Classes and Objects

EECS2030 B: Advanced
Object Oriented Programming

' Fall 2018

E
Y CHEN-WEI WANG

ooooooooooooooooo

¢ In EECS1022:
o Model Component: One or More Java Classes
e.g., Person vS. SMS, Student, CourseRecord
o Another Java class that “manipulates” the model class
(by creating instances and calling methods):
e Controller (e.g., BMIActivity, BankActivity). Effects?
Visualized (via a GUI) at connected tablet
o Tester withmain (e.g., PersonTester, BankTester). Effects?
Seen (as textual outputs) at console
e In Java:
o We may define more than one classes.
o Each class may contain more than one methods.

object-oriented programming in Java:

o Use classes to define templates
o Use objects to instantiate classes

o At runtime, create objects and call methods on objects, to simulate

2oi6s interactions between real-life entities.
(2]

LASSONDE

ooooooooooooooooo

Object Orientation:
Observe, Model, and Execute

Compile-Time: Classes Run-Time: Objects

Real World: Entities definitions of templates) . of

Entities:
jim, jonathan, ...

Entities:
p1(2, 3), p2(-1, -2), ...

Person Person
name | “Jim” name | “Jonathan”
jm [ weight| 80 jonathan | _weight | 80
height | 1.80 height | 1.80

class Person {
String name;
double weight;

double height;

Point Point
x | 2 x|

2
P! y \ 3 P y \

K
2

o Study this tutorial video that walks you through the idea of
object orientation .

o We observe how real-world entities behave.

o We model the common attributes and behaviour of a set of
entities in a single class.
o We execute the program by creating instances of classes, which

interact in a way analogous to that of real-world entities.
3of 68

LASSONDE

ooooooooooooooooo

Object-Oriented Programming (OOP)

e Inreal life, lots of entities exist and interact with each other.
e.g., People gain/lose weight, marry/divorce, or get older.
e.g., Cars move from one point to another.
e.g., Clients initiate transactions with banks.
o Entities:
o Possess attributes;
o Exhibit bebaviour; and
o Interact with each other.
e Goals: Solve problems programmatically by
o Classifying entities of interest
Entities in the same class share common attributes and bebaviour.
o Manipulating data that represent these entities
Each entity is represented by specific values.

4 of 68



ooooooooooooooooo

A person is a being, such as a human, that has certain
attributes and behaviour constituting personhood: a person
ages and grows on their heights and weights.

¢ Atemplate called Person defines the common
o aftributes (e.g., age, weight, height)
o behaviour (e.g., get older, gain weight)

[ nouns]
[~ verbs]

5 of 68

ooooooooooooooooo

e Persons share these common attributes and behaviour.
o Each person possesses an age, a weight, and a height.
o Each person’s age, weight, and height might be distinct
e.g., jimis 50-years old, 1.8-meters tall and 80-kg heavy
e.g., jonathan is 65-years old, 1.73-meters tall and 90-kg heavy

e Each person, depending on the specific values of their

attributes, might exhibit distinct behaviour:

o When jim gets older, he becomes 51
o When jonathan gets older, he becomes 66.
o jim’s BMI is based on his own height and weight [%

o jonathan’s BMIis based on his own height and weight (75

6 of 68

ooooooooooooooooo

Points on a two-dimensional plane are identified by their signed

distances from the X- and Y-axises. A point may move

arbitrarily towards any direction on the plane. Given two points,

we are often interested in knowing the distance between them.
¢ Atemplate called Point defines the common

o attributes (e.g., x, v)

o behaviour (e.g., move up, get distance from)

[~ nouns]
[~ verbs]

7 of 68

ooooooooooooooooo

¢ Points share these common attributes and behaviour.
o Each point possesses an x-coordinate and a y-coordinate.
o Each point’s location might be distinct
e.g., pl is located at (3,4)
e.g., p2 is located at (-4, -3)
e Each point, depending on the specific values of their attributes
(i.e., locations), might exhibit distinct behaviour:
o When p1 moves up for 1 unit, it will end up being at (3,5)
o When p2 moves up for 1 unit, it will end up being at (-4,-2)
o Then, p1’s distance from origin: [V/32 + 5]

o Then, p2’s distance from origin: [V (-4)2 +(-2)2]

8 of 68



LASSONDE

OO Thinking: Templates vs. Instances (3)  .ssonoe

A template defines what's shared by a set of related entities.
o Common attributes (age in Person, x in Point)
o Common behaviour (get older for Person, move up for Point)

Each template may be instantiated into multiple instances.
o Person instances: jim and jonathan
o Point instances: pl and p2
Each instance may have specific values for the attributes.
o Each person instance has an age:
jimis 50-years old, jonathan is 65-years old
o Each pPoint instance has a location:
plisat(3,4), p2isat (-3,-4)
Therefore, instances of the same template may exhibit distinct
behaviour.
o Each person instance can get older: jim getting older from 50 to
51; jonathan getting older from 65 to 66.
o Each Point instance can move up: pl moving up from (3,3)
results in (3,4); p1 moving up from (-3, -4) results in (-3,-3).

9 of 68

LASSONDE

ooooooooooooooooo

OOP: Classes ~ Templates

In Java, you use a class to define a template that enumerates
attributes that are common to a set of entities of interest.

public class Person {
int age;
String nationality;
double weight;
double height;

}

public class Point {
double x;
double y;

}

10 of 68

OOP: fASSONDE

ooooooooooooooooo

Define Constructors for Creating Objects (1.1)

¢ Within class Point, you define constructors , specifying how
instances of the Point template may be created.

public class Point {
... /* attributes: x, y */
Point (double newX, double newY) {
x = newX;
y = newY; 1} }

In the corresponding tester class, each call to the Point
constructor creates an instance of the Point template.

public class PointTester {

public static void main(String[] args) {
Point pl = new Point (2, 4);
println(pl.x + " " + pl.y);

Point p2 = new Point (-4, -3);
println(p2.x + " " + p2.y); } }

11/ of 68

EAS20ND

OOP: 4%

Define Constructors for Creating Objects (1.2)

’Point pl = new Point (2, 4); ‘

1. RHS (Source) of Assignment: new Point (2, 4) creates
a new Point object in memory.

Point ’

2. LHS (Target) of Assignment: Point pl declares a variable
that is meant to store the address of some Point object.
3. Assignment: Executing = stores new object’s address in p1.

Point
< :
y

pl

12 of 68




OOP: 4%

. LAS

Define Constructors for Creating Objects (21)

¢ Within class Person, you define constructors , specifying how
instances of the Person template may be created.

public class Person {

. /* attributes: age, nationality, weight, height =/
Person(int newAge, String newNationality) {
age = newAge;

nationality = newNationality; } }

e In the corresponding tester class, each call to the Person
constructor creates an instance of the Person template.

public class PersonTester {

public static void main(String[] args) {
Person 3jim = new Person (50, "British");
println(jim.nationlaity + " " + jim.age);
Person Jjonathan = new Person (60, "Canadian");
println(jonathan.nationlaity + " " + jonathan.age); }

e ———————

OOP: Lassonoe
Define Constructors for Creating Objects (2.2)

’Person jim = new Person(50, "British"); ‘

1. RHS (Source) of Assignment: new Person (50, "British")
creates a new Person object in memory.

Person

50

nationality “British”

weight 0.0
height 0.0

2. LHS (Target) of Assighment: roint jim declares a variable
that is meant to store the address of some Person object.
3. Assignment: Executing = stores new object’s address in jimn.

Person
<///’* 50

Jim nationality “British”

weight 0.0
0.0

14 of 68

sCrooL oF

Visualizing Objects at Runtime (1)

¢ To trace a program with sophisticated manipulations of objects,
it’s critical for you to visualize how objects are:
o Created using constructors
Person jim = new Person (50, "British", 80, 1.8);
o Inquired using accessor methods
double bmi = jim.getBMI () ;
o Modified using mutator methods
jim.gainWeightBy (10) ;
¢ To visualize an object:

o Draw a | rectangle box |to represent contents of that object:

o indicates the name of class from which the object is instantiated.
e | Left column |enumerates names of attributes of the instantiated class.
¢ | Right column |fills in values of the corresponding attributes.

o Draw m for variable(s) that store the object’s address .

15 of 68

EaSaRNDE

Visualizing Objects at Runtime (2.1)

After calling a constructor to create an object:

’Person jim = new Person(50, "British", 80, 1.8); ‘

Person

age 50
“British”
weight 80
height 1.8

jim nationality

16 of 68




Visualizing Objects at Runtime (2.2) e Visualizing Objects at Runtime (2.4) o T

After calling an accessor to inquire about context object jim: After calling the same accessor to inquire the modified state of
context object jim:

’bmi = p.getBMI(); ‘

double bmi = jim.getBMI(); ‘

¢ Contents of the object pointed to by jim remain intact.

¢ Retuned value . 8)2 of jim.getBMI () stored in variable bmi.
¢ Retuned value

e Contents of the object pointed to by jim remain intact.

Q. 8)2 of §im.getBMI () stored in variable bmi.

Person
Person
ﬁ age 50
. age 50

Jjim nationality “British” . . N

Jim nationality “British”
weight 80 N

weight oo~ 90
height 1.8 .

height 1.8

17 of 68 19 of 68

Visualizing Objects at Runtime (2.3) e The this Reference (1) R oho
e Each class may be instantiated to multiple objects at runtime.

After calling a mutator to modify the state of context object §im:

‘ class Point {
double x; double y;
void moveUp(double units) { y += units; }

}

jim.gainWeightBy (10) ;

e Contents of the object pointed to by jim change.
e Address of the object remains unchanged.
= jim points to the same object!  Each time when we call a method of some class, using the dot
notation, there is a specific target/context object.

Person 1 |Point pl = new Point (2, 3);
2 |Point p2 = new Point (4, 6);
age 50 3 |pl.moveUp(3.5);
- 4 |p2.moveUp(4.7);

Jim nationality “British”

- o pl and p2 are called the call targets or context objects .
weight SS90 o Lines 3 and 4 apply the same definition of the moveUp method.
height 1.8 o But how does Java distinguish the change to p1 .y versus the

: change to p2.y?

18 of 68 20 of 68




The this Reference (2) LASSONDE

ooooooooooooooooo

¢ In the method definition, each attribute has an implicit this
which refers to the context object in a call to that method.

class Point {
double x;
double y;
Point (double newX, double newY) ({
this.x = newX;
this.y = newY;
}
void moveUp (double units) {
this.y = this.y + units;
}
}

e Each time when the class definition is used to create a new
Point object, the this reference is substituted by the name of

the new object.
21 of 68

The this Reference (3) LASSONDE

ooooooooooooooooo

o After we create p1 as an instance of Point

’Point pl = new Point (2, 3); ‘

e When invoking p1 .moveUp (3.5), a version of moveUp that is
specific to p1 will be used:

class Point {
double x;
double y;
Point (double newX, double newY) {
pl .x = newX;
pl .y = newY;
}
void moveUp(double units) {
pl .y
}
}

22 of 68

pl .y + units;

The this Reference (4) LASSONDE

ooooooooooooooooo

o After we create p2 as an instance of Point

’Point p2 = new Point (4, 6);

e When invoking p2 .moveUp (4.7), a version of moveUp that is
specific to p2 will be used:

class Point {
double x;
double y;
Point (double newX, double newY) ({
p2 .x = newX;
p2 .y = newy;
}
void moveUp(double units) {
p2 .y = p2.y + units;
}
}

23 of 68

The this Reference (5) LASSONDE

ooooooooooooooooo

The this reference can be used to disambiguate when the
names of input parameters clash with the names of class
attributes.

class Point {

double x;

double y;

Point (double x, double y) {
this.x = x;
this.y = y;

}

void setX(double x) {
this.x = x;

}

void setY(double y) {
this.y = y;

}

E————




The this Reference (6.1): Common Error  Lissonce

ooooooooooooooooo

The following code fragment compiles but is problematic:

class Person {
String name;
int age;
Person(String name, int age) {
name = name;
age = age;
}
void setAge(int age) {
age = age;
}
}

Why? Fix?

