DbC: Contract View of Supplier s
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the

Test-Driven Development (TDD) contract view (without showing any implementation details):

class ACCOUNT

create
make

feature Attributes
owner : STRING

balance : INTEGER

feature - Constructors
make (nn: STRING; nb: INTEGER)
. require preconditio
EECS3311 A: Software Design positive balance: nb > 0
end
YO R K Fall 2018 feature —— Commands
withdraw(amount: INTEGER)
require precond
non_negative_amount: amount > 0
UNIVERSIT E CHEN-WEI WANG affordable_amount: amount <= balance problematic, why?
UNIVERSITY ensure —— tootoondition

balance deducted: balance = old balance - amount
end
invariant ariant
positive balance: balance > 0
end

S

DbC: Supplier LASSONDE DbC: Testing Precondition Violation (1.1)

ooooooooooooooooo

DbC is supported natively in Eiffel for supplier: The client need not handle all possible contract violations:
class ACCOUNT class BANK_APP
create . .
nake inherit
feature Attributes ARGUMENTS
owner : STRING create
balance : INTEGER
feature -- Constructors make
make (nn: STRING; nb: INTEGER) feature —— Initializatior
require precond) make
positive balance: nb > 0 . B
do -— Run appl
owner := nn local
balance := nb alan: ACCOUNT
end
feature Commands do
withdraw(amount: INTEGER) —-— A precondition violation with tag "positive balance"
require -- precondition . " wo T B
non_negative amount: amount > 0 create {ACCOUNT} alan.make ("Alan", -10)
affordable_amount: amount <= balance oble ic, why? end
do end
balance := balance - amount
ensure - postcondition . . R . .
, Pelencededucted: balance - old balance - amount By executing the above code, the runtime monitor of Eiffel Studio
en
invariant — class inva will report a contract violation (precondition violation with tag

positive balance: balance > 0

end "positive balance").

DbC: Testing for Precondition Violation (1 2)LASSONDE

B! |O APPLICATION 53| @ ACCOUNT s0 EEEECK]
= bank ACCOUNT make 45 # 0 Status = Implicit exception pending
eature [posmve balance: PRECONDITION_VIOLATION rawsed)
?Ehnwﬁﬂﬁ&?&ﬁ InFeature [InClass | FromClass | @
“lat view of feature make' of class ACCOUNT _ B make . ACCOUNT COUNT 1

make 4 APPLICATION APPLICATION 1

make (nn: STRING_8; nb: INTEGER_32)

require
positive_balance: nb >= 0
d

o

w

2 owner := nn
2 balance := nb
B end

S——

DbC: Testing for Precondition Violation (2.1);%%%

class BANK_APP
inherit
ARGUMENTS
create
make
feature —— I
make

R
local
mark: ACCOUNT
do
create {ACCOUNT} mark.make ("Mark", 100)

A pI violati tag "n
mark.withdraw(-1000000)
end

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non_negative_amount").

Sn—

DbC: Testing for Precondition Violation (2.2);%%%

o |0APpLxcnnom:e @ ACCOUNT Rl o' stack Fooweva
e bank ACCOUNT withdraw 45 # 05 Status = Implicit exception pending
(non_negative_amount: PRECONDITION_VIOLATION raised)
v 32 3082 =2 o
A[F 0220 ot =2 6 E In Feature ‘ln Class ‘me Class ‘ @
Flat view of feature withdraw' of class ACCOUNT SOETED AENT e
= make 5 APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)
uire
e non_negative_amount: amount >= 0)
5 affordable_amount: amount <= balance
do
2 balance := balance - amount
ensure
g balance = old balance - amount
B end

S———

DbC: Testing for Precondition Violation (3.1);%%%

class BANK_APP
inherit
ARGUMENTS
create
make
feature ——
make
Run applic:
local
tom: ACCOUNT
do
create {ACCOUNT} tom.make ("Tom", 100)
-— A precor % lat v h tag "af
tom.withdraw(150)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable_amount").

e

DbC: Testing for Precondition Violation (3.2);%%%

L] |® APPLICATION 33| @ ACCOUNT 20 call Stack Faowe =

Status = Implicit exception pending

bank ACCOUNT withdraw < » % O 3
((affordable_amount: PRECONDITION_VIOLATION raised

