducted balance = old balance - amount
end
invariant class 1ir an
positive_balanc: balance > 0

end
e

/|

DbC: Contract View of Supplier LassonDE
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the

contract view (without showing any implementation details):

class ACCOUNT
create
make
feature - Attributes
owner : STRING
balance : INTEGER
feature Const
make (nn: STRING nb INTEGER)
require precc
positive_ balance nb > 0

end
feature . ands
w1thdraw(amount INTEGER)
require precondition
non. negatlve amount: amount > 0
affordable_amount: amount <= balance problematic, why?
ensure -—- postc
balance. deducted balance = old balance - amount

invariant —— ass invaria
positive. balance balance > 0
end

e

/|

|

DbC: Testing Precondition Violation (1.1)
The client need not handle all possible contract violations:

class BANK_APP
inherit
ARGUMENTS
create
make
feature - Initialization
make
Run application.
local
alan: ACCOUNT

SSONDE

”

A p1 on violation with tag "positive_ balance
create {ACCOUNT} alan.make ("Alan", -10)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag

"positive balance").
Aof35

DbC: Testing for Precondition Violation (1.2)issono

[|O APPLICATION 33| @ ACCOUNT

20

Feature

P[F sz 0 (el ziel AY A2
“lat view of feature ' make' of class ACCOUNT

w

make (nn: STRING_8; nb: INTEGER_32)

owner
balance :
end

bank ACCOUNT make < & % O %

BEEECK

Status =_Implicit exception pending
E)OWYWFLba\Ean: PRECONDITION_VIOLATION rE\<Pd)

InFesture |InClass |FromClass | @
> make s ACCOUNT C T 1
make 5 APPLICATION A 1

/|

DbC: Testing for Precondition Violation (2. 1)LASSONDE

class BANK_APP
inherit
ARGUMENTS
create
make
feature - Initialization
make
Run application.
local
mark: ACCOUNT
do
create {ACCOUNT} mark make ("Mark" 100)

"non

mark w1thdraw(1000OOO)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non_negative_amount").

e

DbC: Testing for Precondition Violation (2.2)issono

B |O APPLICATION 33| @ ACCOUNT

&0

Feature

B[uzaern

“lat view of feature ~withdraw' of class ACCOUNT

withdraw (amount: INTEGER_32)

re e

B h_negat‘\vefamount: amount >= 0

e affordable_amount: amount <= balance
do

P balance := balance - amount
ensure

5

balance = old balance - amount
5 end

bank ACCOUNT withdraw < » % O %

FEECCERR
Status = Implicit exception pending

{non_negative_amount: PRECONDITION_VIOLATION raised)

InFeature |InClass | FromClass | @
B withdraw < ACCOUNT ACCOUNT 1
make APPLICATION APP \TION|2

/|

DbC: Testing for Precondition Violation (3.1):ssono

class BANK_APP

inherit
ARGUMENTS

create
make

feature - Initialization
make

Run application.

local
tom: ACCOUNT

do

create {ACCOUNT} tom.make ("Tom", 100)

A n v lation with tag "a

tom.withdraw(150)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable_amount").

e

DbC: Testing for Precondition Violation (3.2)ussono

(B

@|F e 3= 3@ o 22
Flat view of feature " withdraw' of class ACCOUNT

® 0

o0

@ APPLICATION 3| @ ACCOUNT

<0 call stack

bank ACCOUNT withdraw < » % O &

“avan

withdraw (amount: INTEGER_32)
require

non_negative_amount: amount >= 0
affordable_amount: amount <= ba\ance)
do

balance := balance - amount
ensure
balance = old balance - amount

end

Status = Implicit exception pending

Foowewa

|z ‘dable_amount: PRECONDITION_VIOLATION raised
Infeature |InClass | From Class | @
—| & withdraw « ACCOUNT ACCC T 2
I~ make < APPLICATION APPLI I0N|2

/|

DbC: Testing for Class Invariant Violation (4.13oxo:

class BANK_APP
inherit
ARGUMENTS
create
make
feature -
make
Run
local
Jjim:
do
create {ACCOUNT}
jim.withdraw(100)

class in

Tnitializ

ACCOUNT

end
end

Ilnitiallze

application.

tom.make ("Jim",

100)

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance").

e

DbC: Testing for Class Invariant Violation (4.23oxo:

() I @ APPLICATION

IOACCOUNT |
Feature
H[B[e= ezt KV AR

Flat view of feature *_invariant' of class ACCOUNT

o0 IEEECEEEREEES

bank ACCOUNT _invariant < b # O i3 oratus = Implicit exception pendi
positive_balance: INVARIANT_VIOLATION raised &
7] . .