25 of 68

LASSONDE

ooooooooooooooooo

The this Reference (6.2): Common Error

Always remember to use this when input parameter names
clash with class attribute names.

class Person {

String name;

int age;

Person(String name, int age) {
this.name = name;
this.age = age;

}

void setAge(int age) {
this.age = age;

}

}

26 of 68

]
OOP: Methods (1.1)

e A method is a named block of code, reusable via its name.
T1 p1 "
T o
/* implementation of method m */
—
T pn
e The header of a method consists of: [see here]
o Return type [ RT (which can be void) ]
o Name of method [m]
o Zero or more parameter names [p1,po, -, pn ]
o The corresponding parameter types [T, Toy ..., Th ]

¢ A call to method m has the form: m(ay, ao, ..., an)
Types of argument values a4, ao, ..., a, must match the the

corresponding parameter types Ty, To, ..., Th.
27 of 68

OOP: Methods (1.2)

¢ In the body of the method, you may
o Declare and use new local variables
Scope of local variables is only within that method.
o Use or change values of attributes.
o Use values of parameters, if any.

class Person {
String nationality;
void changeNationality(String newNationality) {
nationality = newNationality; } }

Call a method, with a context object , by passing arguments.

class PersonTester {
public static void main(String[] args) {
Person jim = new Person (50, "British");
Person jonathan = new Person (60, "Canadian");
jim.changeNationality ("Korean") ;
jonathan.changeNationality ("Korean"); } }

28




OOP: MethOdS (2) :ASSONDE

ooooooooooooooooo

e Each class c defines a list of methods.
o A method mis a named block of code.

¢ We reuse the code of method m by calling it on an object ob
of class C.
For each method call ocbj.m(...):
o obj is the context object of type C
o mis a method defined in class C
o We intend to apply the code effect of method m to object ob 7.
e.g., Jjim.getOlder () VS. jonathan.getOlder ()
e.g., pl.moveUp (3) VS. p2.moveUp (3)
All objects of class C share the same definition of method m.
e However:
-~ Each object may have distinct attribute values.

.. Applying the same definition of method m has distinct effects.
29 of 68

OOP: Methods (3) LASSONDE

ooooooooooooooooo

1. Constructor
o Same name as the class. No return type. /nitializes attributes.
o Called with the new keyword.
° e.g.,Person jim = new Person (50, "British");
2. Mutator
o Changes (re-assigns) attributes
o void return type
o Cannot be used when a value is expected
o e.g.,,double h = jim.setHeight (78.5) isillegal
3. Accessor
o Uses attributes for computations (without changing their values)
o Any return type other than void
o An explicit return statement (typically at the end of the method)
returns the computation result to where the method is being used.
e.g., double bmi = jim.getBMI () ;

e.0., println(pl.getDistanceFromOrigin());
30 of 68

OOP: The Dot Notation (1.1) LASSONDE

ooooooooooooooooo

A binary operator:

o LHS stores an address (which denotes an object)
o RHS the name of an attribute or a method

o LHS.RHS means:

Locate the context object whose address is stored in LHS,
then apply RHS.

What if LHS stores nu11? [NullPointerException ]

31 0f 68

OOP: The Dot Notation (1.2) LASSONDE

ooooooooooooooooo

e Given a variable of some reference type that is not nul1:

o We use a dot to retrieve any of its attributes .
Analogous to ’s in English
e.g., jim.nationality means jim’s nationality

o We use a dot to invoke any of its mutator methods , in order to
change values of its attributes.
€.g., jim.changeNationality ("CAN") changes the
nationality attribute of jim

o We use a dot to invoke any of its accessor methods , in order to
use the result of some computation on its attribute values.
e.g., jim.getBMI () computes and returns the BMI calculated
based on jim’s weight and height

o Return value of an accessor method must be stored in a variable.
e.g., double jimBMI = jim.getBMI ()

32 of 68



OOP: Method Calls ;jiigm OOP: Class Constructors (2) LASSONDE
1 iPoint pl = new Point (3, 4); i public class Person f{
2 ‘Point p2 = new Point (-6, -8); ‘ lntlage; . )
3 ‘System.out.println(pl. getDistanceFromOrigin () ); ‘ ztrlng na§1onéllty;
ouble weight;

4 ‘System.out.println(p2. getDistanceFromOrigin() ); ‘ double height;
5 ‘pl. movelp (2) ; ‘ Person(int initAge, String initNat) {
6 ‘pZ.moveUp(Z); ‘ age = initAge;
7 ‘System.out.println(pl. getDistanceFromOrigin() ); ‘ nationality = initNat;
8 !System.out.println(p2. getDistanceFromOrigin() ); } ;erson (double initW, double initH) |
* Lines 1 and 2 create two different instances of Point welght = InitW;
e Lines 3 and 4: invoking the same accessor method on two : height = inith;

different instances returns distinct values Person(int initAge, String initNat,
¢ Lines 5 and 6: invoking the same mutator method on two double initW, double initH) {

different instances results in jndependent Changes ... /*x initialize all attributes using the parameters x/
¢ Lines 3 and 7: invoking the same accessor method on the Y

same instance may return distinct values, why? Line 5 !
33 0f 68 35 of 68

OOP: Class Constructors (1) LASSONDE OOP: Class Constructors (3) LASSONDE

oooooooooooooooooooooooooooooooooo

public class Point {
double x;

double y;
e The purpose of defining a class is to be able to create
instances out of it. Point (double initX, double initY) {
x = 1nitX;
¢ To instantiate a class, we use one of its constructors . y = inity:
¢ A constructor }
o declares input parameters , , ,
. o . . Point (char axis, double distance) {
o uses input parameters to initialize some or all of its attributes if (axis == 'x') { x = distance; )
else if (axis == 'y’) { y = distance; }
else { System.out.println("Error: invalid axis.") }
}
}
34 of 68 36 of 68



OOP: Class Constructors (4) LASSONDE

e For each class, you may define one or more constructors :

Names of all constructors must match the class name.

No return types need to be specified for constructors.

Each constructor must have a distinct list of input parameter types.
Each parameter that is used to initialize an attribute must have a
matching type.

o The body of each constructor specifies how some or all
attributes may be initialized.

O O O O

37 of 68

OOP: Object Creation (1) LASSONDE

Point pl = new Point (2, 4);
System.out.println(pl);

Point@677327b6

By default, the address stored in p1 gets printed.
Instead, print out attributes separately:

System.out.println("(" + pl.x + ", " + pl.y + ")");

38 of 68

OOP: Object Creation (2) LASSONDE

A constructor may only initialize some attributes and leave others
uninitialized.

public class PersonTester {
public static void main(String[] args) {

/% initialize age and nationality only =/
Person jim = new Person (50, "BRI");
/* initialize age and nationality only =/
Person jonathan = new Person(65, "CAN");
/* initialize weight and height only */
Person alan = new Person(75, 1.80);
/% initialize all attributes of a person */

Person mark new Person(40, "CAN", 69, 1.78);

39 of 68

OOP: Object Creation (3) LASSONDE

Person jim = n Person “BRI"”
erson j ew Person(50, ) Person jonathan = new Person(65, “CAN")

Person Person

Jjim nationality “BRI” jonathan nationality wcaN”
weight
height

weight
height

Person alan = new Person(75, 1.80)
Person mark = new Person(40, “CAN”, 69, 1.78)

BeEscn Person

alan nationality null mark nationality

weight
height

height

40 of 68




]
OOP: Object Creation (4) o

ooooooooooooooooo

A constructor may only initialize some attributes and leave others
uninitialized.

public class PointTester {

public static void main(String[] args) {
Point pl = new Point (3, 4);
Point p2 = new Point (-3 -2);
Point p3 = new Point(’x’', 5);
Point p4 = new Point('y’', -7);

}

}
41 of 68

OOP: Object Creation (5) LASSONDE

ooooooooooooooooo

Point pl = new Point(3, 4) Point p2 = new Point(-3, -2)

S =
p2 Yy
p4

Person

Person
X

pl y

Point p3 = new Point(‘x’, 5) Point p4 = new Point(‘'y’, -7)

Person Person

p3

42 of 68

]
OOP: Object Creation (6) e

ooooooooooooooooo

¢ When using the constructor, pass valid argument values:
o The type of each argument value must match the corresponding
parameter type.
o e.g., Person (50, "BRI") matches
Person (int initAge, String initNationality)
o e.g., Point (3, 4) matches
Point (double initX, double initY)
e When creating an instance, uninitialized attributes implicitly get
assigned the default values .
o Set uninitialized attributes properly later using mutator methods

Person jim = new Person(50, "British");
jim.setWeight (85);
jim.setHeight (1.81);

43 of 68

OOP: Mutator Methods e

ooooooooooooooooo

e These methods change values of attributes.
e We call such methods mutators (with void return type).

public class Person {

void gainWeight (double units) {
weight = weight + units;
}
}

public class Point {

void moveUp() |
y=y +1;

}

}

44 of 68



OOP: Accessor Methods LASSONDE

ooooooooooooooooo

e These methods retfurn the result of computation based on
attribute values.
e We call such methods accessors (with non-void return type).

public class Person {

double getBMI() |
double bmi = height / (weight % weight);
return bmi;
}
}

public class Point {

double getDistanceFromOrigin() {
double dist = Math.sqgrt(x*x + y*y);
return dist;

}
asot 68

OOP: Use of Mutator vs. Accessor Methods i ono:

ooooooooooooooooo

e Calls to mutator methods cannot be used as values.

o e.g., System.out.println(jim.setWeight (78.5)); X
o e.g., double w = jim.setWeight (78.5);
o e.g., jim.setWeight (78.5); v

e Calls to accessor methods should be used as values.
° e.g., jim.getBMI () ;
o e.g., System.out.println (jim.getBMI ()) ;
°o e.g.,double w = jim.getBMI();

CA x

46 of 68

OOP: Method Parameters LASSONDE

ooooooooooooooooo

4

Principle 1: A constructor needs an input parameter for
every attribute that you wish to initialize.

€.d., Person (double w, double h) VsS.

Person (String fName, String lName)

Principle 2: A mutator method needs an input parameter for
every attribute that you wish to modify.

e.g., In Point, void moveToXAxis () VS.

void moveUpBy (double unit)

Principle 3: An accessor method needs input parameters if
the attributes alone are not sufficient for the intended
computation to complete.

e.g., In Point, double getDistFromOrigin () VS.

double getDistFrom(Point other)
7 of 68

OOP: Object Alias (1) LASSONDE

1 |int 1 = 3;

2 |int j = i; System.out.println(i == 7§); /+ true =/

3 |int k = 3; System.out.println(k == 1 && k == J); /* tru¢ =/

OO WN =

o Line 2 copies the number stored in i to j.
o After Line 4, i, 7, k refer to three separate integer placeholder,
which happen to store the same value 3.

Point pl = new Point (2, 3);

Point p2 = pl; System.out.println(pl == p2); /* true =/
Point p3 = new Point (2, 3);

Systme.out.printin(p3 == pl || p3 == p2); /* false =%/
Systme.out.println(p3.x == pl.x && p3.y == pl.y); /* trug¢ =/
Systme.out.println(p3.x == p2.x && p3.y == p2.y); /* trug =/

o Line 2 copies the address stored in p1 to p2.

o Both p1 and p2 refer to the same object in memory!

o p3, whose contents are same as p1 and p2, refer to a different
object in memory.

48 of 68



Problem: Consider assignments to primitive variables:

1 |int i1 = 1;
2 |int 12 = 2;
3 |int i3 = 3;
4 |int[] numbersl = {il, 12, 13};
5 |int[] numbers2 = new int[numbersl.length];
6 |for(int i = 0; 1 < numbersl.length; i ++) {
7 numbers2[i] = numbersl[i];
8 |}
9 | numbersl[0] = 4;
10 | System.out.println(numbers1[0]);
11 | System.out.println(numbers2[0]);
49 of 68

00 Program Programming: Object Alias (2.2)

Problem: Consider assignments to reference variables:
1 |Person alan = new Person("Alan");

2 | Person mark = new Person("Mark");

3 | Person tom = new Person("Tom");

4 | pPerson jim = new Person("Jim");

5 |pPerson|[] personsl = {alan, mark, tom};

6 |Person[] persons2 = new Person[personsl.length];
7 |for(int i = 0; 1 < personsl.length; i ++) {

8 persons2[i] = personsl[(i + 1) % personsl.length]; }
9 |personsl1[0].setAge(70);

10 | System.out.println(jim.age); /+ 0 %/

11 |System.out.println(alan.age); /* 70 %/

12 | System.out.println(persons2[0].age); /* 0 */

18 |personsl[0] = jim;

14 |persons1[0].setAge(75);

15 | System.out.println(jim.age); /+ 75 %/

16 | System.out.println(alan.age); /% 70 =/

17 | System.out.println(persons2[0].age); /+ 0 %/
500f 68

oooooo

ooooooooooo

Person tom = new Person("TomCruise");

Person ethanHunt = tom;

Person spy = ethanHunt;

tom.setWeight (77); print(tom.weight); Jx 77 */
ethanHunt.gainWeight (10); print(tom.weight); /* 87 */
spy.loseWeight (10); print(tom.weight); /* 77 */
Person prof = new Person("Jackie"); prof.setWeight (80);

spy = prof ; prof = tom ; tom =

print (prof.name+" teaches 2030"); /*TomC
print ("EthanHunt is "+ethanHunt.name) ; /

(
(
print ("EthanHunt is "+spy.name); /+Et
(
(

print ("TomCruise is "+tom.name); /*
print

"Jackie is

e An object at runtime may have more than one identities.
Its address may be stored in multiple reference variables.

