
Design-by-Contract (Dbc)
Test-Driven Development (TDD)

Readings: OOSC2 Chapter 11

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Terminology: Contract, Client, Supplier
● A supplier implements/provides a service (e.g., microwave).
● A client uses a service provided by some supplier.

○ The client must follow certain instructions to obtain the service
(e.g., supplier assumes that client powers on, closes door, and
heats something that is not explosive).

○ If instructions are followed, the client would expect that the
service does what is required (e.g., a lunch box is heated).

○ The client does not care how the supplier implements it.
● What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions

SUPPLIER give instructions provide a service
● There is a contract between two parties, violated if:

○ The instructions are not followed. [Client’s fault]
○ Instructions followed, but service not satisfactory. [Supplier’s fault]

2 of 69

Client, Supplier, Contract in OOP (1)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */
/* stuff not explosive. */

} }

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;
m.power(); m.lock();]

m.heat(obj);

} }

Method call m.heat(obj) indicates a client-supplier relation.
○ Client: resident class of the method call [MicrowaveUser]
○ Supplier: type of context object (or call target) m [Microwave]

3 of 69

Client, Supplier, Contract in OOP (2)
class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */
/* stuff not explosive. */ } }

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;
m.power(); m.lock();

m.heat(obj);

} }

● The contract is honoured if:
Right before the method call :
● State of m is as assumed: m.on==true and m.locked==ture
● The input argument obj is valid (i.e., not explosive).
Right after the method call : obj is properly heated.

● If any of these fails, there is a contract violation.
● m.on or m.locked is false ⇒ MicrowaveUser’s fault.
● obj is an explosive ⇒ MicrowaveUser’s fault.
● A fault from the client is identified ⇒ Method call will not start.
● Method executed but obj not properly heated ⇒ Microwave’s fault

4 of 69

What is a Good Design?
● A “good” design should explicitly and unambiguously describe

the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We such a contractual relation a specification .

● When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
○ Instructions to clients should not be unreasonable.

e.g., asking them to assemble internal parts of a microwave
○ Working conditions for suppliers should not be unconditional .

e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!

○ You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.

e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]

○ Upon contract violation, there should be the fault of only one side.
○ This design process is called Design by Contract (DbC) .

5 of 69

A Simple Problem: Bank Accounts
Provide an object-oriented solution to the following problem:

REQ1 : Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.

REQ2 : We may withdraw an integer amount from an account.

REQ3 : Each bank stores a list of accounts.

REQ4 : Given a bank, we may add a new account in it.

REQ5 : Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").

REQ6 : Given a bank, we may withdraw from a specific
account, identified by its name, for an integer amount.

Let’s first try to work on REQ1 and REQ2 in Java.
This may not be as easy as you might think!

6 of 69

Playing the Various Versions in Java

● Download the project archive (a zip file) here:
http://www.eecs.yorku.ca/˜jackie/teaching/
lectures/src/2017/F/EECS3311/DbCIntro.zip

● Follow this tutorial to learn how to import an project archive
into your workspace in Eclipse:
https://youtu.be/h-rgdQZg2qY

● Follow this tutorial to learn how to enable assertions in Eclipse:
https://youtu.be/OEgRV4a5Dzg

7 of 69

http://www.eecs.yorku.ca/~jackie/teaching/lectures/src/2017/F/EECS3311/DbCIntro.zip
http://www.eecs.yorku.ca/~jackie/teaching/lectures/src/2017/F/EECS3311/DbCIntro.zip
https://youtu.be/h-rgdQZg2qY
https://youtu.be/OEgRV4a5Dzg

Version 1: An Account Class
1 public class AccountV1 {
2 private String owner;
3 private int balance;
4 public String getOwner() { return owner; }
5 public int getBalance() { return balance; }
6 public AccountV1(String owner, int balance) {
7 this.owner = owner; this.balance = balance;
8 }
9 public void withdraw(int amount) {

10 this.balance = this.balance - amount;
11 }
12 public String toString() {
13 return owner + "’s current balance is: " + balance;
14 }
15 }

● Is this a good design? Recall REQ1 : Each account is
associated with . . . an integer balance that is always positive .