F|F ei=e e SV E

k= sResl [InFeature |InClass | From Class | @
Flat view of feature ~ withdraw’ of class ACCOUNT | remrr— e SCOUN
= make s APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)

require
© non_negative_amount: amount >= 0
© (affordable_amount: amount <= balance)

do
© balance := balance - amount |

ensure
© balance = old balance - amount :
© end =

9 of 35

class BANK_APP
inherit
ARGUMENTS
create
make
feature —— I
make

local
jim: ACCOUNT

do
create {ACCOUNT} tom.make ("Jim", 100)
jim.withdraw(100)

ass invariant violation with tag "positive balance

-— A cCl

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag

"positive balance").
10 of 35

DbC: Testing for Class Invariant Violation (4.2 ono

(&) |°APPI.ICATION2:§‘°ACCOUNT | a0 ECEECEERER

reature bank ACCOUNT _invariant < » & 0 i -2tetus = Implicit exception pendin

positive_balance: INVARIANT_VIOLATION raised &
e ez el & A 8t . : "
LIEIEREL T # i Festure [ThGass [From Class | @ |
Flat view of feature "~ _invariant' of class ACCOUNT P _invariant « ACCOUNT C

withdraw s ACCOUNT ACC 5
positive_balance: balance > 0 make 4 APPLICATION APPLICATION 2

110f 35

class BANK_APP
inherit ARGUMENTS
create make

feature Initialization
make
local
jeremy: ACCOUNT
do

create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy.withdraw(150)

—— A postcondition violation with

tag "balc

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag

"balance_deducted").
120f 35

DbC: Testing for Class Invariant Violation (5.2 om0

el cail stack Froseva

bank ACCOUNT withdraw < b & 0 1t Status = Implicit exception pendi
balance_deducted: POSTCONDITION_VIOLATION raised

(B |O APPLICATION @ ACCOUNT 3

Feature

LEIEEROCE RS P 3 2 TnFeawre |InCass |FromClass | @
Flat view of feature " withdraw’ of class ACCOUNT T T N e OUNTER TEEE N
| affordable_amount: amount <= balance 2l make . APPLICATION APPLICATION 2
do
e balance := balance + amount
ensure
ﬁ (ba\anceﬁdeducted: balance = old balance - amount)

end

S——

LASSONDE

ooooooooooooooooo

TDD: Test-Driven Development (1)

e How we have tested the software so far:
o Executed each test case manually (by clicking Run in EStudio).
o Compared with our eyes if actual results (produced by program)
match expected results (according to requirements).
e Software is subject to numerous revisions before delivery.
= Testing manually, repetitively, is tedious and error-prone.
= We need automation in order to be cost-effective.

e Test-Driven Development

© |Test Case |

e normal scenario (expected outcome)
e abnormal scenario (expected contract violation).

o | Test Suite |: Collection of test cases.

= A test suite is supposed to measure “correctness” of software.
= The larger the suite, the more confident you are.

LASSONDE

TDD: Test-Driven Development (2) Lssonee

e Start writing tests as soon as your code becomes executable :
o with a unit of functionality completed
o or even with headers of your features completed

class TEST_STACK

class STACK[G] e
create make test_lifo: BOOLEAN
No impl tation local s: STACK[STRING]

feature - 5 do create s.make

top: G do end s.push ("Alan") ; s.push ("Mark")
feature - Commands Result := s.top ~ "Mark"

make do end check Result end

push (v: G) do end S.pop

pop do end Result := s.top ~ "Alan"
end end

end

» Writing tests should nof be an isolated, last-staged activity.
o Tests are a precise, executable form of documentation that

can guide your design.
15 of 35

LASSONDE

ooooooooooooooooo

TDD: Test-Driven Development (3)

e The ESpec (Eiffel Specification) library is a framework for:

o Writing and accumulating test cases
Each list of relevant test cases is grouped into an ES_TEST class,
which is just an Eiffel class that you can execute upon.
o Executing the fest suite whenever software undergoes a change
e.g., a bug fix
e.g., extension of a new functionality
e ESpec tests are helpful client of your classes, which may:

o Either attempt to use a feature in a legal way (i.e., satisfying its
precondition), and report:
e Success if the result is as expected
e Failure if the result is not as expected:
e.g., state of object has not been updated properly
e.g., a postcondition violation or class invariant violation occurs
o Or attempt to use a feature in an illegal way (e.g., not satisfying
its precondition), and report:
e Success if precondition violation occurs.
e Failure if precondition violation does not occur.