¢ Calling a method on one of an object’s identities has the same
effect as calling the same method on any of its other identities.

51 of 68

Anonymous Objects (1)

oooooo

LASSONDE

ooooooooooo

¢ What's the difference between these two fragments of code?

1 |double square(double x
q ( ) 11 4 [double square(double x) {
2 double sgr = x * Xx;
2 return x * Xx; }
3 return sqr; }

After L2, the result of x » x:
o LHS: it can be reused (without recalculating) via the name sqr.
o RHS: it is not stored anywhere and returned right away.

e Same principles applies to objects:

1 |Person getP(String n) { i
1 |Person getP(String n) {
2 Person p = new Person (n) j
2 return new Person (n) ;

3 return p; }

}

new Person(n) denotes an object without a name reference.

o LHS: L2 stores the address of this anonymous object in p.

o RHS: L2 returns the address of this anonymous object directly.
52 of 68



Anonymous Objects (2.1)

Anonymous objects can also be used as assignment sources
or argument values:

class Member |
Order[] orders;
int noo;

/+ constructor ommitted #*/
void addOrder (Order o) {
orders|[noo] = o;
noo ++;

}

void addOrder(String n, double p, double qg) {
addOrder ( new Order(n, p, q) );

1ivalent

/* Eqt implementation:

* orders[noo] = new Order(n, p, q);
noo ++; */

53 of 68

LASSONDE

ooooooooooooooooo

Anonymous Objects (2.2)

One more example on using anonymous objects:

class MemberTester {
public static void main(String[] args) {
Member m = new Member ("Alan");
Order o = new Order ("Americano", 4.7, 3);
m.addOrder (o) ;
m.addOrder ( new Order ("Cafe Latte", 5.1, 4) );
}
}

54 of 68

LASSONDE

ooooooooooooooooo

Java Data Types (1)

A (data) type denotes a set of related runtime values.

1. Primitive Types

o Integer Type
e int [set of 32-bit integers]

e long [set of 64-bit integers]
o Floating-Point Number Type

e double [set of 64-bit FP numbers]
o Character Type

e char [set of single characters]

o Boolean Type
e boolean [set of true and false]

2. Reference Type : Complex Type with Attributes and Methods

o String [set of references to character sequences]
o Person [set of references to Person objects]
o Point [set of references to Point objects]
o Scanner [set of references to Scanner objects]

55 of 68

LASSONDE

ooooooooooooooooo

Java Data Types (2)

¢ Avariable that is declared with a fype but uninitialized is
implicitly assigned with its default value .
o Primitive Type
e int i; [ 0 is implicitly assigned to i]
e double d; [ 0.0 isimplicitly assigned to d]
[ false isimplicitly assigned to b]

e boolean b;
o Reference Type
e String s; [ nuil is implicitly assigned to s]
[ null isimplicitly assigned to jim]
[ nu11 isimplicitly assigned to p1]
e Scanner input; [ nuil is implicitly assigned to input]
e You can use a primitive variable that is uninitialized.

Make sure the default value is what you want!
e Calling a method on a uninitialized reference variable crashes
your program. [ NullPointerException ]

Always initialize reference variables!
56 of 68

e Person jim;

e Point pl;



Java Data Types (3.1) LASSONDE Java Data Types (3.2.2)

ooooooooooooooooo

e An attribute may store the reference to some object. )
1 |class PointCollectorTester ({
class Person { Person spouse; } ‘ 2 public static void main(String[] args) {
] 3 PointCollector pc = new PointCollector();
e Methods may take as parameters references to other objects. 4 System.out.println(pc.nop); /* 0 #/
class Person { g pc.addPoint(B,’ 4)i ) o p
void marry(Person other) { ... } } System.ogt.prlntln (pe.nop);  /* 1 s
7 pc.addPoint (-3, 4);
i ; /% 2 */
* Return values from methods may be references to other 8 System.out.println(pc.nop); / /
. 9 pc.addPoint (-3, —4);
objects. 10 System.out.println(pc.nop); /* 3 */
class Point { 11 pc.addPoint (3, -4);
void moveUpBy(int i) { y =y + 1i; } 12 System.out.println(pc.nop); /* 4 */
Point movedUpBy (int 1) { 13 Point[] ps = pc.getPointsInQuadrantI();
Point np = new Point(x, y); 14 System.out.println(ps.length); /+ 1 %/
np.moveUp (1) ; 15 System.out.println("(" + ps[0].x + ", " + ps[0].y + ")");
return np; 16 /x (3, 4) */
} 17 }
} 18 |}
57,0f 68

Java Data Types (3.2.1) LASSONDE Static Variables (1)

ooooooooooooooooo

An attribute may be of type Point [] , storing references to

Point objects. class Account {
1 |class PointCollector { int 1d;
2 Point[] points; int nop; /* number of points #*/ String owner;
3 PointCollector() { points = new Point[100]; } Account (int id, String owner) {
451— void add[Poin]t(double X, d(ouble) v) | ) this.id = id;

points[nop]l = new Point(x, y); nop++; .
his. = ;

6 Point[] getPointsInQuadrantI() { this.owner owner;
7 Point[] ps = new Point[nop]; }
8 int count = 0; /* 1 r of points in Quadrant I x/ }
9 for(int 1 = 0; 1 < nop; 1 ++) {
10 Point p = points[i];
11 if(p.x > 0 && p.y > 0) { pslcount] = p; count ++; } } class AccountTester {
12 Point 1Point _ Point [count]; Account accl = new Account(l, "Jim");
13 ‘ cintll B éln ° n,ew otntleount] ‘ Account acc2 = new Account (2, "Jeremy");

‘ /* ps contains null if count < nop */ ‘ System.out.println(accl.id '= acc2.id);
14 ‘ for(int i = 0; i < count; i ++) { glPoints[i] = ps[i] } ‘ ) ’
15 ‘ return glPoints ; ‘
16 ’ by \

But, managing the unique id’s manually is error-prone !

Required Reading: Point and PointCollector
58 of 68 60 of 68



LASSONDE

ooooooooooooooooo

Static Variables (2)

class Account {
static int globalCounter =

|
[
.

int id; String owner;
Account (String owner) {
this.id = globalCounter ; globalCounter ++;

this.owner = owner; } }

class AccountTester {

Account accl = new Account ("Jim");
Account acc2 = new Account ("Jeremy") ;
System.out.println(accl.id !'= acc2.id); }

e Each instance of a class (e.g., acc1, acc?2) has a local copy of
each attribute or instance variable (e.g., id).
o Changing accl.id does not affect acc2.id.

e A static variable (e.g., globalCounter) belongs to the class.
o Allinstances of the class share a single copy of the static variable.
o Change to globalCounter via c1 is also visible to c2.

e

LASSONDE

ooooooooooooooooo

Static Variables (3)

’class Account { ‘
static int globalCounter

I
[N
~.

int id; String owner;

Account (String owner) {
this.id = globalCounter ;
globalCounter ++;
this.owner = owner;

b}

e Static variable globalCounter is not instance-specific like

instance variable (i.e., attribute) id is.
¢ To access a static variable:
o No context object is needed.
o Use of the class name suffices, e.g., Account .globalCounter.
e Each time Account’s constructor is called to create a new
instance, the increment effect is visible to all existing objects

of Account.

e

LASSONDE

ooooooooooooooooo

Static Variables (4.1): Common Error

class Client {
Account|[] accounts;
static int numberOfAccounts =
void addAccount (Account acc) {
accounts|[numberOfAccounts] = acc;
numberOfAccounts ++;

bl

0;

class ClientTester {

Client bill = new Client ("Bill");
Client steve = new Client ("Steve");
Account accl = new Account () ;
Account acc2 = new Account () ;
bill.addAccount (accl);

/% correctly added to bill.accounts[0] */
steve.addAccount (acc2) ;

/* mistakenly added to steve.accounts[1]! #*/

}
e —

LASSONDE

ooooooooooooooooo

Static Variables (4.2): Common Error

o Attribute numberOfAccounts should not be declared as
static as its value should be specific to the client object.

e If it were declared as static, then every time the
addAccount method is called, although on different objects,
the increment effect of numberOfAccounts will be visible to
all Client objects.

e Here is the correct version:

class Client {
Account[] accounts;
int numberOfAccounts = 0;
void addAccount (Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;
}
}

e




EaSaRNDE

Static Variables (5.1): Common Error

ONO O WN =

public class Bank {
public string branchName;
public static int nextAccountNumber = 1;
public static void useAccountNumber () {
System.out.println (branchName + ...);
nextAccountNumber ++;

¢ Non-static method cannot be referenced from a static context
¢ Line 4 declares that we can call the method

userAccountNumber without instantiating an object of the
class Bank.

e However, in Lined 5, the stafic method references a non-static
attribute, for which we must instantiate a Bank object.
65 of 68

EaSaRNDE

Static Variables (5.2): Common Error

O~NO O WN =

public class Bank {
public string branchName;
public static int nextAccountNumber = 1;
public static void useAccountNumber() {
System.out.println (branchName + ...);
nextAccountNumber ++;

e To call useAccountNumber (), no instances of Bank are
required:

Bank .useAccountNumber() ;

e Contradictorily, to access branchName, a context object is
required:

Bank bl = new Bank(); bl.setBranch("Songdo IBK");
System.out.println( bl .branchName) ;

66 of 68

EaSaRNDE

Static Variables (5.3): Common Error

There are two possible ways to fix:

1. Remove all uses of non-static variables (i.e., branchName) in
the static method (i.e., useAccountNumber).

2. Declare branchName as a static variable.

o This does not make sense.
-~ branchName should be a value specific to each Bank instance.

67 of 68

\y,

o

Index (1)

g
8

Separation of Concerns: App/Tester vs. Model
Object Orientation:
Observe, Model, and Execute

Object-Oriented Programming (OOP)

OO0 Thinking: Templates vs. Instances (1.1)
OO0 Thinking: Templates vs. Instances (1.2)
OO0 Thinking: Templates vs. Instances (2.1)
OO Thinking: Templates vs. Instances (2.2)
OO0 Thinking: Templates vs. Instances (3)

OOP: Classes ~ Templates

OOP:

Define Constructors for Creating Objects (1.1)
OOP:

[ggffier;e Constructors for Creating Objects (1.2)



Index (2) Lassonoe

OOP:
Define Constructors for Creating Objects (2.1)
OOP:
Define Constructors for Creating Objects (2.2)

Visualizing Objects at Runtime (1)
Visualizing Objects at Runtime (2.1)
Visualizing Objects at Runtime (2.2)
Visualizing Objects at Runtime (2.3)
Visualizing Objects at Runtime (2.4)
The this Reference (1)

The this Reference (2)

The this Reference (3)

The this Reference (4)

The this Reference (5)
69 of 68

Index (3) Sssonee

The this Reference (6.1): Common Error
The this Reference (6.2): Common Error
OOP: Methods (1.1)

OOP: Methods (1.2)

OOP: Methods (2)

OOP: Methods (3)

OOP: The Dot Notation (1.1)

OOP: The Dot Notation (1.2)

OOP: Method Calls

OOP: Class Constructors (1)

OOP: Class Constructors (2)

OOP: Class Constructors (3)

OOP: Class Constructors (4)

OOP: Object Creation (1)

70 of 68

Index (4) Lassonoe

OOP: Object Creation (2)
OOP: Object Creation (3)
OOP: Object Creation (4)
OOP: Object Creation (5)
OOP: Object Creation (6)
OOP: Mutator Methods
OOP: Accessor Methods
OOP: Use of Mutator vs. Accessor Methods
OOP: Method Parameters
OOP: Object Alias (1)
OOP: Object Alias (2.1)
OOP: Object Alias (2.2)
OOP: Object Alias (3)

.Lm%lymous Objects (1)

Index (5) Sssonee

Anonymous Objects (2.1)
Anonymous Objects (2.2)

Java Data Types (1)

Java Data Types (2)

Java Data Types (3.1)

Java Data Types (3.2.1)

Java Data Types (3.2.2)

Static Variables (1)

Static Variables (2)

Static Variables (3)

Static Variables (4.1): Common Error
Static Variables (4.2): Common Error
Static Variables (5.1): Common Error

Sgafteié: Variables (5.2): Common Error



Index (6) Lassonpe
Static Variables (5.3): Common Error

73 of 68

Exceptions

EECS2030 B: Advanced
Object Oriented Programming
Fall 2018

E
Y CHEN-WEI WANG

Caller vs. Callee

¢ Within the body implementation of a method, we may call other

methods.
1 |eclass C1 {
2 void ml() {
3 C2 o = new C2();
4 o.m2(); /+ static type of o 1 2
5 }
6 |}

e From Line 4, we say:

o Method c1.m1 (i.e., method m1 from class C1) is the caller of
method c2.m2.
o Method c2.m2 is the callee of method C1.m1.