● This requirement is not reflected in the above Java code.
8 of 69

Version 1: Why Not a Good Design? (1)
public class BankAppV1 {

public static void main(String[] args) {
System.out.println("Create an account for Alan with balance -10:");

AccountV1 alan = new AccountV1("Alan", -10) ;

System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:
Alan’s current balance is: -10

● Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). ⇒ Violation of REQ1

● Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of
AccountV1 does not require that! ⇒ A lack of defined contract

9 of 69

Version 1: Why Not a Good Design? (2)
public class BankAppV1 {

public static void main(String[] args) {
System.out.println("Create an account for Mark with balance 100:");

AccountV1 mark = new AccountV1("Mark", 100);
System.out.println(mark);
System.out.println("Withdraw -1000000 from Mark’s account:");

mark. withdraw(-1000000) ;

System.out.println(mark);

Create an account for Mark with balance 100:
Mark’s current balance is: 100
Withdraw -1000000 from Mark’s account:
Mark’s current balance is: 1000100

● Mark’s account state is always valid (i.e., 100 and 1000100).
● Withdraw amount is never negative! ⇒ Violation of REQ2
● Again a lack of contract between BankAppV1 and AccountV1.
10 of 69

Version 1: Why Not a Good Design? (3)
public class BankAppV1 {

public static void main(String[] args) {
System.out.println("Create an account for Tom with balance 100:");

AccountV1 tom = new AccountV1("Tom", 100);
System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");

tom. withdraw(150) ;

System.out.println(tom);

Create an account for Tom with balance 100:
Tom’s current balance is: 100
Withdraw 150 from Tom’s account:
Tom’s current balance is: -50

● Withdrawal was done via an “appropriate” reduction, but the
resulting balance of Tom is invalid . ⇒ Violation of REQ1

● Again a lack of contract between BankAppV1 and AccountV1.
11 of 69

Version 1: How Should We Improve it?
● Preconditions of a method specify the precise circumstances

under which that method can be executed.
○ Precond. of divide(int x, int y)? [y != 0]
○ Precond. of binSearch(int x, int[] xs)? [xs is sorted]

● The best we can do in Java is to encode the logical negations
of preconditions as exceptions:
○ divide(int x, int y)

throws DivisionByZeroException when y == 0.
○ binSearch(int x, int[] xs)

throws ArrayNotSortedException when xs is not sorted.
○ It should be preferred to design your method by specifying the

preconditions (i.e., valid inputs) it requires, rather than the
exceptions (i.e., erroneous inputs) that it might trigger.

● Create Version 2 by adding exceptional conditions (an
approximation of preconditions) to the constructor and
withdraw method of the Account class.

12 of 69

Version 2: Added Exceptions
to Approximate Method Preconditions

1 public class AccountV2 {
2 public AccountV2(String owner, int balance) throws
3 BalanceNegativeException
4 {

5 if(balance < 0) { /* negated precondition */
6 throw new BalanceNegativeException(); }
7 else { this.owner = owner; this.balance = balance; }
8 }
9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

11 if(amount < 0) { /* negated precondition */
12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition */
14 throw new WithdrawAmountTooLargeException(); }
15 else { this.balance = this.balance - amount; }
16 }

13 of 69

Version 2: Why Better than Version 1? (1)
1 public class BankAppV2 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Alan with balance -10:");
4 try {

5 AccountV2 alan = new AccountV2("Alan", -10) ;

6 System.out.println(alan);
7 }

8 catch (BalanceNegativeException bne) {

9 System.out.println("Illegal negative account balance.");
10 }

Create an account for Alan with balance -10:
Illegal negative account balance.

