Aggregation and Composition

EECS2030 B: Advanced
Object Oriented Programming

YORK ' Fall 2018

UNIVERSITE
UNIVERSITY CHEN-WEI WANG

Call by Value (1) LASSONDE

¢ Consider the general form of a call to some mutator method
m1, with context object s and argument value arg:

class Supplier { class Client {
void mi1(T par) { Supplier s = new Supplier();
/+ manipulate par */ T arg = ...;
} s.ml (arg)
} }

o To execute| s.m1(arg) |, an implicit is done.

= A copy of value stored in arg is passed for the method call.
e What can the type T be? [Primitive or Reference]
o T is primitive type (e.g., int, char, boolean, efc.):
Call by Value : Copy of arg’s value (e.g., 2, *3’) is passed.
o T isreference type (e.g., String, Point, Person, efc.):
Call by Value : Copy of arg’s stored reference/address
e.g., Point@5cb0d902) is passed.

—ms(—_

Call by Value (2.1) LASSONDE

For illustration, let's assume the following variant of the Point
class:

class Point {
int x;
int y;
Point (int x, int y) {
this.x = x;
this.y = y;
}
void moveVertically(int y) {
this.y += y;
}
void moveHorizontally(int x) {
this.x += x;
}
}

S

Call by Value (2.2.1) LASSONDE

public class Util ({
void reassignInt (int j) {
j=3J+ 1}
void reassignRef (Point q) {

@Test
public void testCallByVal() {
Util u = new Util();

Point n new Point (6, 8) int i = 10;
= i .]
qoi np_p} ! ! assertTrue (i == 10);
. !) , u.reassignint (i);
void changeViaRef (Point q) { assertTrue (i == 10);

ONO O~ WN =

g.moveHorizontally (3) ;
g.moveVertically(4); } }

e Before the mutator call at L6, primitive variable i stores 10.

¢ When executing the mutator call at L6, due to call by value , a

copy of variable i is made.
= The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

o .. After the mutator call at L6, variable i still stores 10.

S

LASSONDE

ooooooooooooooooo

Call by Value (2.2.2)

Before reassigniInt H During reassignInt H After reassigniInt

S——

LASSONDE

ooooooooooooooooo

Call by Value (2.3.1)

public class Util {

void reassignInt (int 7j) {
j=3J+ 1}

void reassignRef (Point gq) {
Point np = new Point(6, 8);
g = np; }

void changeViaRef (Point q) {
g.moveHorizontally (3) ;
g.moveVertically(4); } }

@Test

public void testCallByRef 1() {
Util u = new Util();
Point p = new Point (3
Point refOfPBefore =
u.reassignRef (p);
assertTrue (p==refOfPBefore);
assertTrue (p.x==3 && p.y==4);

}

r 4);
pi

O©oONOOA~WN =

e Before the mutator call at L6, reference variable p stores the
address of some Point object (whose x is 3 and y is 4).
e When executing the mutator call at L6, due to call by value , a
copy of address stored in p is made.
= The assignment p = np is only effective on this copy, not the
original variable p itself.
e .. After the mutator call at L6, variable p still stores the original
ofas(sjdress (i.e., same as refOfPBefore).

e —

LASSONDE

ooooooooooooooooo

Call by Value (2.3.2)

Before reassignRef H During reassignRef H After reassignRef

= =l

Point
x
Yy

S——

LASSONDE

ooooooooooooooooo

Call by Value (2.4.1)

public class Util ({

void reassignInt (int 7) {
j=3J+ 1}

void reassignRef (Point q) {
Point np = new Point(6, 8);
g = np; }

void changeViaRef (Point q) {
g.moveHorizontally (3) ;
g.moveVertically(4); } }

@Test

public void testCallByRef 2() {
Util u = new Util();
Point p = new Point (3
Point refOfPBefore =
u.changeViaRef (p) ;
assertTrue (p==refOfPBefore);
assertTrue (p.x==6 && p.y==8);

}

r 4);
pi

O©oO~NOOA~WN =

® Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

® When executing the mutator call at L6, due to call by value , a
copy of address stored in p is made. [Alias: p and g store same address.]
= Calls to g.moveHorizontally and g.moveVertically are

effective on both p and qg.

e .. After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore), but its x and y have been modified via g.

S

Call by Value (2.4.2) LASSONDE

ooooooooooooooooo

Before changeviaRef After changeViaRef

I H

During changeViaRef

p

90f 33

ooooooooooooooooo

Container object: an object that contains others.