2o0f 41

Why Exceptions? (1.1) s

ooooooooooooooooo

1 |class Circle {

2 double radius;

3 Circle() { /* radius defaults to 0 =/ }

4 void setRadius(double r) {

5 if (r < 0) { System.out.println( "Invalid radius."); }
6 else { radius = r; }

7 }

8 double getArea() { return radius x radius * 3.14; }

9

}

¢ A negative radius is considered as an invalid input value to
method setRadius.
e What if the caller of Circle.setRadius passes a negative
value for r?
o An error message is printed to the console (Line 5) to warn the
caller of setRadius.
o However, printing an error message to the console does not force

the caller setRadius to stop and handle invalid values of r.
3of 41



Why Exceptions? (1.2) LASSONDE

ONO O~ WN =

class CircleCalculator
public static void main(String[] args) {
Circle ¢ = new Circle();
c.setRadius( -10 ) ;
double area = c.getAreal();
System.out.println("Area:
}
}

" + area);

e L4: circleCalculator.mainis caller of circle.setRadius

¢ A negative radius is passed to setRadius in Line 4.

e The execution always flows smoothly from Lines 4 to Line 5,
even when there was an error message printed from Line 4.

e |t is not feasible to check if there is any kind of error message
printed to the console right after the execution of Line 4.

e Solution: A way to force circleCalculator.main, caller of
circle.setRadius, {0 realize that things might go wrong.

= When things do go wrong, immediate actions are needed.
4of 41

Why Exceptions? (2.1) LASSONDE

class Account {
int id; double balance;
Account (int id) { this.id = id; /* balance defaults to 0 =/ }
void deposit (double a) {
if (a < 0)
else {
}
void withdraw(double a) {

{ System.out.println( "Invalid deposit." ); }
balance += a; }

| if (a < 0 |/ balance - a < 0) {
System.out.println( "Invalid withdraw." ); }
else { balance -= a; }

}
}

¢ A negative deposit or withdraw amount is invalid.

e When an error occurs, a message is printed to the console.

e However, printing error messages does not force the caller of
Account .deposit Or Account .withdraw to stop and

handle invalid values of a.
5 of 41

Why Exceptions? (2.2) LASSONDE

0O WO NOUN»WN =

—_ -

class Bank {
Account[] accounts; int numberOfAccounts;
Account (int id) { ... }
void withdrawFrom(int id, double a) {
for(int i = 0; i < numberOfAccounts;
if (accounts[i].id == 1id) {
accounts|[i] .withdraw( a );

i ++) A

}

e L7. Bank.withdrawFromis caller of Account.withdraw
e What if in Line 7 the value of a is negative?
Error message | Invalid withdraw]printed from method
Account .withdraw to console.
e Impossible to force Bank.withdrawFrom, the caller of

Account . withdraw, t0 stop and handle invalid values of a.
6 of 41

Why Exceptions? (2.3) LAssowns

O~NO O~ WN =

class BankApplication ({
pubic static void main(String[] args) {

Scanner input = new Scanner(System.in);
Bank b = new Bank(); Account accl = new Account(23);
b.addAccount (accl);
double a = input.nextDouble();
b.withdrawFrom (23, a);

}

e There is a chain of method calls:
o BankApplication.main calls Bank.withdrawFrom
o Bank.withdrawFrom calls Account.withdraw.
e The actual update of balance occurs at the Account class.
o What if in Line 7 the value of a is negative?
’ Invalid withdraw ‘ printed from Bank . withdrawFrom,
printed from Account . withdraw to console.
o Impossible to force BankApplication.main, the caller of
Bank .withdrawFrom, to stop and handle invalid values of a.
¢ Solution: Define error checking only once and let it propagate.

7of 41




LASSONDE

ooooooooooooooooo

What is an Exception?

e An exception is an event, which

o occurs during the execution of a program

o disrupts the normal flow of the program’s instructions
¢ When an error occurs within a method:

o the method throws an exception:

o first creates an exception object
e then hands it over to the runtime system

o the exception object contains information about the error:

o type [e.g., NegativeRadiusException]
« the state of the program when the error occurred

8 of 41

LASSONDE

ooooooooooooooooo

Exceptions in Java (1.1)

public class InvalidRadiusException extends Exception {
public InvalidRadiusException(String s) {
super (s);
}
}

¢ Anew kind of Exception: InvalidRadiusException

¢ For any method that can have this kind of error, we declare at
that method’s signature that it may throw an
InvalidRaidusException object.

9 of 41

LASSONDE

ooooooooooooooooo

Exceptions in Java (1.2)

class Circle {

double radius;

Circle() { /# radius de

void setRadius (double r)
if (r < 0) {

throw new InvalidRadiusException("Negative radius.");

}
else { radius = r; }

}

double getArea() { return radius x radius * 3.14; }

lts to 0 %/ }

throws InvalidRadiusException {

e As part of the signature of setRadius, we declare that it may
throw an InvalidRadiusException object at runtime.

¢ Any method that calls setRadius will be forced to
deal with this potential error .

10 of 41

LASSONDE

ooooooooooooooooo

Exceptions in Java (1.3)

©CoO~NOOOThWN =

class CircleCalculatorl {
public static void main(String[] args) {
Circle ¢ = new Circle();
try {
c.setRadius(-10);
double area = c.getAreal();
System.out.println("Area: " + area);
}
catch (InvalidRadiusException e) {
System.out.println(e);
}
b}

e Lines 6 is forced to be wrapped within a try-catch block, since
it may throw an InvalidRadiusException object.

e If an InvalidRadiusException object is thrown from Line
6, then the normal flow of execution is interrupted and we go to
the catch block starting from Line 9.

11 of 41



Exceptions in Java (1.4.1) LASSONDE

ooooooooooooooooo

Exercise: Extend CircleCalculatorl: repetitively prompt
for a new radius value until a valid one is entered (i.e., the
InvalidRadiusException does not occur).

12 of 41

Exceptions in Java (1.4.2) LASSONDE

ooooooooooooooooo

Exceptions in Java (2.1) LASSONDE

ooooooooooooooooo

public class InvalidTransactionException extends Exception {
public InvalidTransactionException(String s) {
super (s);
}
}

©Coo~NO O A WD =

—_
—_ O

—_
w N

L

—
N

public class CircleCalculator2 {

public static void main(String[] args) {
Scanner input = new Scanner(System.in);

boolean inputRadiusIsValid = false;

while (!inputRadiusIsValid) {

System.out.println("Enter a radius:");

double r = input.nextDouble();

Circle ¢ = new Circle();

try { c.setRadius(r);
inputRadiusIsValid = true;
System.out.print ("Circle with radius " + r);
System.out.println(" has area: "+ c.getArea()); }

catch (InvalidRadiusException e) { print ("Try again!"); }

Py |

e At L7, if the user’s input value is:

1

o Non-Negative: L8 — L12.
o Negative: L8, L9, L13.

3of41

[ inputRadiusIsvValid set frue]
[ inputRadiusIsValid remains false |

¢ A new kind of Exception:
InvalidTransactionException

¢ For any method that can have this kind of error, we declare at
that method’s signature that it may throw an
InvalidTransactionException object.

14 of 41

Exceptions in Java (2.2) LASSONDE

ooooooooooooooooo

class Account {
int id; double balance;

Account () { /#* be 1ce defaults to 0 =/ }
void withdraw(double a) throws InvalidTransactionException {
if (a < 0 || balance - a < 0) {
throw new InvalidTransactionException("Invalid withdraw."); }
else { balance -= a; }

}
}

¢ As part of the signature of withdraw, we declare that it may
throw an InvalidTransactionException object at
runtime.

¢ Any method that calls withdraw will be forced to
deal with this potential error .

15 of 41



Exceptions in Java (2.3)

LASSONDE

ooooooooooooooooo

class Bank {
Account|[] accounts; int numberOfAccounts;
Account (int id) { ... }
void withdraw(int id, double a)

throws InvalidTransactionException {
for(int i = 0; 1 < numberOfAccounts; 1 ++) {
if (accounts([i].id == 1id) {
accounts|[i] .withdraw(a);

} /% end for */ '} /% end withdraw =/ }

e As part of the signature of withdraw, we declare that it may

throw an InvalidTransactionException object.

¢ Any method that calls withdraw will be forced to

deal with this potential error .

* We are propagating the potential error for the right party (i.e.,

BankApplication) to handle.

6 of 41

Exceptions in Java (2.4)

LASSONDE

ooooooooooooooooo

©CoONOOOh~WN =

class BankApplication {
pubic static void main(String[] args) {

Bank b = new Bank();
Account accl = new Account (23);
b.addAccount (accl) ;

Scanner input = new Scanner(System.in);
double a = input.nextDouble();
try {

b.withdraw(23, a);
System.out.println(accl.balance); }
catch (InvalidTransactionException e) {

System.out.println(e); } } }

Lines 9 is forced to be wrapped within a try-catch block, since
it may throw an InvalidTransactionException object.

If an InvalidTransactionException objectis thrown from
Line 9, then the normal flow of execution is interrupted and we
go to the catch block starting from Line 11.

7of 41

Examples (1)

LASSONDE

ooooooooooooooooo

double r = ...;
double a = ...;
try{
Bank b = new Bank();
b.addAccount (new Account (34));
b.deposit (34, 100);
b.withdraw (34, a);
Circle ¢ = new Circle();
c.setRadius (r);
System.out.println(r.getArea());
}
catch (NegativeRadiusException e) {
System.out.println(r + " is not a valid radius value.");
e.printStackTrace();
}
catch (InvalidTransactionException e) {
System.out.println(r + " is not a valid transaction value.");
e.printStackTrace();
}

18 of 41

Example (2.1)

LASSONDE

ooooooooooooooooo

The Integer class supports a method for parsing Strings:

public static int parselInt (String s)
throws NumberFormatException

e.g., Integer.parselInt ("23") returns 23

e.g., Integer.parselnt ("twenty-three") throws a
NumberFormatException

Write a fragment of code that prompts the user to enter a string
(using nextLine from Scanner) that represents an integer.

If the user input is not a valid integer, then prompt them to enter

again.

19 of 41



Example (2.2) LASSONDE Example: to Handle or Not to Handle? (1.2) .issonc:
¢ We assume the following kind of error for negative values:
Scanner input = new Scanner(System.1in); class NegValException extends Exception {
boolean validInteger = false; NegValException(String s) { super(s); }
while (!validInteger) { }
System.out.println("Enter an integer:");
String userInput = input.nextLine(); . . .
try {g ¢ The above kind of exception may be thrown by calling A .ma.
int userinteger = Integer.parselnt(userlnput); * We will see three kinds of possibilities of handling this
validInteger = true; : .
} exception:
catch (NumberFormatException e) { Version 1:
System.out.println(userInput + " is not a valid integer."); Handle it in B.mb
o cger remains o Version 2:
} . oo
} Pass it from B.mb and handle it in Tester.main
Version 3:
Pass it from B.mb, then from Tester .main, then throw it to the
console.
20 of 41 22 of 41

Example: to Handle or Not to Handle? (1.1) .ssonc: Example: to Handle or Not to Handle? (2.1) .ssonc:
Consider the following three classes: Version 1: Handle the exception in B.mb.
class A { class A {
ma(int i) { ma (int i) throws NegValException {
Qif(i < 0) { /+ if(i < 0) { throw new NegValException("Error."); }
else { /% Do ing. */ } else { /x Do somethin */ }
} o} b}
class B {
class B { mb(int 1) {
mb(int 1) { A oa = new A();
4 oa =.new A0 ;7 . try { oca.ma(i); }
oa.ma(i); /x Error occurs if i < 0 */ catch (NegValException nve) { /# Do sc ng. */ }
o} by
class Tester { class Tester {
public static void main(String[] args) { public static void main(String[] args) {
Scanner input = new Scanner(System.in); Scanner input = new Scanner(System.in);
int i = input.nextInt(); int i = input.nextInt();
B ob = new B(); B ob = new B();
ob.mb(1i); /* Where can the error be handled? */ ob.mb(1i); /* Error, if any, would have been handled in B.mb. */
o} o}

21 ot 41 23 of 41



\n,

Example: to Handle or Not to Handle? (2.2)

ERSS0NDE
Version 1: Handle the exception in B.mb.
Method A.ma causes an error and an
NegValException object is thrown
throws an method call
exception
Method B.mb chooses to handle the error
catches an right away using a try-catch block.
exception
method call
Method Tester.main method
need not worry about this error.