L6: When attempting to call the constructor AccountV2 with a
negative balance -10, a BalanceNegativeException (i.e.,
precondition violation) occurs, preventing further operations upon

this invalid object .
14 of 69

Version 2: Why Better than Version 1? (2.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Mark with balance 100:");
4 try {

5 AccountV2 mark = new AccountV2("Mark", 100);
6 System.out.println(mark);
7 System.out.println("Withdraw -1000000 from Mark’s account:");

8 mark. withdraw(-1000000) ;

9 System.out.println(mark);
10 }
11 catch (BalanceNegativeException bne) {
12 System.out.println("Illegal negative account balance.");
13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");
16 }
17 catch (WithdrawAmountTooLargeException wane) {
18 System.out.println("Illegal too large withdraw amount.");
19 }

15 of 69

Version 2: Why Better than Version 1? (2.2)
Console Output:

Create an account for Mark with balance 100:
Mark’s current balance is: 100
Withdraw -1000000 from Mark’s account:
Illegal negative withdraw amount.

● L9: When attempting to call method withdraw with a positive
but too large amount 150, a
WithdrawAmountTooLargeException (i.e., precondition
violation) occurs, preventing the withdrawal from proceeding.

● We should observe that adding preconditions to the supplier
BankV2’s code forces the client BankAppV2’s code to get
complicated by the try-catch statements.

● Adding clear contract (preconditions in this case) to the design
should not be at the cost of complicating the client’s code!!

16 of 69

Version 2: Why Better than Version 1? (3.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Tom with balance 100:");
4 try {

5 AccountV2 tom = new AccountV2("Tom", 100);
6 System.out.println(tom);
7 System.out.println("Withdraw 150 from Tom’s account:");

8 tom. withdraw(150) ;

9 System.out.println(tom);
10 }
11 catch (BalanceNegativeException bne) {
12 System.out.println("Illegal negative account balance.");
13 }
14 catch (WithdrawAmountNegativeException wane) {
15 System.out.println("Illegal negative withdraw amount.");
16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");
19 }

17 of 69

Version 2: Why Better than Version 1? (3.2)
Console Output:

Create an account for Tom with balance 100:
Tom’s current balance is: 100
Withdraw 150 from Tom’s account:
Illegal too large withdraw amount.

● L9: When attempting to call method withdraw with a negative
amount -1000000, a WithdrawAmountNegativeException

(i.e., precondition violation) occurs, preventing the withdrawal
from proceeding.

● We should observe that due to the added preconditions to the
supplier BankV2’s code, the client BankAppV2’s code is forced
to repeat the long list of the try-catch statements.

● Indeed, adding clear contract (preconditions in this case)
should not be at the cost of complicating the client’s code!!

18 of 69

Version 2: Why Still Not a Good Design? (1)
1 public class AccountV2 {
2 public AccountV2(String owner, int balance) throws
3 BalanceNegativeException
4 {

5 if(balance < 0) { /* negated precondition */
6 throw new BalanceNegativeException(); }
7 else { this.owner = owner; this.balance = balance; }
8 }
9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

11 if(amount < 0) { /* negated precondition */
12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition */
14 throw new WithdrawAmountTooLargeException(); }
15 else { this.balance = this.balance - amount; }
16 }

● Are all the exception conditions (¬ preconditions) appropriate?
● What if amount == balance when calling withdraw?
19 of 69

Version 2: Why Still Not a Good Design? (2.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Jim with balance 100:");
4 try {

5 AccountV2 jim = new AccountV2("Jim", 100);
6 System.out.println(jim);
7 System.out.println("Withdraw 100 from Jim’s account:");

8 jim. withdraw(100) ;

9 System.out.println(jim);
10 }
11 catch (BalanceNegativeException bne) {
12 System.out.println("Illegal negative account balance.");
13 }
14 catch (WithdrawAmountNegativeException wane) {
15 System.out.println("Illegal negative withdraw amount.");
16 }
17 catch (WithdrawAmountTooLargeException wane) {
18 System.out.println("Illegal too large withdraw amount.");
19 }

20 of 69

Version 2: Why Still Not a Good Design? (2.2)

Create an account for Jim with balance 100:
Jim’s current balance is: 100
Withdraw 100 from Jim’s account:
Jim’s current balance is: 0

L9: When attempting to call method withdraw with an amount
100 (i.e., equal to Jim’s current balance) that would result in a
zero balance (clearly a violation of REQ1), there should have
been a precondition violation.