positive_balance: balance > 0

Tn Feature [TnClass — [From Class | @ ‘
b _invariant < ACCOUNT oul
withdraw s ACCOUNT coul

make - APPLICATION CAT]

/|

DbC: Testing for Class Invariant Violation (5.1}oxc:

class BANK_APP
inherit ARGUMENTS
create make

feature - Initial
make
—— Run application.
local
jeremy: ACCOUNT

create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy.withdraw(150)

on viol ion with +tao "
ion violation with tag "be

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
"balance_deducted").

e

DbC: Testing for Class Invariant Violation (5.2)oxc:

B | @ APPLICATION @ ACCOUNT |

Bl Cail stack Feowewa

Feature
H[F e e enzin K &2
Flat view of feature *withdraw' of class ACCOUNT
o affordable_amount: amount <= balance
do
g balance := balance + amount
ensure

bank ACCOUNT withdraw < & % 0 3%

o®

(ba\anceﬁdeducted: balance = old balance - amount)

end

IOLATION raised

balan leducted: POSTCONDITIOI
i feature |InCass |FromClass | @
| B withdraw < ACCOUNT OUNT 4
make o APPLICATION ONj2

TDD: Test-Driven Development (1) LASSONDE

e How we have tested the software so far:
o Executed each test case manually (by clicking Run in EStudio).
o Compared with our eyes if actual results (produced by program)
match expected results (according to requirements).
e Software is subject to numerous revisions before delivery.
= Testing manually, repetitively, is tedious and error-prone.
= We need automation in order to be cost-effective.

o Test-Driven Development

o [Test Case |

e normal scenario (expected outcome)
e abnormal scenario (expected contract violation).

o | Test Suite |: Collection of test cases.
= A test suite is supposed to measure “correctness” of software.
= The larger the suite, the more confident you are.

14.0£35

TDD: Test-Driven Development (2)

/|

LASSONDE
i

e Start writing tests as soon as your code becomes executable :
o with a unit of functionality completed
o or even with headers of your features completed

class STACKI[G]

create make

—— No T‘svﬁp leme

feature Ot
top: G do end

feature Cc
make do end
push (v: G) do end
pop do end

end

class TEST STACK

test_lifo: BOOLEAN
local s: STACK[STRING]
do create s.make

s.push ("Alan") ; s.push

Result := s.top ~ "Mark"

check Result end

S.pop

Result := s.top ~ "Alan"
end

end

("Mark")

o Writing tests should not be an isolated, last-staged activity.
¢ Tests are a precise, executable form of documentation that

can guide your design.

e

TDD: Test-Driven Development (3)
e The ESpec (Eiffel Specification) library is a framework for:

o Writing and accumulating fest cases

Each list of relevant test cases is grouped into an ES_TEST class,
which is just an Eiffel class that you can execute upon.

o Executing the test suite whenever software undergoes a change

e.g., a bug fix
e.g., extension of a new functionality
e ESpec tests are helpful client of your classes, which may:
o Either attempt to use a feature in a legal way (i.e., satisfying its

precondition), and report:
o Success if the result is as expected
e Failure if the result is not as expected:
e.g., state of object has not been updated properly
e.g., a postcondition violation or class invariant violation occurs

o Or attempt to use a feature in an illegal way (e.g., not satisfying
its precondition), and report:
e Success if precondition violation occurs.
o Failure if precondition violation does not occur.
e

TDD: Test-Driven Development (4)

|

SSONDE

fix the Eiffel class under test

extend maintain

when some test fails

Elffel Classes
(e.g., ACCOUNT, BANK)

derive

(re-)run as

espec test suite

ESpec Test Suite
(e.g., TEST ACCOUT,
TEST BANK)

when all tests pass

ESpec
Framework

add more tests

/|

Adding the ESpec Library (1)
Step 1: Go to Project Settings.

SSONDE

|

Execution Refactor Tools Window Help

. Compile =
o, Find Added Classes & Recompile Alt+F8
. Recompile Overrides Shift+F8

Freeze... Ctrl+F7
@ Finalize... Ctrl+Shift+F7
/. Precompile

Cancel Ctrl+Pause

Compile Workbench C Code

Compile Finalized C Code

Terminate C Compilation

Run Workbench System Ctrl+Alt+F5
Run Finalized System Ctrl+Alt+Shift+F5

5 Go to Next Error Ctrl+F8
Go to Previous Emor Ctrl+ Shift+F8
Go to Next Warning Ctrl+Alt+F8
Go to Previo Narning Ctrl+Alt+Shift+F8

W@ Project Settings...
e

Adding the ESpec Library (2) o

LASSONDE
i

Step 2: Right click on Libraries to add a library.