24 of 41

\n,

g

SSONDE

HoOL OF EN

Example: to Handle or Not to Handle? (3.1)

Version 2: Handle the exception in Tester .main.

class A {
ma (int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /+ Do something. =/ }
o}
class B {
mb(int i) throws NegValException {
A oa = new A();
oa.ma(i);

b}

class Tester {

public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
try { ob.mb(i); }
catch (NegValException nve) { /* Do some

o}

25 of 41

J

Example: to Handle or Not to Handle? (3.2) .

SSONDE

HooL OF ©

Version 2: Handle the exception in Tester .main.

Method A.ma causes an error and an
NegValException object is thrown

throws an method call
exception
Method B.mb chooses not to handle the
forwards/ error and propagates it
propagates to its caller (i.e., Tester.main).
an exception
method call

Method Tester.main method
chooses to handle this error, so that
this NegValException is not
propagated further.

catches an
exception

26 of 41

J

Example: to Handle or Not to Handle? (4.1) .

Version 3: Handle in neither of the classes.

SSONDE

HoOL OF ENC

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /+ Do something. */ }
b}
class B {
mb(int i) throws NegValException {
A oa = new A();
oa.ma(1i);

b}

class Tester {
public static void main(String[] args) throws NegValException {

Scanner input = new Scanner(System.in);
int i = input.nextInt();

B ob = new B();

ob.mb(1);

}od

27 of 41




Example: to Handle or Not to Handle? (4.2)

Version 3: Handle in neither of the classes.

Method A.ma causes an error and an
NegValException object is thrown

throwt§ an method call
exception
Method B.mb chooses not to handle the
forwards/ error and propagates it
propagates to its caller (i.e., Tester.main).
an exception
method call
Method Tester.main method
;:Jxagradtse/s chooses not to handle the error, so that

this NegValException is propagated

an exception further (i.e., thrown to console).

28 of 41

Stack of Method Calls LASSONDE

ooooooooooooooooo

e Execution of a Java project starts from the main method of
some class (e.g., CircleTester, BankApplication).

e Each line of method call involves the execution of that method’s
body implementation
o That method’s body implementation may also involve method

calls, which may in turn involve more method calls, and efc.

o |tis typical that we end up with a chain of method calls !
o We call this chain of method calls a call stack . For example:

e Account.withdraw [top of stack; /atest called]

e Bank.withdrawFrom
e BankApplication.main [bottom of stack; earliest called]
o The closer a method is to the top of the call stack, the /ater its call
was made.

29 of 41

What to Do When an Exception Is Thrown? (1

> method call

method call

> method call
30 of 41

Method where error occurred and an
exception object thrown
(top of call stack)

throws an
exception

forwards/
propagates
an exception

Method with an exception handler
catches an
exception

Method without an exception handler

main method
(bottom of call stack)

What to Do When an Exception Is Thrown? ( bonoe

o After a method throws an exception, the runtime system

searches the corresponding call stack for a method that
contains a block of code to handle the exception.
o This block of code is called an exception handler .
¢ An exception handler is appropriate if the fype of the exception object
thrown matches the type that can be handled by the handler.
e The exception handler chosen is said to catch the exception.
o The search goes from the fop to the bottom of the call stack:
e The method in which the error occurred is searched first.
e The exception handler is not found in the current method being
searched = Search the method that calls the current method, and etc.
« When an appropriate handler is found, the runtime system passes the
exception to the handler.
o The runtime system searches all the methods on the call stack
without finding an appropriate exception handler
= The program terminates and the exception object is directly

“thrown” to the console!
31 of 41



The Catch or Specify Requirement (1) LASSONDE

ooooooooooooooooo

Code (e.g., a method call) that might throw certain exceptions
must be enclosed by one of the two ways:

1. The “Catch” Solution: A t ry statement that catches and
handles the exception.

main(...) {
Circle ¢ = new Circle();
try {

c.setRadius (-10);
}
catch (NegativeRaidusException e) {

}
}

32 of 41

The Catch or Specify Requirement (2) LASSONDE

ooooooooooooooooo

Code (e.g., a method call) that might throw certain exceptions

must be enclosed by one of the two ways:

2. The “Specify” Solution: A method that specifies as part of its
signature that it can throw the exception (without handling that
exception).

class Bank {
void withdraw (double amount)
throws InvalidTransactionException {

accounts[i] .withdraw(amount) ;

33 of 41

The Catch or Specify Requirement (3) LASSONDE

STHOOL OF ENGINEERING.

There are three basic categories of exceptions

[
l |OException .

l FileNotFoundException ' l EOFException '

[ [ [
lVivtuaIMachineError. l 10Error ' lRuntimeException'
A

OutofMemoryErrorI
l lllegalArgumentException .
IndexOutOfBoundsException. T

l NumberFormatException .

[ NullPointerException

lArraylndexOutOfBoundsException. lNoSuchEIementException. l ClassCastException '

Only one category of exceptions is subject to the
Catch or Specify Requirement .

34 of 41

ooooooooooooooooo

e Checked exceptions are exceptional conditions that a

well-written application should anticipate and recover from.

o An application prompts a user for a circle radius, a
deposit/withdraw amount, or the name of a file to open.

o Normally, the user enters a positive number for radius/deposit, a
not-too-big positive number for withdraw, and existing file to open.

o When the user enters invalid numbers or file names,
NegativeRadiusException,
InvalidTransactionException, Or
FileNotFoundException is thrown.

o A well-written program will catch this exception and notify the user
of the mistake.

e Checked exceptions are:

o subject to the Catch or Specify Requirement .

o subclasses of Exception that are not descendant classes of

RuntimeException.
35 of 41



Exception Category (2): Errors LASSONDE

ooooooooooooooooo

e Errors are exceptional conditions that are external to the
application, and that the application usually cannot anticipate or
recover from.

o An application successfully opens a file for input.

o But the file cannot be read because of a hardware or system
malfunction.

o The unsuccessful read will throw java.io.IOError

e Frrors are:

o not subject to the Catch or Specify Requirement .
o subclasses of Error

36 of 41

ooooooooooooooooo

e Runtime exceptions are exceptional conditions that are

internal to the application, and that the application usually
cannot anticipate or recover from.

o These usually indicate programming bugs, such as logic errors or
improper use of an API.

€.0.,, NullPointerException
€.d., ClassCastException
€.0., ArrayIndexOutOfBoundException
e Runtime exceptions are:
o not subject to the Catch or Specify Requirement .
o subclasses of Runt imeException

e Errors and Runtime exceptions are collectively known as
unchecked exceptions .

37 of 41

Catching and Handling Exceptions LASSONDE

ooooooooooooooooo

¢ To construct an exception handler :
1. Enclose the code that might throw an exception within a t ry block.
2. Associate each possible kind of exception that might occur within
the t ry block with a catch block.
3. Append an optional £inally block.

try { /* code that might throw
catch (ExceptionTypel e) { ... }
catch (ExceptionType2 e) { ... }

finally { ... }

e When an exception is thrown from Line i in the ¢ ry block:
o Normal flow of execution is interrupted: the rest of t ry block
starting from Line i + 1 is skipped.
o Each catch block performs an instanceof check on the thrown
exception: the first matched catch block is executed.
o The rfinally block is always executed after the matched catch
38 of 410lOCK is executed.

Examples (3) LASSONDE

ooooooooooooooooo

double r .
double a o
try{
Bank b = new Bank();
b.addAccount (new Account (34));
b.deposit (34, a)
Circle ¢ = new Circle();
c.setRadius(r);
System.out.println(r.getAreal());
}
catch (NegativeRadiusException e) |
System.out.println(r + " is not a valid radius value.");
e.printStackTrace();
}
catch (InvalidTransactionException e) {
System.out.println(r + " is not a valid transaction value.");
e.printStackTrace();
}

‘catch( Exception e) { /+* any other kinds of exceptions x/

e.printStackTrace();
}39 of 41




Examples (4): Problem?

EaSaRNDE

double r = ...; double a = ...;
try{
Bank b = new Bank();
b.addAccount (new Account (34));
b.deposit (34, 100);
b.withdraw(34, a);
Circle ¢ = new Circle();
c.setRadius(r);
System.out.println(r.getAreal());
}
/+ Every exception object is a descendant of Exception. */
catch ( Exception e) {
e.printStackTrace();

}

catch (NegativeRadiusException e) { /# Problem: Not reachable! */
System.out.println(r + " is not a valid radius value.");
e.printStackTrace();

}

catch (InvalidTransactionException e) { /* Problem: Not reachable!
System.out.println(r + " is not a valid transaction value.");
aGof@¥ intStackTrace() ;

*/

Index (1) :AssoNDE

Caller vs. Callee

Why Exceptions? (1.1)
Why Exceptions? (1.2)
Why Exceptions? (2.1)
Why Exceptions? (2.2)
Why Exceptions? (2.3)
What is an Exception?
Exceptions in Java (1.1)
Exceptions in Java (1.2)
Exceptions in Java (1.3)
Exceptions in Java (1.4.1)
Exceptions in Java (1.4.2)
Exceptions in Java (2.1)
Exceptions in Java (2.2)

41 of 41

Index (2) Lassonoe

Exceptions in Java (2.3)

Exceptions in Java (2.4)

Examples (1)

Example (2.1)

Example (2.2)

Example: to Handle or Not to Handle? (1.1)
Example: to Handle or Not to Handle? (1.2)
Example: to Handle or Not to Handle? (2.1)
Example: to Handle or Not to Handle? (2.2)
Example: to Handle or Not to Handle? (3.1)
Example: to Handle or Not to Handle? (3.2)
Example: to Handle or Not to Handle? (4.1)
Example: to Handle or Not to Handle? (4.2)
Sjagk of Method Calls

Index (3) Sssonee

What to Do When an Exception Is Thrown? (1)
What to Do When an Exception Is Thrown? (2)
The Catch or Specify Requirement (1)

The Catch or Specify Requirement (2)

The Catch or Specify Requirement (3)
Exception Category (1): Checked Exceptions
Exception Category (2): Errors

Exception Category (3): Runtime Exceptions
Catching and Handling Exceptions

Examples (3)

Examples (4): Problem?
43 of 41



Test-Driven Development (TDD) with JUnit

EECS2030 B: Advanced
Object Oriented Programming

' Fall 2018

E
Y CHEN-WEI WANG

ooooooooooooooooooo

Consider two kinds of exceptions for a counter:

public class ValueTooLargeException extends Exception {
ValueTooLargeException(String s) { super(s); }

}

public class ValueTooSmallException extends Exception {
ValueTooSmallException(String s) { super(s); }

}

Any thrown object instantiated from these two classes must be
handled ( catch-specify requirement ):

o Either specify throws ... inthe method signature
(i.e., propagating it to other caller)
o Or handle itinatry-catch block

20f39

J

ooooooooooooooooooo

Approach 1 — Specify: Indicate in the method signature that a
specific exception might be thrown.
Example 1: Method that throws the exception

class C1 {
void ml (int x) throws ValueTooSmallException {
if(x < 0) |
throw new ValueTooSmallException("val " + x);
}
}
}

Example 2: Method that calls another which throws the exception

class C2 {
Cl cl;
void m2(int x) throws ValueTooSmallException {
cl.ml(x);
}
}

30f39

ooooooooooooooooooo

Approach 2 — Catch: Handle the thrown exception(s) in a
try-catch block.

class C3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int x = input.nextInt();
C2 c2 = new c2();
try {
c2.m2(x);

}
catch (ValueTooSmallException e) { ... }

4 0of 39



A Simple Counter (1) LASSONDE

ooooooooooooooooo

Consider a class for keeping track of an integer counter value:

public class Counter {

public final static int MAX VALUE
public final static int MIN_VALUE
private int value;
public Counter() {

this.value = Counter.MIN_VALUE;
}
public int getValue() {

return value;

}

[l
o

o Access private attribute value using public accessor getValue.
Two class-wide (i.e., static) constants (i.e., final) for lower and
upper bounds of the counter value.