Supplier AccountV2’s exception condition balance < amount

has a missing case :
● Calling withdraw with amount == balance will also result in an

invalid account state (i.e., the resulting account balance is zero).
● ∴ L13 of AccountV2 should be balance <= amount.

21 of 69

Version 2: How Should We Improve it?
● Even without fixing this insufficient precondition, we could

have avoided the above scenario by checking at the end of
each method that the resulting account is valid .
⇒We consider the condition this.balance > 0 as invariant
throughout the lifetime of all instances of Account.

● Invariants of a class specify the precise conditions which all
instances/objects of that class must satisfy.
○ Inv. of CSMajoarStudent? [gpa >= 4.5]
○ Inv. of BinarySearchTree? [in-order trav. → sorted key seq.]

● The best we can do in Java is encode invariants as assertions:
○ CSMajorStudent: assert this.gpa >= 4.5
○ BinarySearchTree: assert this.inOrder() is sorted
○ Unlike exceptions, assertions are not in the class/method API.

● Create Version 3 by adding assertions to the end of
constructor and withdraw method of the Account class.

22 of 69

Version 3: Added Assertions
to Approximate Class Invariants

1 public class AccountV3 {
2 public AccountV3(String owner, int balance) throws
3 BalanceNegativeException
4 {
5 if(balance < 0) { /* negated precondition */
6 throw new BalanceNegativeException(); }
7 else { this.owner = owner; this.balance = balance; }

8 assert this.getBalance() > 0 : "Invariant: positive balance";

9 }
10 public void withdraw(int amount) throws
11 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {
12 if(amount < 0) { /* negated precondition */
13 throw new WithdrawAmountNegativeException(); }
14 else if (balance < amount) { /* negated precondition */
15 throw new WithdrawAmountTooLargeException(); }
16 else { this.balance = this.balance - amount; }

17 assert this.getBalance() > 0 : "Invariant: positive balance";

18 }

23 of 69

Version 3: Why Better than Version 2?
1 public class BankAppV3 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Jim with balance 100:");

4 try { AccountV3 jim = new AccountV3("Jim", 100);
5 System.out.println(jim);
6 System.out.println("Withdraw 100 from Jim’s account:");

7 jim. withdraw(100) ;

8 System.out.println(jim); }
9 /* catch statements same as this previous slide:

10 * Version 2: Why Still Not a Good Design? (2.1) */

Create an account for Jim with balance 100:
Jim’s current balance is: 100
Withdraw 100 from Jim’s account:
Exception in thread "main"

java.lang.AssertionError: Invariant: positive balance

L8: Upon completion of jim.withdraw(100), Jim has a zero
balance, an assertion failure (i.e., invariant violation) occurs,
preventing further operations on this invalid account object .

24 of 69

Version 3: Why Still Not a Good Design? (1)
Let’s review what we have added to the method withdraw:

○ From Version 2 : exceptions encoding negated preconditions
○ From Version 3 : assertions encoding the class invariants

1 public class AccountV3 {
2 public void withdraw(int amount) throws
3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

4 if(amount < 0) { /* negated precondition */
5 throw new WithdrawAmountNegativeException(); }

6 else if (balance < amount) { /* negated precondition */
7 throw new WithdrawAmountTooLargeException(); }
8 else { this.balance = this.balance - amount; }

9 assert this.getBalance() > 0 : "Invariant: positive balance"; }

However, there is no contract in withdraw which specifies:
○ Obligations of supplier (AccountV3) if preconditions are met.
○ Benefits of client (BankAppV3) after meeting preconditions.
⇒We illustrate how problematic this can be by creating
Version 4 , where deliberately mistakenly implement withdraw.