S——

LASSONDE

ooooooooooooooooo

TDD: Test-Driven Development (4)

fix the Eiffel class under test

extend, maintain

N

Elffel Classes
(e.g., ACCOUNT, BANK)

when some test fails

derive (re-)run as ESpec
espec test suite Framework
ESpec Test Suite
(e.g., TEST_ACCOUT,
TEST BANK)

when all tests pass

add more tests

17 of 35

Adding the ESpec Library (1) LASSONDE

ooooooooooooooooo

Step 1: Go to Project Settings.

Execution Refactor Tools Window Help

. Compile EZ
o, Find Added Classes & Recompile Alt+F8
., Recompile Overrides Shift+F8

Freeze... Ctrl+F7

@ Finalize... Ctrl+Shift+F7

. Precompile
Cancel Ctrl+Pause

Compile Workbench C Code
Compile Finalized C Code
Terminate C Compilation

P Run Workbench System Ctrl+Alt+F5
& Run Finalized System Ctrl+Alt+Shift+F5
& Go to Next Error Ctrl+F8

#® Go to Previous Error Ctrl+Shift+F8
. Go to Next Warning Ctrl+Alt+F8

% Go to Previous Warning Ctrl+Alt+Shift+F8

@ Project Settings...

18 of 35

Adding the ESpec Library (2)

Step 2: Right click on Libraries to add a library.

[System
= [{ Target: bank
il Assertions
<~ [Groups
b (4 Clusters
= "7 Libra
[l base
b [@§ Precompile
b [Advanced

i@ Add Library

19 of 35

Adding the ESpec Library (3)

Step 3: Search for espec and then include it.

X! Add Library

© Searchin [local & iron [available packages

O Searchclass [inde Filxer.'iespec =
Name Status Information
1 espec Complete..|ESpec: Eiffel Specification Library

Custom Refresh @ i Packages

Name [espec
Location |$1SE_LIBRARY

[ESpec: Eiffel Specification Library
Information

This will make two classes available to you:

e ES_TEST for adding test cases
e £ES_SUITE for adding instances of ES_TEST.

o To run, an instance of this class must be set as the root.
20 of 35

y/espec.ecf ‘”Bmwse...|

I Include l Cancel |

ES_TEST: Expecting to Succeed (1) LASSONDE
1 |class TEST _ACCOUNT
2 |inherit ES TEST
3 | create make
4 | feature Add tests in cc
5 make
6 do
7 add boolean_case (agent test_valid withdraw)
8 end
9 | feature —- Tests
10 test_valid withdraw: BOOLEAN
11 local
12 acc: ACCOUNT
13 do
14 comment ("test: normal execution of withdraw feature")
15 create {ACCOUNT} acc.make ("Alan", 100)
16 Result := acc.balance = 100
17 check Result end
18 acc.withdraw (20)
19 Result := acc.balance = 80
20 end
21 |end

21 of 35

ES_TEST: Expecting to Succeed (2) LASSONDE

ooooooooooooooooo

e L2: Atest class is a subclass of ES_TEST.
e L10 — 20 define a BOOLEAN test query . At runtime:

o Success: Return value of test_valid withdraw (final value of

variable Result) evaluates to true upon its termination.
o Failure:
e The return value evaluates to false upon termination; or
e Some contract violation (which is unexpected) occurs.

e L7 calls feature | add boolean_case |from ES_TEST, which

expects to take as input a query that returns a Boolean value.

o We pass query test_valid withdraw as an input.
o Think of the keyword agent acts like a function pointer.
.] test._invalid withdraw \ alone denotes its return value

. ’agent test,invalid,withdraw‘denotes address of query

e L14: Each test feature must call| comment (...) | (inherited
from ES_TEST) to include the description in test report.

s '3157: Check that each intermediate value of Result is true.

ES_TEST: Expecting to Succeed (3) LASSONDE

ooooooooooooooooo

* Why is the [check result end|statement at L7 necessary?

o When there are two or more assertions to make, some of which
(except the last one) may temporarily falsify return value Result.

o Aslong as the last assertion assigns true to Result, then the
entire test query is considered as a success.
= A false positive is possible!

¢ For the sake of demonstrating a false positive, imagine:
o Constructor make mistakenly deduces 20 from input amount.
o Command withdraw mistakenly deducts nothing.