Initialize the counter value to its lower bound.

o | Requirement|:

The counter value must be between its lower and upper bounds.
50f 39

e}

(o)

Exceptional Scenarios LASSONDE

ooooooooooooooooo

Consider the two possible exceptional scenarios:

¢ An attempt to increment above the counter’s upper bound.
¢ An attempt to decrement below the counter’s lower bound.

6 of 39

A Simple Counter (2) o

ooooooooooooooooo

* class Co -

C s Counter =/
public void increment () throws ValueTooLargeException {
if (value == Counter.MAX VALUE) {
throw new ValueTooLargeException("counter value is " + value);
}
else { value ++; }
}

public void decrement () throws ValueTooSmallException {
if (value == Counter.MIN_ VALUE) {
throw new ValueTooSmallException("counter value is " + value);
}
else { value ——; }
}
}

o Change the counter value via two mutator methods.
o Changes on the counter value may frigger an exception:
o Attempt to increment when counter already reaches its maximum.

o Attempt to decrement when counter already reaches its minimum.
7 of 39

Components of a Test LASSONDE

ooooooooooooooooo

Manipulate the relevant object(s).

e.g., Initialize a counter object c, then call c. increment ().
What do you expect to happen ?

e.g., value of counter is such that Counter .MIN_VALUE + 1
What does your program actually produce ?

e.g., call c.getVvalue to find out.
A test:

o Passes if expected value maiches actual value
o Fails if expected value does not match actual value

So far, you ran tests via a tester class with the main method.

8 of 39



5 Ay
s

Testing Counter from Console (V1): Case 1

£2ONDE

Consider a class for testing the Counter class:

public class CounterTesterl ({
public static void main(String[] args) {

Counter ¢ = new Counter();

println("Init val: " + c.getValue());

try {
c.decrement () ;
println("ValueTooSmallException NOT thrown as expected.");

}

catch (ValueTooSmallException e) {
println("ValueTooSmallException thrown as expected.");

Py}

Executing it as Java Application gives this Console Output:

Init val: O
ValueTooSmallException thrown as expected.

9 of 39

5 Ay

Testing Counter from Console (V1): Case 2

ROSOnDE
Consider another class for testing the Counter class:
public class CounterTester2 {
public static void main(String[] args) {
Counter ¢ = new Counter|();
println("Current val: " + c.getValue());
try { c.increment(); c.increment(); c.increment(); }
catch (ValueTooLargeException e) {
println("ValueToolLargeException thrown unexpectedly."); }
println("Current val: " + c.getValue());
try {
c.lincrement () ;
println("ValueTooLargeException NOT thrown as expected."); }
catch (ValueTooLargeException e) {
println("ValueToolLargeException thrown as expected."); } } }

Executing it as Java Application gives this Console Output:

Current val: O
Current val: 3
ValueTooLargeException thrown as expected.

10 of 39

st e

0oL oF B

Testing Counter from Console (V2)
Consider a different class for testing the Counter class:

import java.util.Scanner;
public class CounterTester3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String cmd = null; Counter c¢c = new Counter();
boolean userWantsToContinue = true;
while (userWantsToContinue) ({
println("Enter \"inc\", \"dec\", or \"val\":");
cmd = input.nextLine();

try {
if (cmd.equals ("inc")) { c.increment () ; }
else if (cmd.equals("dec")) { c.decrement () ; }

‘ else if (cmd.equals("val")) { println( c.getValue() ); }

else { userWantsToContinue = false; println("Bye!"); }

}
catch (ValueTooLargeException e){ println("Value too big!"); }
catch (ValueTooSmallException e){ println("Value too small!"); }

}

b}

11 0f 39

5 Ay

g

£2ONDE

Testing Counter from Console (V2): Test 1

Test Case 1: Decrement when the counter value is too small.

Enter "inc", "dec", or "val":

Enter "inc", "dec", or "val":

Value too small!

Enter "inc", "dec", or "val":
exit

Bye!

12 of 39



Testing Counter from Console (V2): Test 2  Jssons
Test Case 2: Increment when the counter value is too big.

Enter "inc", "dec", or "val":
inc

Enter "inc", "dec", or "wval":
inc

Enter "inc", "dec", or "val":
inc

Enter "inc", "dec", or "val":
val

3

Enter "inc", "dec", or "val":
inc

Value too big!

Enter "inc",
exit

Bye'!

"dec", or "val":

13 of 39

Limitations of Testing from the Console LASSONDE
e Do Test Cases 1 & 2 suffice to test Counter’s correctness?
o lIs it plausible to claim that the implementation of Counter is
correct because it passes the two test cases?

¢ What other test cases can you think of?

c.getValue () H c.increment () ‘ c.decrement ()
0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2

e So in total we need 8 test cases. = 6 more separate

o CounterTester classes to create (like CounterTesterl)!

o Console interactions with CounterTester3!
¢ Problems? It is inconvenient to:

o Run each TC by executing main of a CounterTester and

comparing console outputs with your eyes.
o Re-run manually all TCs whenever Counter is changed.
Regression Testing : Any change introduced to your software must

1aof39 110t compromise its established correctness.

e
Why JUnit?

ooooooooooooooooo

e Automate the testing of correctness of your Java classes.

¢ Once you derive the list of tests, translate it into a JUnit test
case, which is just a Java class that you can execute upon.

e JUnit tests are helpful callers/clients of your classes, where
each test may:
o Either attempt to use a method in a legal way (i.e., satisfying its
precondition), and report:
e Success if the result is as expected
e Failure if the result is not as expected

o Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
e Success if the expected exception
(e.g., valueTooSmallException) OCCUrS.
e Failure if the expected exception does not occur.

15 of 39

LASSONDE

ooooooooooooooooo

How to Use JUnit: Packages

Step 1:
o In Eclipse, create a Java project ExampleTestingCounter
o Separation of concerns :
o Group classes for implementation (i.e., Counter)
into package implementation.

e Group classes classes for testing (to be created)
into package tests.

V‘lyJ ExampleTestingCounter
» =\, JRE System Library [JavaSE-1.8]
v B src
¥ i implementation
» [J) Counter.java
> m ValueToolLargeException.java
> m ValueTooSmallException.java

5 tests

16 of 39



J

How to Use JUnit: New JUnit Test Case (1) sono:

Step 2: Create a new JUnit Test Case in tests package.

v (=2 ExampleTestingUtilityClasses
» =\ JRE System Library [JavaSE-1.8]
v (B src
v 1 implementation
» [J] Counter.java
I tests

New » 22 Java Project

Open in New Window £ Project...

Open Type Hierarchy Fa 8 Package

Show In N8BW » @ Class

[ Copy 8C @ Interface

E2 Copy Qualified Name @ Enum

(7 Paste 8V @ Annotation

% Delete & &9 Source Folder
14 Java Working Set

Remove from Context &¥ Folder

Build Path : > < File

i::gfor %:? > | 2 Untitled Text Fie
[ Task

b mpor..

Create one JUnit Test Case to test one Java class only.

= If you have n Java classes to test, create n JUnit test cases.
17 of 39

How to Use JUnit: New JUnit Test Case (2) LASSONDE

Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

[ ] e New JUnit Test Case
JUnit Test Case
me of the new JUnit test case. You have the options to specify IE
the class under test and on the next page, to select methods to be tested. -
New JUnit 3 1est‘ © New JUnit 4 test '

Source folder: | ExampleTestingUtilityClasses/src Browse...
Package: tests Browse...
Nerme:

Superclass: java.lang.Object Browse...

Which method stubs would you like
setUpBeforeClass|

tearDownAfterClass()

setup() tearDown()

Do you want to add comments? (Configure templates and default value here)

Generate comments

| Class under test: Browse...

@ =)
18 of 39

I —
How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

EaSaRNDE

| NON ) New JUnit Test Case

JUnit 4 is not on the build path. Do you want to add it?

-

Not now
Open the build path property page

° Perform the following action:

=\ Add JUnit 4 library to the build path

19 of 39

How to Use JUnit: Generated Test Case

[J) TestCounter.java 5%

1 package tests;
2=import static org.junit.Assert.*;
3 import org.junit.Test;

4 public class TestCounter {

5 @Test
6
7
8

EaSaRNDE

|  public void test() {
fail("Not yet implemented");
}
9%
o Lines 6 — 8: test is just an ordinary mutator method that has a
one-line implementation body.
o Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test.
= When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.
o Line 7: By default, we deliberately fail the test with a message

“Not yet implemented”.
20 of 39



How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

EaSaRNDE

v (= ExampleTestingUtilityClasses New >
» =\ JRE System Library [JavaSE-1.8]
v (#src Open F3
> £ implementation Open With »
v i tests Open Type Hierarchy Fa
S T
> =\ JUnit4
[E Copy 8C
E= Copy Qualified Name
[ Paste 8V
% Delete ®
Remove from Context
Build Path >
Source X#S »
Refactor X8T »
4 Import...
e Export...
References >
Declarations »  [El console %

ition] /Library/Java/JavaVirtualMachines/jdk 1
& Refresh F5

Assign Working Sets...

Coverage As >
>

~1JUnit Test 8XT

21 of 39
o

How to Use JUnit: Generating Test Report LASSONDE

A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

[# Package Explor gu Junit 32 5= outline = B

C o8B R 0 HY ¥
Finished after 0.032 seconds

Runs:  1/1 B Errors: 0 B Failures: 1

v E](ests.TestCoumer [Runner: JUnit 4] (0.003 s)
/2 test (0.003 5)

= Fai =i
= Failure Trace 2F

I0 java.lang AssertionError: Not yet implemented

= at tests.TestCounter.test(TestCounter.java:11)
22 of 39 '

How to Use JUnit: Interpreting Test Report LASSONDE

¢ A test is a method prepended with the @Test tag.
¢ The result of running a test is considered:
o Failure if either
e an assertion failure (e.g., caused by fail, assertTrue
assertEquals) occurs; or
e an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) is thrown.
o Success if neither assertion failures nor unexpected exceptions
occur.
o After running all tests:
o A green bar means that all tests succeed.
= Keep challenging yourself if more tests may be added.
o A red bar means that af least one test fails.
= Keep fixing the class under test and re-runing all tests, until you
receive a green bar.
¢ Question: What is the easiest way to making test a success?

Answer: Delete the call fail ("Not yet implemented").
23 of 39

EaSaRNDE

How to Use JUnit: Revising Test Case

] TestCounter.java 5%
1 package tests;
2-import static org.junit.Assert.*;
3 import org.junit.Test;
4 public class TestCounter {
5 @Test
6 public void test() {
7
8
9

// fail("Not yet implemented™);
}
}

Now, the body of test simply does nothing.
= Neither assertion failures nor exceptions will occur.
= The execution of test will be considered as a success.

- There is currently only one test in TestCounter.

.. We will receive a green bar!

Caution: test which passes at the moment is not useful at all!
24 of 39



st e

0oL oF B

How to Use JUnit: Re-Running Test Case

A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

[% Package Explor |gfu Junit 32 5= Outine = O

a® S EE @ E ©
Finished after 0.017 seconds

Runs:  1/1 B Errors: O B Failures: 0

v i tests.TestCounter [Runner: JUnit 4] (0.000 s)
gEltest (0.000 s)

+4

A

= Failure Trace

25 of 39

g\

How to Use JUnit: Adding More Tests (1)

¢ Recall the complete list of cases for testing Counter:

c.getValue () H c.increment () ‘ c.decrement ()
ValueTooSmall

EaSaRNDE

g

1 0
2 1
3 ValueToolarge 2

e Let’s turn the two cases in the 1st row into two JUnit tests:
o Test for the green cell succeeds if:
¢ No failures and exceptions occur; and
e The new counter value is 1.
o Tests for red cells succeed if the expected exceptions occur
(ValueTooSmallException & ValueTooLargeException).
e Common JUnit assertion methods:
o void assertNull (Object o)
o void assertEquals (expected, actual)
o void assertArrayEquals (expecteds, actuals)
o void assertTrue (boolean condition)
[0}

void fail (String message)
26 of 39

How to Use JUnit: Assertion Methods

method name / parameters

assertTrue (test)
assertTrue("message", fest)

description

Causes this test method to fail if the given boolean
test is not true.

assertFalse(test)

aceortralse("message", fest) Causes this test method to fail if the given boolean

test is not false.

assertEquals (expectedValue, value)

SsortEquals - message", expectedvalue, value) Causes this test method to fail if the given two values

are not equal to each other. (For objects, it uses the
equals method to compare them.) The first of the two
values is considered to be the result that you expect;
the second is the actual result produced by the class
under test.

assertNotEquals(valuel, value2;

) . Fr— p
ocertNotrcuale| "messager, valuel, value2) Causes this test method to fail if the given two values

are equal to each other. (For objects, it uses the
equals method to compare them.)

assertNull (value)

" " Causes this test method to fail if the given value is
assertNull("message", value)

not nuii.

assertNotNull (value)

SosertNotNull, " message", value) Causes this test method to fail if the given value is

null.

assertSame (expectedValue, value)
assertSame("message", expectedValue, value)
assertNotSame (valuel, value2)
assertNotSame ("message", valuel, value2)

Identical to assertequals and assertNotEquals respectively,
except that for objects, it uses the == operator rather
than the equals method to compare them. (The difference
is that two objects that have the same state might be
equals to each other, but not == to each other. An
object is only == to itself.)

fail() s s
fa;u"message") Causes this test method to fail.