Containee object: an object that is contained within another.
¢ e.g., Each course has a faculty member as its instructor.
o Container: Course Containee: Faculty.
e e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
o Container: Student, Faculty Containees: Course.
e.g., eecs2030 taken by jim (student) and taught by tom (faculty).
= Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
= Containees may exist independently without their containers.
¢ e.g., In afile system, each directory contains a list of files.
o Container: Directory Containees: rile.
e.g., Each file has exactly one parent directory.
= A containee may be owned by only one container.
e.g., Deleting a directory also deletes the files it contains.

= Containees may co-exist with their containers.
10 of 33

Aggregation: Independent Containees
Shared by Containers (1.1)

LASSONDE

ooooooooooooooooo

prof

Course Faculty

class Course {
String title;

Faculty prof;
Course(String title) {
this.title = title;

}

void setProf(Faculty prof) {
this.prof = prof;

}

Faculty getProf()
return this.prof;

}

}

110f33

class Faculty {
String name;
Faculty(String name) {
this.name = name;
}
void setName (String name) {
this.name = name;
}
String getName () {
return this.name;
}
}

LASSONDE

ooooooooooooooooo

Aggregation: Independent Containees
Shared by Containers (1.2)

@Test

public void testAggregationl() {
Course eecs2030 = new Course ("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf (prof);
eecs3311.setProf(prof);
assertTrue (eecs2030.getProf () == eecs3311.getProf());
prof.setName ("Jeff");
assertTrue (eecs2030.getProf () == eecs3311.getProf());
assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));

Faculty prof2 = new Faculty("Jonathan");

eecs3311.setProf(prof2);

assertTrue (eecs2030.getProf () != eecs3311.getProf());

assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));

assertTrue (eecs3311.getProf() .getName () .equals ("Jonathan"));
}

120f 33

Aggregation: Independent Containees

Shared by Containers (2.1)
cs te
Student - Course Faculty
*
class Student {
String id; ArrayList<Course> cs; /#* courses #,
Student (String id) { this.id = id; cs new ArrayList<>(); }
void addCourse (Course c) { cs.add(c); }
ArrayList<Course> getCS() { return cs; }
}
class Course { String title; }
class Faculty {
String name; ArrayList<Course> te; /* tea ng
Faculty(String name) { this.name = name; te = new ArrayList<>(); }
void addTeaching(Course c) { te.add(c); }
ArrayList<Course> getTE() { return te; }
}

130f 33

Aggregation: Independent Containees
Shared by Containers (2.2)

@Test

public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student ("Jim");
Course eecs2030 = new Course ("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);

p.addTeaching(eecs2030) ;
p.addTeaching(eecs3311);
s.addCourse (eecs2030) ;
s.addCourse (eecs3311) ;
assertTrue (eecs2030.getProf() == s.getCS().get(0).getProf());
assertTrue (s.getCS() .get (0) .getProf() == s.getCS().get(l).getProf()));
assertTrue (eecs3311 == s.getCS() .get(1l));
assertTrue (s.getCS() .get(l) == p.getTE() .get(l));
}
14 of 33

The Dot Notation (3.1) o

In real life, the relationships among classes are sophisticated.

cs te
Student - Course Faculty
*
class Student { class Course { class Faculty {
String id; String title; String name;
ArrayList<Course> cCs; Faculty prof; ArrayList<Course> te;
} } }

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class student:
o Writing cs denotes the list of registered courses.
o Writing cs[i] (where i is a valid index) navigates to the class

Course, which changes the context to class Course.
15 of 33

The Dot Notation (3.2) o

class Student { class Course { class Faculty {
String id; String title; String name;
ArrayList<Course> cCs; Faculty prof; ArrayList<Course> te;

} } }

class Student {
/ +

o+
/ * dll
t

~ibutes */

/* Get the student’s id */
String getID() { return this.id; }
/* Get the title of the ith course #*/

String getCourseTitle(int 1) {
return this.cs.get (i) .title;
}
/* Get the instructor’s name of the ith course */
String getInstructorName (int 1) {
return this.cs.get (i) .prof.name;
}
}

16 of 33

The Dot Notation (3.3) LASSONDE

ooooooooooooooooo

class Student { class Course {
String id; String title;
ArrayList<Course> cCs; Faculty prof;