1 test_query_giving false _positive: BOOLEAN
2 local acc: ACCOUNT
3 do comment ("Result temporarily false, but finally true.")
4 create {ACCOUNT} acc.make ("Jim", 100) é
5 Result := acc.balance = 100 Result assigned to false
6 acc.withdraw (20) -- balance not deduc
7 Result := acc.balance = 80 -- Res true
8 r on, Result being true makes th 1
9 ere a success ==> false positive!
10 end

o3or3s IX? [insert check Result end | between L6 and L7.

J

ooooooooooooooooo

1 |class TEST_ACCOUNT
2 |inherit ES_TEST
3 | create make
4 feature —— Add tests 1n constructor
5 make
6 do
7 add_violation case with_ tag ("non_negative_amount",
8 agent test_withdraw_precondition_violation)
9 end
10 | feature - Tests
11 test_withdraw_precondition_violation
12 local
13 acc: ACCOUNT
14 do
15 comment ("test: expected precondition violation of withdraw")
16 create {ACCOUNT} acc.make ("Mark", 100)
17 —— p
18 - W 7y "non_neg ount" is expected.
19 acc.withdraw (-1000000)
20 end
21 |end
24 of 35

ES _TEST: Expecting to Fail Precondition (2)

\u,

g

SSONDE

HooL OF B

e L2: Atestclassis a subclass of ES_TEST.
e L11 — 20 define a test command . At runtime:

o Success: A precondition violation (with tag
"non_negative_amount") occurs at L19 before its termination.
o Failure:
¢ No contract violation with the expected tag occurs before its
termination; or
e Some other contract violation (with a different tag) occurs.

e L7 calls feature | add violation case with tag|from

ES_TEST, which expects to take as input a command .

o We pass command test_invalid.withdraw as an input.
o Think of the keyword agent acts like a function pointer.

o [test_invalid withdraw]alone denotes a call to it
o ’ agent test_invalid withdraw ‘ denotes address of command

e L15: Each test feature must call| comment (...) | (inherited

from ES_TEST) to include the description in test report.

5 of 35

ES_TEST: Expecting to Fail Postcondition (1) o

mOd_el _________________
R 3
' ACCOUNT \

feature -- Commands
withdraw (amount: INTEGER)

require
non_negative_amount: amount > 0
affordable_amount: amount < balance

do
balance := balance - amount

ensure

balance_deduced: balance = old balance - amount

__ end)

i

TEST _ACCOUNT

feature -- Test Commands for Contract Violations
test_withdraw_postcondition_violation

local
acc: BAD_ACCOUNT_WITHDRAW

do
create acc.make ("Alan", 100)
- Violation of Postcondition
- with tag "balance_deduced" expected
acc.withdraw (50)

end

(BAD_ACCOUNT_WITHDRAW)

feature -- Redefined Commands
(amount: INTEGER) ++

do
Precursor (amount)
~- Wiong Implementation
balance := balance + 2 * amount
end

4

S e e e - ——-—-—-

6 of 35

O©CoOo~NOOAWN =

—_ o
aprwWN—=O

class
BAD_ACCOUNT_WITHDRAW
inherit
ACCOUNT
redefine withdraw end
create
make
feature —— redefinec >
withdraw(amount: INTEGER)
do
Precursor (amount)

ed co

,,,,,, £ ation

:= balance + 2 * amount

balance
end
end
o L3-5: BAD_ACCOUNT WITHDRAW.withdraw inherits postcondition
from ACCOUNT.withdraw: balance = old balance - amount.
o L11 calls correct implementation from parent class ACCOUNT.
o L13 makes overall implementation incorrect.
27 of 35

ES_TEST: Expecting to Fail Postcondition (2.2}

O©CoONOOHA~WN =

class TEST_ACCOUNT
inherit ES_TEST
create make
feature - Constructor for
make
do
add_violation_casewith tag ("balance_deducted",
agent test_withdraw_postcondition_violation)

end
feature - Test cor is (test to fail)
test_withdraw_postcondition_violation
local
acc: BAD _ACCOUNT_WITHDRAW
do

comment ("test: expected postcondition violation of withdraw")
create acc.make ("Alan", 100)

—— Postc +

“ion with tag "ba

conditio

acc.withdraw (50)
end
end

28 of 35

Exercise \AssoNDE
Recall from the “Writing Complete Postconditions” lecture:

ooooooooooooooooo
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
do ... Put Correct nplementa on Her

ensure

others_unchanged :
across old accounts.deep-twin as cursor
all cursor.item.owner /~ n implies

cursor.item ~ account_of (cursor.item.owner)

How do you create a “bad” descendant of BANK that violates
this postcondition?

class BAD BANK DEPOSIT
inherit BANK redefine deposit end
feature edefined feature
deposit_on_v5 (n: STRING; a: INTEGER)
do Precursor (n, a)
accounts [accounts. lower] .deposit (a)
end
end

29 of 35

ES_SUITE: Collecting Test Classes e

ooooooooooooooooo

1 |class TEST SUITE
2 |inherit ES SUITE
3 | create make
4 | feature Constructor tes
5 make
6 do
7 add test (create {TEST ACCOUNT} .make)
8 show_browser
9 run_espec
10 end
11 | end

e L2: A test suite is a subclass of ES_SUITE.