27 of 39

\u,

How to Use JUnit: Adding More Tests (2.1)

EOSONDE
1 | @Test
2 |public void testIncAfterCreation() {
3 Counter c = new Counter();
4 assertEquals (Counter.MIN_VALUE, c.getValue());
5 try {
6 c.increment () ;
7 assertEquals (1, c.getValue());
8 } catch(ValueTooBigException e) {
9 /* Exception 1is not expec to be own. %,
10 fail ("ValueTooBigException is not expected."); } } ‘
o Lines 5 & 8: We need a try-catch block because of Line 6.
Method increment from class Counter may throw the
ValueTooBigException.
o Lines 4,7 & 10 are all assertions:
e Lines 4 & 7 assert that c.getVvalue () returns the expected values.
e Line 10: an assertion failure -- unexpected ValueTooBigException
o Line 7 can be rewritten as assertTrue (1 == c.getValue()).
28 of 39



oooooooooooooooooooooooooooooooooo

e Don't lose the big picture!
¢ JUnit test in previous slide automates this console interaction:

¢ Again, don’t lose the big picture!
¢ JUnit test in previous slide automates CounterTesterl and

Enter "inc", "dec", or "val': the following console interaction for CounterTester3:
val

0 Enter "inc", "dec", or "val":
Enter "inc", "dec", or "val": val

inc 0

Enter "inc", "dec", or "val": Enter "inc", "dec", or "val":
val dec

1 Value too small!

Enter "inc", "dec", or "val": Enter "inc", "dec", or "val":
exit exit

Bye! Bye!

 Automation is exactly rationale behind using JUnit! e Again, automation is exactly rationale behind using JUnit!

29 of 39 310f 39

oooooooooooooooooooooooooooooooooo

1 |QTest 1 |@Test
2 |public void testDecFromMinValue() { 2 |public void _testIncFromMaXV.'alue() {
3 Counter ¢ = new Counter(); 2 Counter ¢ = new Counter();
4 assertEquals (Counter.MIN_VALUE, c.getValue()); 5 trcy i{ncrement() . ¢.increment(); c.increment();
5 & . ;oc. ;oc. ;
6 rg afecrement()' 6 } catch (ValueToolLargeException e) {

. ' ) ) 7 fail ("ValueToolargeException was thrown unexpectedly.");
7 fail ("ValueTooSmallException is expected."); } 8 }
8 cat/:ch(Value‘TooSmallExcept‘ion e) | ) 9 assertEquals (Counter.MAX VALUE, c.getValue());
9 * Exception 1s expected to be thrown. */ } } 10 try {

) ) 11 c.increment () ;

o Lines 5 & 8: We need a trY‘CatCh block because of Line 6. 12 fail ("ValueTooLargeException was NOT thrown as expected.");
Method decrement from class Counter may throw the 13 } catch (ValueToolargeException e) {
ValueTooSmallException. '1|g- /* Do nc g: ValueTooLargeException *,

o Lines 4 & 7 are both assertions: H

o Lines 4 asserts that c.getvalue () returns the expected value (i.e., o Lines 4 - 8:
Counter.MIN.VALUE). We use a try-catch block to express that a VTLE /s not expected.
¢ Line 7: an assertion failure -.- expected ValueTooSmallException o Lines 9 — 15:
00130 not thrown 520130 V€ USE @ try-catch block to express that a VTLE /s expected.



. - |
How to Use JUnit: Adding More Tests (4.2) o How to Use JUnit: Adding More Tests (5)

ooooooooooooooooo

o JUnit test in previous slide automates CounterTester2 and Loops can make it effective on generating test cases:

the following console interaction for CounterTester3: 1 |@Test
2 |public void testIncDecFromMiddleValues() {
Enter "inc", "dec", or "val": 3 Counter c = new Counter();
inc 4 | try {
Ent " " ongecn noaln 5 for (int i = Counter.MIN_VALUE; i < Counter.MAX_VALUE; i ++) {
-n er “inct, ec’, or ‘wva . 6 int currentValue = c.getValue();
inc 7 c.increment () ;
Enter "inc", "dec", or "val": 8 assertEquals (currentValue + 1, c.getValue());
inc 9 }
Enter "inc", "dec", or "val": 10 for (int i = Counter.MAX VALUE; i > Counter.MIN_VALUE; i —--) {
val 11 int currentValue = c.getValue();
3 12 c.decrement () ;
) 13 assertEquals (currentValue - 1, c.getValue());
Enter "inc", "dec", or "val": 14 }
inc 15 } catch(ValueTooLargeException e) {
Value too big! 16 fail ("ValueTooLargeException is thrown unexpectedly");
Enter "inc", "dec", or "val": 17 } catch(ValueTooSmallException e) {
exit 18 fail ("ValueTooSmallException is thrown unexpectedly");
1
Bye! 9 o}
330739 35 of 39

How to Use JUnit: Adding More Tests (4.3) o Exercises

ooooooooooooooooo

Q: Can we rewrite test IncFromMaxValue to:

1 |QTest

2 |public void testIncFromMaxValue() {

3 Counter ¢ = new Counter();

4 try { :

5 increnentl): 1. Run all 8 tests and make sure you receive a green bar.

6 c.increment () ; 2. Now, introduction an error to the implementation: Change the

’ c.increment () ; line value ++in Counter.increment to —-.

8 assertEquals (Counter.MAX VALUE, c.getValue()); .

9 c.increment () ; o Re-run all 8 tests and you should receive a red bar. [ Why? ]
10 fail ("ValueTooLargeException was NOT thrown as expected."); o Undo the error injection, and re-run all 8 tests. [ What happens? ]
11 } catch (ValueTooLargeException e) { }

12 |}

No!

At Line 9, we would not know which line throws the VTLE:
o |f it was any of the calls in L5 — L7, then it's not right.

o If it was L9, then it’s right.

34 of 39 36 of 39



Test-Driven Development (TDD) LASSONDE

fix the Java class under test
* when some test fails
extend, maintai
Java Classes
(e.g., Counter)

derive

JUnit
Framework

y

JUnit Test Case
(e.g., TestCounter)

1 when all tests pass

add more tests
Maintain a collection of tests which define the correctness of your
Java class under development (CUD):

e Derive and run tests as soon as your CUD is testable .
i.e., A Java class is testable when defined with method signatures.
e Red bar reported: Fix the class under test (CUT) until green bar.
e Green bar reported: Add more tests and Fix CUT when necessary.
37 of 39

Index (1)

EaSaRNDE

Motivating Example: Two Types of Errors (1)
Motivating Example: Two Types of Errors (2)
Motivating Example: Two Types of Errors (3)
A Simple Counter (1)

Exceptional Scenarios

A Simple Counter (2)

Components of a Test

Testing Counter from Console (V1): Case 1
Testing Counter from Console (V1): Case 2
Testing Counter from Console (V2)

Testing Counter from Console (V2): Test 1
Testing Counter from Console (V2): Test 2
Limitations of Testing from the Console

Why JUnit?

39 of 39

Resources

EaSaRNDE

 Official Site of JUnit 4:
http://junit.org/junit4d/

¢ API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/ju

¢ Another JUnit Tutorial example:

https://courses.cs.washington.edu/courses/c

eclipse-tutorial/junit.shtml

38 of 39

nit/Assert.html

seld3/11lwi/

Index (2)

EaSaRNDE

How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:

40 of 39

Packages

New JUnit Test Case (1)
New JUnit Test Case (2)
Adding JUnit Library
Generated Test Case
Running Test Case
Generating Test Report
Interpreting Test Report
Revising Test Case
Re-Running Test Case
Adding More Tests (1)
Assertion Methods
Adding More Tests (2.1)
Adding More Tests (2.2)



LASSONDE

ooooooooooooooooo

Index (3)
How to Use JUnit: Adding More Tests (3.1)

How to Use JUnit: Adding More Tests (3.2)
How to Use JUnit: Adding More Tests (4.1)
How to Use JUnit: Adding More Tests (4.2)
How to Use JUnit: Adding More Tests (4.3)
How to Use JUnit: Adding More Tests (5)
Exercises

Test-Driven Development (TDD)

Resources

41 of 39

Advanced Topics on Classes and Objects

EECS2030 B: Advanced
Object Oriented Programming

' Fall 2018

E
Y CHEN-WEI WANG

LASSONDE

Equality() ~  Gew
¢ Recall that
o A primitive variable stores a primitive value
e.g., double dl = 7.5; double d2 = 7.5;
o A reference variable stores the address to some object (rather
than storing the object itself)
e.g., Point pl = new Point (2, 3) assignsto pl the
address of the new Point object
e.g., Point p2 = new Point (2, 3) assignsto p2 the
address of another new Point object
¢ The binary operator == may be applied to compare:

o Primitive variables: their contents are compared
e.g.,, dl == d2 evaluates to true

o Reference variables: the addresses they store are compared
(rather than comparing contents of the objects they refer to)
e.g., pl == p2 evaluates to false because p1 and p2 are

addresses of different objects, even if their contents are identical.
2 of 60

\u,

=

Equality (2.1) $5OND
e Implicitly:

o Every class is a child/sub class of the Object class.

o The Object class isthe parent/super class of every class.
e There is a useful accessor method that every class inherits

from the Object class:

i
>

o |boolean equals (Object other)‘

Indicates whether some other object is “equal to” this one.
e The default definition inherited from Ob-ject:

boolean equals (Object other) {
return (this == other);
}

e.g., Say pl and p2 are of type Point V1 without the equals method
redefined, then p1.equals (p2) boils down to (p1 == p2).
o Very often when you define new classes, you want to

redefine / override the inherited definition of equals.
3 of 60



LASSONDE

ooooooooooooooooo

Equality (2.2): Common Error

int i = 10;
int 7 = 12;
boolean sameValue = i.equals(j);

Compilation Error:
the equals method is only applicable to reference types.
Fix: write i == 7 instead.

4 of 60

Eq uality (3) :ASSONDE

ooooooooooooooooo

class PointV1 {

double x; double y;

PointVl(double x, double y) { this.x = x; this.y = y; }
}

1 |PointVl pl = new PointV1(2, 3);
2 |PointVl p2 = new PointV1(2, 3);
3 | System.out.println(pl == p2); /+ false */
4 ;

‘System.out.println( pl.equals (p2) ); /~*
L

e At L4, given that the equals method is not explicitly
redefined/overridden in class Point V1, the default version
inherited from class Object is called.

Executing p1.equals (p2) boils downto (p1 == p2).
e |f we wish to compare contents of two Point V1 objects, need

to explicitly redefine/override the equals method in that class.
5 of 60

LASSONDE

ooooooooooooooooo

Requirements of equals
Given that reference variables x, v, z are not null:

- x.equals(null)

Reflexive :
x.equals(x)

e Symmetric
x.equals(y) < y.equals(x)

e Transitive

x.equals(y) A y.equals(z) = x.equals(z)

6 0f 60 APl of equals Inappropriate Def. of equals using hashCode
o}

Eq uality (4-1 ) :ASSONDE

ooooooooooooooooo

e How do we compare contents rather than addresses?
¢ Define the accessor method equals, e.g.,

class PointVZ2 {
double x; double y;
‘ public boolean equals (Object obj) {

if (this == obj) { return true; }

if(obj == null) { return false; }

if (this.getClass() != obj.getClass()) { return false; }

PointV2 other = (PointV2) obj;

return this.x == other.x && this.y == other.y; } }
String s = " (2, 3)";

PointV2 pl = new PointV2(2, 3); PointV2 p2 = new PointV2(2, 3);
System.out.println(pl. equals (pl));
System.out.println(pl.equals (null));
System.out.println(pl.equals(s));
System.out.println(pl == p2); /+ false #*/

/% true */ ‘
+ false */
/+ false */

System.out.println(pl. equals (p2)); /* true */

7 of 60



Eq uality (4-2) :ASSONDE

ooooooooooooooooo

¢ When making a method call p.equals (o) :
o Variable p is declared of type Point V2
o Variable o can be declared of any type (e.g., Point V2, String)
¢ We define p and o as equal if:
o Either p and o refer to the same object;
o Or:
e o is not null.
e p and o at runtime point to objects of the same type.
e The x and y coordinates are the same.