} } }

class Faculty {
String name;
ArrayList<Course> te;

class Course {
. /# at tes */

/* Get the course’s title x/

String getTitle() { return this.title; }

/% Get the instructor’s name */

String getInstructorName () {
return this.prof.name;

}

/+ Get title of ith teaching course of

String getCourseTitleOfInstructor(int i1
return this.prof.te.get (i) .title;

}

}

17 of 33

- +

The Dot Notation (3.4)

ooooooooooooooooo

class Student { class Course {
String id; String title;
ArrayList<Course> cs; Faculty prof;

} } }

class Faculty {
String name;
ArrayList<Course> te;

class Faculty {

. /* attributes */

/% Get the instructor’s name */
String getName () {
return this.name;
}
/+ Get the title of ith teaching course
String getCourseTitle(int 1) {
return this.te.get (i) .title;

}

}

18 of 33

LASSONDE

ooooooooooooooooo

Composition: Dependent Containees
Owned by Containers (1.1)

_parent files
. "

Directory File

Assumption: Files are not shared among directories.

class Directory {
String name;
File[] files;
int nof; /=x of files
Directory(String name) {
this.name
files = new File[100];

of files %/

class File {
String name;
File(String name) {

name;

this.name = name; }
} void addFile(String fileName) {
! files[nof] = new File(fileName) ;
nof ++;
}
}
19 of 33

Composition: Dependent Containees

ESSSONIDE
Owned by Containers (1.2.1)
1 | @Test
v D 2 |public void testComposition() {
3 Directory dl = new Directory("D");
1.txt 4 | dl.addFile("fl.txt");
5 dl.addFile("f2.txt");
2.txt 6 dl.addFile("£3.txt");
: 7 assertTrue (
8 dl.files[0].name.equals ("fl.txt"))
f3.txt 9 |3

e L4: 1st File object is created and owned exclusively by d1.
No other directories are sharing this Fi1e object with d1.

e L5: 2nd rile object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

e L6: 3rd File object is created and owned exclusively by d1.

No other directories are sharing this File object with d1.
20 of 33

Composition: Dependent Containees LASSONDE
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

nof

Directory upn ‘
0 1 2 3 4 5 6 7 99
dl.files
‘ [[[o [oun T nun] nun | nun] nun] o]

d1

dl.files[ﬂ]/fil\es[/ljf\d{les[Z]e
[File [File [File
[name [name [name

“Fl.txt” “£2.txt” “£3.txt”

210f 33

Composition: Dependent Containees LASSONDE
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.

A copy constructor is a constructor which initializes attributes
from the argument object other.

class Directory {
Directory(Directory other) {
/+ Initialize attributes via attributes of
}
}

Hints:
e The implementation should be consistent with the effect of
copying and pasting a directory.

e Separate copies of files are created.
22 of 33

Composition: Dependent Containees LASSONDE
Owned by Containers (1.4.1)
Version 1: Shallow Copy by copying all attributes using =.

class Directory {

Directory (Directory other) {

/ value copying for primitive type x*/
nof other.nof;
/* address copying for reference type =/

name = other.name; files = other.files; } }

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [NO]

@Test

void testShallowCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt"
Directory d2 = new Directory(dl);
assertTrue (dl.files == d2.files); /+ violation of composition +
d2.files[0].changeName ("f11.txt");
assertFalse (dIl.files[0] .name.equals ("fl.txt")); }

N

ordss

Composition: Dependent Containees LASSONDE
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:

Directory

dz.files
nof
Directory
. 0 1 2 3 4 5 6 7 99
dl-files ‘1 ‘ ‘ ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null | null ‘

d1
dl.files[0] di.files[1], dl.files[2]|
d2.files[0] d2.files[1] d2.files[2]
File File File

“f11.txt” “f2.txt” “f3.txt”

24 of 33

Composition: Dependent Containees e
Owned by Containers (1.5.1)

Version 2: a Deep Copy |class Directory {

Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < nof; 1 ++) {

File src = other.files[1];
File nf = new File(src);
this.addFile(nf); } }

void addFile(File f) { ... } }

class File {
File(File other) {
this.name =
new String(other.name);

@Test

void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
Directory d2 = new Directory(dl);
assertTrue (dl.files != d2.files); /+ composition preserved x/
d2.files[0].changeName ("f11.txt");
assertTrue (dl.files[0] .name.equals ("fl.txt")); }