¢ L7 passes an anonymous object of type TEST_ACCOUNT to
add_test inherited from ES_SUITE).
¢ L8 & L9 have to be entered in this order!

30 of 35

Running ES SUITE (1)

Step 1: Change the root class (i.e., entry point of execution) to be
TEST_SUITE.

| Project Settings (bank)

- DR REnREG X 8

[System - General
= Name bank
IPLREEES NS | Description
&) Assertions Abstract False
(9 Groups. [[X| Edit Root |
5 Language
b (3 Clusters vm'sa,gw Root Cluster]
~ [Libraries Catcall detection I
i base Concurrency ‘Root Class
& Execution [TEST_SUITE |
i espec Compilation Type |2
b (# Precompile Output Name | | °°: Procedure
| make
b [Advanced | version ;
{| ¥ Capability O Compile All Classes? |
o |
—_—
Root: Root cluster, class, feature of the system. E |

cance |

310f35

Running ES _SUITE (2)

Step 2: Run the Workbench System.

» Run ']l? = .

3P Run F5
<> Run Ignoring Breakpoints Ctrl+F5
<£§> Ignore Contract Violation Ctrl+F6
| & Ignore Breakpoints
Disable Catcall Console Warning
Disable Catcall Debugger Warning
i L ing
0 De -
154 Ctrl+Alt+Shift+F5
& Exception Handling ...
[7] Execution Parameters ...

320f 35

EaSaRNDE

Running ES SUITE (3)

Step 3: See the generated test report.

TEST_SUITE

Note: * indicates a violation test case

e
[PASSED(3outof3)
violation [2 | 2z
Boolean 1 1

All Cases 3 3
Conract Voaton| ____—_TestName |

T

PASSED | NONE [test: normal execution of withdraw feaure |
PASSED NONE |*lcst: expected ition violation of wi
PASSED NONE |*lcsl: expected postcondition violation of withdraw

33 of 35

EaSaRNDE

Beyond this lecture...

e Study this tutorial series on DbC and TDD:

https://www.youtube.com/playlist?list=PL5dxAmCmjv_
6r5VEzCQ5bTznoDDgh__ KS

34 of 35

|
Index (1) Lassonpe
DbC: Supplier
DbC: Contract View of Supplier
DbC: Testing for Precondition Violation (1.1)
DbC: Testing for Precondition Violation (1.2)
DbC: Testing for Precondition Violation (2.1)
DbC: Testing for Precondition Violation (2.2)
DbC: Testing for Precondition Violation (3.1)
DbC: Testing for Precondition Violation (3.2)
DbC: Testing for Class Invariant Violation (4.1)
DbC: Testing for Class Invariant Violation (4.2)
DbC: Testing for Class Invariant Violation (5.1)
DbC: Testing for Class Invariant Violation (5.2)
TDD: Test-Driven Development (1)
TDD: Test-Driven Development (2)

35 of 35

|
Index (2) Lassonpe
TDD: Test-Driven Development (3)
TDD: Test-Driven Development (4)
Adding the ESpec Library (1)
Adding the ESpec Library (2)
Adding the ESpec Library (3)
ES_TEST: Expecting to Succeed (1)
ES_TEST: Expecting to Succeed (2)
ES_TEST: Expecting to Succeed (3)
ES_TEST: Expecting to Fail Precondition (1)
ES _TEST: Expecting to Fail Precondition (2)
ES_TEST: Expecting to Fail Postcondition (1)
ES_TEST: Expecting to Fail Postcondition (2.1)
ES_TEST: Expecting to Fail Postcondition (2.2)

Exgicise
=,

Index (3) LASSONDE
ES _SUITE: Collecting Test Classes

Running ES_SUITE (1)

Running ES_SUITE (2)

Running ES_SUITE (3)

Beyond this lecture...

37 of 35