[=] System
= [Target: bank
il Assertions
- [Groups
b 4 Clusters
< |
[l base
b [Precompile
b [Advanced

il Add Library

|

Adding the ESpec Library (3)

Step 3: Search for espec and then include it.

SSONDE

| Add Library

@® searchin local [iron [available packages

O Searchclass [index Fllter- &
Name Status Information
-~ Complete..|ESpec: Eiffel Specification Library

Custom Refresh | [¥| & Packages

Name [espec
Location [$1SE_LIBRARY\c library/espec.ecf

L= Browse.. |
[ESpec: Eiffel Specification Library u

| Include I cancel |

Information

This will make two classes available to you:

e ES_TEST for adding test cases
e ES_SUITE for adding instances of ES_TEST.

o To run, an instance of this class must be set as the root.
20,0135

/|

|

ES_TEST: Expecting to Succeed (1)

SSONDE

1 | class TEST_ACCOUNT

2 |inherit ES_TEST

3 | create make

4 | feature —— Add in cons

5 make

6 do

7 add boolean_case (agent test_valid withdraw)
8 end

9 | feature —— Tests

10 test_valid withdraw: BOOLEAN

11 local

12 acc: ACCOUNT

13 do

14 comment ("test: normal execution of withdraw feature")
15 create {ACCOUNT} acc.make ("Alan", 100)

16 Result := acc.balance = 100

17 check Result end

18 acc.withdraw (20)

19 Result := acc.balance = 80
20 end
21 |end

21af35

ES_TEST: Expecting to Succeed (2)
e L2: Atestclass is a subclass of ES_TEST.

e L10 - 20 define a BOOLEAN test query . At runtime:
o Success: Return value of test valid withdraw (final value of

variable Result) evaluates to frue upon its termination.

e The return value evaluates to false upon termination; or

o Failure:
e Some contract violation (which is unexpected) occurs.

e L7 calls feature [add boolean_case |from ES_TEST, which
expects to take as input a query that returns a Boolean value.

o We pass query test_valid.withdraw as an input.
o Think of the keyword agent acts like a function pointer.

.] test_invalid.withdraw \ alone denotes its return value
. ’agent test,invalid,withdraw‘denotes address of query

e L14: Each test feature must caII]comment (...) \(inherited
from ES_TEST) to include the description in test report.
e L17: Check that each intermediate value of Result is frue.

/|

SSONDE

|

ES_TEST: Expecting to Succeed (3)
e Why is the [check result end]|statement at L7 necessary?
o When there are two or more assertions to make, some of which
(except the last one) may temporarily falsify return value Result.
o Aslong as the last assertion assigns true to Result, then the
entire test query is considered as a success.
= A false positive is possible!
* For the sake of demonstrating a false positive, imagine:
o Constructor make mistakenly deduces 20 from input amount.
o Command withdraw mistakenly deducts nothing.

test_query_giving_ false_positive: BOOLEAN
local acc: ACCOUNT
do comment ("Result temporarily false, but finally true.")
create {ACCOUNT} acc.make ("Jim", 100) —- balanc
Result := acc.balance = 100 -- Re gned
acc.withdraw (20) -- balance
Result := acc.balance = 80

tion, 5 y true t
s a success ==> false positive!

QOWOoONOOTAhWN =

Fix? [insert check Result end] between L6 and L7

/|

ES_TEST: Expecting to Fail Precondition (1) ssonos

1 | class TEST _ACCOUNT

2 |inherit ES_TEST

3 | create make

4 | feature —— Add tests in cons

5 make

6 do

7 add.violation_casewith tag ("non_negative_amount",
8 agent test_withdraw_precondition_violation)
9 end

10 | feature —— Tes

11 test_withdraw precondltlon violation

12 local

13 acc: ACCOUNT

14 do

15 comment ("test: expected precondition violation of withdraw")
16 create {ACCOUNT} acc.make ("Mark", 100)

17 —= 1

18 vitl 1 v is expected
19 acc. w1thdraw (- 1000OOO)
20 end
21 |end

24.0f35

| Tl

R
ES_TEST: Expecting to Fail Precondition (2) légsésom

e L2: A test class is a subclass of ES_TEST.
e L11 — 20 define a test command . At runtime:

o Success: A precondition violation (with tag
"non_negative_amount") occurs at L19 before its termination.

o Failure:
termination; or
o Some other contract violation (with a different tag) occurs.
e L7 calls feature |add_violation_case_with_tag|from

ES_TEST, which expects to take as input a command .

o We pass command test_invalid withdraw as an input.
o Think of the keyword agent acts like a function pointer.