¢ Q: Inthe equals method of Point, why is there no such a line:

class PointV2 {
boolean equals (Object obj) {

if(this == null) { return false; }

A:lf thiswas null,aNullPointerException would have

occurred and prevent the body of equals from being executed.
8 of 60

Equality (4.3) %

ooooooooooooooooo

’class PointV2 {

‘ boolean equals (Object obj) { ...
if (this.getClass() != obj.getClass())
PointV2 other = (PointV2) obj;
return this.x == other.x && this.y == other.y; } }

o |Object obj|atL2 declares a parameter obj of type Object.

o [PointVv2 other|at L4 declares a variable p of type Point V2.
We call such types declared at compile time as static type.
o The list of applicable attributes/methods that we may call on a
variable depends on its static type.
e.g., We may only call the small list of methods defined in Object
class on ob j, which does not include x and y (specific to Point).
o If we are SURE that an object’s “actual” type is different from its
static type, then we can cast it.
e.g., Giventhat this.getClass () == obj.getClass (), we are
sure that ob 7 is also a Point, SO we can cast it to Point.
o Such cast allows more attributes/methods to be called upon
9ofeo (POint) objatLb.

{ return false; }

asrwOWND =

Eq uality (5) :ASSONDE

ooooooooooooooooo

Two notions of equality for variables of reference types:
e Reference Equality : use == to compare addresses

e Object Equality : define equals method to compare contents

©Ooo~NOOOTAWN =

PointV2 pl = new PointV2(3, 4);
PointV2 p2 = new PointV2(3, 4);
PointV2 p3 = new PointV2(4, 5);
System.out.println(pl == pl);
System.out.println(pl.equals(pl)); /* true */
System.out.println(pl == p2); /* false x/
System.out.println(pl.equals(p2));
(
(

/% true #*/

/% true */
false #*/
/+ false */

System.out.println(p2 == p3); /*
System.out.println(p2.equals (p3));

e Being reference-equal implies being object-equal.

e Being object-equal does not imply being reference-equal.
10 of 60

Eq uality (6-1 ) :ASSONDE

ooooooooooooooooo

—_

Exercise: Persons are equal if names and measures are equal.

‘ && this.firstName. equals (other.firstName)

1 |class Person {

2 String firstName; String lastName; double weight; double heightj
3 ‘ boolean equals (Object obj) { ‘
4 if (this == obj) { return true; }

5 if(obj == null || this.getClass() != obj.getClass()) {

6 return false; }

7 Person other = (Person) obj;

8 return

9 this.weight == other.weight && this.height == other.height
0

1

‘ && this.lastName. equals (other.lastName); } }
L

Q: At L5, willwe get NullPointerException if objis Null'?J
A: No - Short-Circuit Effect of | |

objisnull, then obj == null evaluates to true
= no need to evaluate the RHS
The left operand obj == null acts as a guard constraint for

the right operand this.getClass ()
11 of 60

!= obj.getClass().



e
Equality (6.2)

ooooooooooooooooo

Exercise: Persons are equal if names and measures are equal.

‘ && this. firstName. equals (other.firstName)

1 |class Person {

2 String firstName; String lastName; double weight; double heightj
3 ‘ boolean equals (Object obj) { ‘
4 if (this == obj) { return true; }

5 if(obj == null || this.getClass() != obj.getClass()) {

6 return false; }

7 Person other = (Person) obj;

8 return

9 this.weight == other.weight && this.height == other.height
0

1

—_

‘ && this.lastName. equals (other.lastName); } }
L I

Q: At L5, if swapping the order of two operands of disjunction:
this.getClass () != obj.getClass () || obj == null
Will we get NullPointerException if objis Null?

A: Yes - Evaluation of operands is from left to right.
12 of 60

Equality (6.3)

ooooooooooooooooo

Exercise: Persons are equal if names and measures are equal.

&& this.firstName. equals (other.firstName)

1 |class Person {

2 String firstName; String lastName; double weight; double heightj
3 ‘ boolean equals (Object obj) {

4 if (this == obj) { return true; }

5 if(obj == null || this.getClass() != obj.getClass()) {

6 return false; }

7 Person other = (Person) obj;

8 return

9 this.weight == other.weight && this.height == other.height
0

1

—_

‘ && this.lastName. equals (other.lastName); } }

L10 & L11 call equals method defined in the string class.

When defining equals method for your own class, reuse
equals methods defined in other classes wherever possible.

13 of 60

Equality (6.4)

Person collectors are equal if containing equal lists of persons.

class PersonCollector {
Person[] persons; int nop;
public PersonCollector() { ... }
public void addPerson(Person p) { ... }
}

Redefine/Override the equals method in PersonCollector.

1

T

1 ‘boolean equals (Object ob7) {

2 if (this == obj) { return true; }

3 if(obj == null || this.getClass() != obj.getClass()) {
4 return false; }

5 PersonCollector other = (PersonCollector) obj;

6 boolean equal = false;

7 if (this.nop == other.nop) f{

8 equal = true;

9 for(int i = 0; equal && i < this.nop; 1 ++) {
10 equal = this.persons[i].equals (other.persons[i]l); } }
11 return equal;
12

14/ of 60

"

Equality in JUnit (7.1)

e assertSame(objl, obj2)
o Passes if ob1 and obj2 are references to the same object
o ~ assertTrue(objl == ob7j2)
o ~ assertFalse(objl = obj2)

PointVl pl = new PointV1(3, 4); PointVl p2 = new PointV1(3, 4)|;
PointVl p3 = pl;

assertSame (pl, p3); /* pass */ assertSame (p2, p3); /x fail
e assertEquals(expl, exp2)
o nexpl == exp2 if expl and exp2 are primitive type
int i = 10; int j = 20; assertEquals (i, j); /x fail

o ~expl.equals(exp2) if expl and exp2 are reference type
Q: What if equals is not explicitly defined in obj1’s declared type?
A: ~ assertSame(obj1, obj2)

PointV2 p4 = new PointV2(3, 4); PointV2 p5 = new PointV2(3,|4);
assertEquals (p4, pb); : /
assertEquals (pl, p2);
assertEquals (p4, p2);

15 of 60



|
Equality in JUnit (7.2)

@Test

public void testEqualityOfPointVI() {
PointVl pl = new PointV1(3, 4); PointVl p2 = new PointV1(3, 4);
assertFalse(pl == p2), assertFalse (p2 == pl)

52w

ASSONDE

se ‘\‘, ssertus e (p2 ] raiil
assertFalse(pl equals (p2) )i assertFalse(p2 equals (pl) )i
assertTrue (pl.x == p2.x && p2.y == p2.y);
¥
@Test
public void testEqualityOfPointV2() {
PointV2 p3 = new PointV2(3, 4); PointV2 p4 = new PointV2(3, 4);
assertFalse(p3 == p4), assertFalse (p4 == p3)
""" e (p3, assertSame (p4, p4) O
assertTrue (p3. equals (p4) ) ; assert’l‘rue(p4 equals (p3) )
assertEquals (p3, p4); assertEquals(p4, p3);
}
@Test
public void testEqualityOfPointVlandPointv2() {
PointVl pl = new PointV1(3, 4); PointV2 p2 = new PointV2(3, 4);

assertFalse (pl equals (p2) )

assertFalse (p2 equals (pl) )

}
16-0£60

Equality in JUnit (7.3)

@Test
public void testPersonCollector() {
Person pl = new Person("A", "a", 180, 1.8); Person p2

new Person("A", "a", 180, 1.8);

Person p3 = new Person("B", "b", 200, 2.1); Person p4 p3;

assertFalse (pl == p2); assertTrue(pl.equals(p2));

assertTrue (p3 == p4); assertTrue (p3.equals (pd));

PersonCollector pcl = new PersonCollector(); PersonCollector pc2 = new PersonCollector()
assertFalse (pcl == pc2); assertTrue(pcl.equals(pc2));

pcl.addPerson(pl);
assertFalse (pcl.equals(pc2));

pc2.addPerson(p2) ;

assertFalse (pcl.persons[0] == pc2.persons[0]);
assertTrue (pcl.persons[0] .equals (pc2.persons[0]));
assertTrue (pcl.equals (pc2));

pcl.addPerson(p3); pc2.addPerson(p4);

assertTrue (pcl.persons[l] == pc2.persons[l]);
assertTrue (pcl.persons[l].equals (pc2.persons[1l]));
assertTrue (pcl.equals (pc2));

pcl.addPerson(new Person("A", "a", 175, 1.75)
pc2.addPerson(new Person("A", "a", 165, 1.55)
assertFalse (pcl.persons[2] == pc2.persons[2]);
assertFalse (pcl.persons([2] .equals (pc2.persons
assertFalse (pcl.equals (pc2));

}
17060

)i
)i
[

21))

Why Ordering Between Objects? (1) e

Each employee has their numerical id and salary.

e.g., (alan, 2, 4500.34), (mark, 3, 3450.67), (tom, 1, 3450.67)

e Problem: To facilitate an annual review on their statuses, we
want to arrange them so that ones with smaller id’s come
before ones with larger id’s.s

e.g., (tom, alan, mark)

e Even better, arrange them so that ones with larger salaries
come first; only compare id’s for employees with equal salaries.

e.g., {(alan, tom, mark)

Solution :
o Define ordering of Employee objects.

[ Comparable interface, compareTo method ]
o Use the library method Arrays.sort.

8 of 60

Why Ordering Between Objects? (2) e

OO ~NOOr~WN—=

class Employee {
int id; double salary;
Employee(int id) { this.id = id; }
void setSalary(double salary) { this.salary = salary; } }

@Test

public void testUncomparableEmployees () {
Employee alan = new Employee(2);
Employee mark = new Employee(3);
Employee tom = new Employee (1) ;
Employeel[] es = {alan, mark, tom};
Arrays.sort (es);
Employee[] expected = {tom, alan, mark};
assertArrayEquals (expected, es); }

L8 triggers a java.lang.ClassCastException:
Employee cannot be cast to java.lang.Comparable
+Arrays.sort expects an array whose element type defines

a precise ordering of its instances/objects.
9 of 60



Defining Ordering Between Objects (1.1)  iassono:

T
‘class CEmployeel implements Comparable <CEmployeel> {

b ~for. mutator sir 2r to
bt ictor, mutator sir ar to

@Override
public int compareTo(CEmployeel e) { return this.id - e.id; }
}

e Given two CEmployeel objects cel and ce2:
o ’ cel.compareTo(ce2) > 0 ‘ [ cel “is greater than” ce2 ]

[ cel “is equal t0” ce2 ]
o ’ cel.compareTo(ce2) < 0 ‘ [ cel “is smaller than” ce2 ]

e Say ces is an array of CEmployeel (CEmployeel[] ces),
calling Arrays.sort (ces) re-arranges ces, so that:

o ’ cel.compareTo(ce2) == 0 ‘

ces|[0] < <ces[ces.length - 1]
——

CEmployeel object

20 of 60 _

ces[1] <...
——— e ——
CEmployeel object

CEmployeel object

5 Ane

g

Defining Ordering Between Objects (1.2)

@Test
public void testComparableEmployees_1() |

£2ONDE

CEmployeel alan = new CEmployeel (
CEmployeel mark = new CEmployeel (
CEmployeel tom = new CEmployeel (1l
alan.setSalary(4500.34);
mark.setSalary(3450.67);
tom.setSalary(3450.67);
CEmployeel[] es = {alan, mark, tom};

g empl

’
’

~ W N

/% Wh ~omp

Arrays.sort (es);
CEmployeel[] expected = {tom, alan, mark};
assertArrayEquals (expected, es);

}

21 of 60 _

Defining Ordering Between Objects (2.1)

Let’s now make the comparison more sophisticated:
* Employees with higher salaries come before those with lower salaries.
* When two employees have same salary, whoever with lower id comes first.

T
‘class CEmployee2 implements Comparable <CEmployee2> ({

r to

@Override
public int compareTo(CEmployee2 other) {
int salaryDiff = Double.compare(this.salary, other.salary);
int idDiff = this.id - other.id;
if (salaryDiff != 0) { return - sa