Composition: Dependent Containees e
Owned by Containers (1.5.2)

Right before test method testbDeepCopyConstructor
terminates:

nof
Directory 42, name 1
name [1 2 3 4 5 6 7 99
d2.files
/ files I I [nun | nun | nan | own | oun | nun | o |
az nof
az.£i1es0] 7 d2.filesi1) . fitesi2]
[File [File [File
| name | name | name

“f11.txt” “f2.txt” “f3.txt”

“p” nof

Directory l
name R 0 1 2 3 4 5 6 7 99
a1.files

files I I [nun | pun [nun | pun | oun | nun | nur]

dz nof
a1 fitesto] a1.ziles(1) 1. filesr2)

[File [File [File
| name | name | _name

“f1.txt” “£2.txt” “£3.txt"

26 of 33

Composition: Dependent Containees

Owned by Containers (1.5.3)
Q: Composition Violated? |ciass pirectory ¢
Directory (String name) {
class File { this.name = new String (name);
File(File other) { files = new File[100]; }
this.name = Directory(Directory other) {
new String (other.name); this (other.name);
} for(int i = 0; 1 < nof; 1 ++) {
} File src = other.files[1];
this.addFile(src); } }
void addrFile(File f) { ... } }
@Test

Composition: Dependent Containees

void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt"
Directory d2 = new Directory(dl);

assertTrue(dl.files != d2.files); /* composition preserved »/
d2.files[0].changeName ("f11.txt");
assertTrue (dl.files[0] == d2.files[0]); /+ composition violated|!

7 of 33

E——

Owned by Containers (1.6)

2

Exercise: Implement the accessor in class Directory

class Directory |
File[] files;
int nof;
File[] getFiles() {

/% Your Task =/

so that it preserves composition, i.e., does not allow
references of files to be shared.

8 of 33

EaSaRNDE

Aggregation vs. Composition (1)

Terminology:

o Container object: an object that contains others.
o Containee object: an object that is contained within another.

Aggregation :
o Containees (e.g., Course) may be shared among containers
(e.g., Student, Faculty).

o Containees exist independently without their containers.
o When a container is destroyed, its containees still exist.

Composition :

o Containers (e.g, Directory, Department) own exclusive
access to their containees (e.g., File, Faculty).

o Containees cannot exist without their containers.

o Destroying a container destroys its containeees cascadingly.

29 of 33

EaSaRNDE

Aggregation vs. Composition (2)

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:

o Each workstation owns CPU, monitor, keyword. [compositions]
o All workstations share the same network. [aggregations]

k| [KEYBOARDI k | |KEYBOARDI X'] |KEYBOARDI
CPU1 « CPU2 ¢ CPU3

m MONITORI1 m MONITOR2 m MONITOR3

n n
n —
(WORKSTATION) (WORKSTATION) (WORKSTATION)

(NETWORK)

30 of 33

|
Index (1) Lassonoe
Call by Value (1)
Call by Value (2.1)
Call by Value (2.2.1)
Call by Value (2.2.2)
Call by Value (2.3.1)
Call by Value (2.3.2)
Call by Value (2.4.1)
Call by Value (2.4.2)

Aggregation vs. Composition: Terminology
Aggregation: Independent Containees
Shared by Containers (1.1)

Aggregation: Independent Containees
Shared by Containers (1.2)

Aggregation: Independent Containees
Shared by Containers (2.1)

310f33

Index (2) Lassonoe
Aggregation: Independent Containees

Shared by Containers (2.2)

The Dot Notation (3.1)

The Dot Notation (3.2)

The Dot Notation (3.3)

The Dot Notation (3.4)

Composition: Dependent Containees
Owned by Containers (1.1)
Composition: Dependent Containees
Owned by Containers (1.2.1)
Composition: Dependent Containees
Owned by Containers (1.2.2)
Composition: Dependent Containees
Owned by Containers (1.3)

320f 33

|
Index (3) Lassonpe
Composition: Dependent Containees
Owned by Containers (1.4.1)
Composition: Dependent Containees
Owned by Containers (1.4.2)
Composition: Dependent Containees
Owned by Containers (1.5.1)
Composition: Dependent Containees
Owned by Containers (1.5.2)
Composition: Dependent Containees
Owned by Containers (1.5.3)
Composition: Dependent Containees
Owned by Containers (1.6)

Aggregation vs. Composition (1)

Aggregation vs. Composition (2)
330f33