¢ No contract violation with the expected tag occurs before its

.] test_invalid.withdraw \ alone denotes a call to it
agent test,invalid,withdraw‘denoteS address of command

e L15: Each test feature must caII]comment (...) \(inherited
from ES_TEST) to include the description in test report.
e

ES TEST: Expecting to Fail Postcondition (1).sove

1
1
1
1
1
1
1
1
1
1
1
1
\}

-

TEST ACCOUNT

feature -- Test Commands for Contract Violations
test_withdraw_postcondition_violation
local

acc: BAD_ACCOUNT_WITHDRAW
do

create acc.make ("Alan", 100)

-- Violation of Postcondition

-- with tag "balance_deduced" expected

acc.withdraw (50)

end

ACCOUNT

require

feature -- Commands
withdraw (amount: INTEGER)

non_negative_amount. amount > 0
affordable_amount: amount < balance

ce := balance - amount

balance_deduced: balance = old balance - amount

J

(BADfACCOUNT7WITHDRAW)

feature -- Redefined Commands

(amount: INTEGER) ++

Precursor (amount)
-- Wrong Implementation
balance := balance + 2 * amount

1
1
1
1
1
1
1 do
1 balan
1 ensure
1
1 __¢nd
1
1
A 1
' 1
! 1
! 1
! 1
: acc !
T : ithds
1 ' do
! 1
: 1
1 l‘ end
U \

ES TEST: Expecting to Fail Postcondition (2.1:ou:

/|

1 |class

2 BAD_ACCOUNT._WITHDRAW

3 | inherit

4 ACCOUNT

5 redefine withdraw end

6 | create

7 make

8 | feature —— redefined co

9 withdraw(amount: INTEGER)
10 do

11 Precursor (amount)

12 -— Wrong implementation
13 balance := balance + 2 % amount
14 end

15 |end

o L3-5: BAD_ACCOUNT_WITHDRAW.withdraw inherits postcondition
from ACCOUNT.withdraw: balance = old balance - amount.
o L11 calls correct implementation from parent class ACCOUNT.

o L13 makes overall implementation incorrect.
2Zat35

/|

ES TEST: Expecting to Fail Postcondition (2.2.ou:

1 class TEST_ACCOUNT

2 |inherit ES_TEST

3 | create make

4 | feature Cc for ts

5 make

6 do

7 add violation casewith tag ("balance_deducted",

8 agent test_withdraw_postcondition_violation)

9 end

10 | feature - Test ds (test to fail)

11 test_withdraw_postcondition_violation

12 local

13 acc: BAD_ACCOUNT_WITHDRAW

14 do

15 comment ("test: expected postcondition violation of withdraw")
16 create acc.make ("Alan", 100)

17 -— Postc ion Viola n with tag to
18 acc.withdraw (50)

19 end
20 |end

28.0t.35

/|

Exercise ;A’égsésom
Recall from the “Writing Complete Postconditions” lecture:
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
do ... —— Put Correct Implementatic
ensure
‘;;hers.unchanged
across old e win as cursor
all cursor. 1tem mplies
cursor.item ~ account_of (cursor.item.owner)
end
end
end
How do you create a “bad” descendant of BANK that violates

this postcondition?

class BAD_BANK_DEPOSIT
inherit BANK redefine deposit end
feature redefined feature
deposit_on_v5 (n: STRING, a: INTEGER)
do Precursor (n, a)
accounts[accounts. lower] .deposit (a)
end
end
e

/|

ES SUITE: Collecting Test Classes

|

SSONDE

class TEST SUITE
inherit ES_SUITE
create make
feature
make
do
add_test (create {TEST _ACCOUNT} .make)
show_browser
run_espec
end
end

0O OVWoONOURAWN =

—_

o L2: A test suite is a subclass of ES_SUITE.

e L7 passes an anonymous object of type TEST_ACCOUNT to
add_test inherited from ES_SUITE).

e L8 & L9 have to be entered in this order!
30.0£35

Running ES_SUITE (1)

=

Step 1: Change the root class (i.e., entry point of execution) to be
TEST_SUITE.

X! Project Settings (bank) |

Glegcsaln DGR &G X B [
=System = General
- Name bank
= Description
] Assertions Abstract False
- 0 Groups ° X| Edit Root
“ Language

~ @ Libraries Catcall detection |
i base Concurrency
“ Execution
I espec Compilation Type
» @ Precompile Output Name |

make
b [Advanced (|, Mol
4 = capability | T3 Complle All Classes?

cancel ||

Root: Root cluster, class, feature of the system. j {

cance |

e

- ___
—

SSONDE

|

Running ES_SUITE (2)

Step 2: Run the Workbench System.

b Run .][;— E .
b |
il b Run 7=
‘> Run Ignoring Breakpoints Ctrl+F5
$P Ignore Contract Violation Ctrl+F6
| I Ignore Breakpoints
Disable Catcall Console Warning
Disable Catcall Debugger Warning
Activate Fxe ion
Ctrl+Alt+F5
v Ctrl+Alt+Shift+F5
|5 Exception Handling ...
[7] Execution Parameters ...

e

\n,

Running ES_SUITE (3)

-

ASSONDE

k

Step 3: See the generated test report.

TEST_SUITE

Note: * indicates a violation test case

PASSED (3 out of 3)
__
Violation

[Boolean |
‘ All Cases |
e o S

PASSED NONE test: normal execution of withdraw feature
PASSED NONE *test: expected precondition violation of withdraw
PASSED NONE *test: expected postcondition violation of withdraw

Beyond this lecture... Lassonpe

e Study this tutorial series on DbC and TDD:

https://www.yvoutube.com/playlist?1ist=PL5dxAmCmiv
6r5VEfzCO5bTznoDDgh KS

https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS

Index (1) _;HASSONDE
DbC: Supplier

DbC: Contract View of Supplier
DbC: Testing for Precondition Violation (1.1)

DbC: Testing for Precondition Violation (1.2)
DbC: Testing for Precondition Violation (2.1)
DbC: Testing for Precondition Violation (2.2)
DbC: Testing for Precondition Violation (3.1)
DbC: Testing for Precondition Violation (3.2)
DbC: Testing for Class Invariant Violation (4.1)

DbC: Testing for Class Invariant Violation (4.2)
DbC: Testing for Class Invariant Violation (5.1)
DbC: Testing for Class Invariant Violation (5.2)

TDD: Test-Driven Development (1)

TDD: Test-Driven Development (2)
e

Index (2) _;HASSONDE
TDD: Test-Driven Development (3)

TDD: Test-Driven Development (4)
Adding the ESpec Library (1)
Adding the ESpec Library (2)
Adding the ESpec Library (3)
ES_TEST: Expecting to Succeed (1)

ES_TEST: Expecting to Succeed (2)

ES_TEST: Expecting to Succeed (3)
ES_TEST: Expecting to Fail Precondition (1)
ES_TEST: Expecting to Fail Precondition (2)
ES_TEST: Expecting to Fail Postcondition (1)

ES_TEST: Expecting to Fail Postcondition (2.1)

ES_TEST: Expecting to Fail Postcondition (2.2)

Exprcise
e

Index (3) _;ASSONDE
ES_SUITE: Collecting Test Classes

Running ES_SUITE (1)

Running ES_SUITE (2)

Running ES_SUITE (3)

Beyond this lecture...

e

	DbC: Supplier
	DbC: Contract View of Supplier
	DbC: Testing for Precondition Violation (1.1)
	DbC: Testing for Precondition Violation (1.2)
	DbC: Testing for Precondition Violation (2.1)
	DbC: Testing for Precondition Violation (2.2)
	DbC: Testing for Precondition Violation (3.1)
	DbC: Testing for Precondition Violation (3.2)
	DbC: Testing for Class Invariant Violation (4.1)
	DbC: Testing for Class Invariant Violation (4.2)
	DbC: Testing for Class Invariant Violation (5.1)
	DbC: Testing for Class Invariant Violation (5.2)
	TDD: Test-Driven Development (1)
	TDD: Test-Driven Development (2)
	TDD: Test-Driven Development (3)
	TDD: Test-Driven Development (4)
	Adding the ESpec Library (1)
	Adding the ESpec Library (2)
	Adding the ESpec Library (3)
	ES_TEST: Expecting to Succeed (1)
	ES_TEST: Expecting to Succeed (2)
	ES_TEST: Expecting to Succeed (3)
	ES_TEST: Expecting to Fail Precondition (1)
	ES_TEST: Expecting to Fail Precondition (2)
	ES_TEST: Expecting to Fail Postcondition (1)
	ES_TEST: Expecting to Fail Postcondition (2.1)
	ES_TEST: Expecting to Fail Postcondition (2.2)
	Exercise
	ES_SUITE: Collecting Test Classes
	Running ES_SUITE (1)
	Running ES_SUITE (2)
	Running ES_SUITE (3)
	Beyond this lecture...