25 of 69

Version 4: What If the
Implementation of withdraw is Wrong? (1)

1 public class AccountV4 {
2 public void withdraw(int amount) throws
3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException
4 { if(amount < 0) { /* negated precondition */
5 throw new WithdrawAmountNegativeException(); }
6 else if (balance < amount) { /* negated precondition */
7 throw new WithdrawAmountTooLargeException(); }
8 else { /* WRONT IMPLEMENTATION */

9 this.balance = this.balance + amount; }

10 assert this.getBalance() > 0 :
11 owner + "Invariant: positive balance"; }

○ Apparently the implementation at L11 is wrong.
○ Adding a positive amount to a valid (positive) account balance

would not result in an invalid (negative) one.
⇒ The class invariant will not catch this flaw.

○ When something goes wrong, a good design (with an appropriate
contract) should report it via a contract violation .

26 of 69

Version 4: What If the
Implementation of withdraw is Wrong? (2)

1 public class BankAppV4 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Jeremy with balance 100:");

4 try { AccountV4 jeremy = new AccountV4("Jeremy", 100);
5 System.out.println(jeremy);
6 System.out.println("Withdraw 50 from Jeremy’s account:");

7 jeremy. withdraw(50) ;

8 System.out.println(jeremy); }
9 /* catch statements same as this previous slide:

10 * Version 2: Why Still Not a Good Design? (2.1) */

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Jeremy’s current balance is: 150

L7: The resulting balance of Jeremy is valid (150), but withdrawal
was done via an mistaken increase. ⇒ Violation of REQ2

27 of 69

Version 4: How Should We Improve it?
● Postconditions of a method specify the precise conditions

which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

○ Postcondition of divide(int x, int y)?
[Result × y == x]

○ Postcondition of binarySearch(int x, int[] xs)?
[x ∈ xs⇒ Result == x]

● The best we can do in Java is, similar to the case of invariants,
encode postconditions as assertions.

But again, unlike exceptions, these assertions will not be part of
the class/method API.

● Create Version 5 by adding assertions to the end of
textttwithdraw method of the Account class.

28 of 69

Version 5: Added Assertions
to Approximate Method Postconditions

1 public class AccountV5 {
2 public void withdraw(int amount) throws
3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

4 int oldBalance = this.balance;

5 if(amount < 0) { /* negated precondition */
6 throw new WithdrawAmountNegativeException(); }
7 else if (balance < amount) { /* negated precondition */
8 throw new WithdrawAmountTooLargeException(); }
9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";

11 assert this.getBalance() == oldBalance - amount :

12 "Postcondition: balance deducted"; }

A postcondition typically relates the pre-execution value and the
post-execution value of each relevant attribute (e.g.,balance in
the case of withdraw).
⇒ Extra code (L4) to capture the pre-execution value of balance for
the comparison at L11.

29 of 69

Version 5: Why Better than Version 4?
1 public class BankAppV5 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Jeremy with balance 100:");

4 try { AccountV5 jeremy = new AccountV5("Jeremy", 100);
5 System.out.println(jeremy);
6 System.out.println("Withdraw 50 from Jeremy’s account:");

7 jeremy. withdraw(50) ;

8 System.out.println(jeremy); }
9 /* catch statements same as this previous slide:

10 * Version 2: Why Still Not a Good Design? (2.1) */

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Exception in thread "main"
java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw(50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object .

30 of 69

Evolving from Version 1 to Version 5
Improvements Made Design Flaws

V1 – Complete lack of Contract

V2 Added exceptions as
method preconditions

Preconditions not strong enough (i.e., with missing
cases) may result in an invalid account state.

V3 Added assertions as
class invariants

Incorrect implementations do not necessarily result in
a state that violates the class invariants.

V4
Deliberately changed
withdraw’s implementa-
tion to be incorrect.

The incorrect implementation does not result in a state
that violates the class invariants.

V5 Added assertions as
method postconditions –

● In Versions 2, 3, 4, 5, preconditions approximated as exceptions.
/ These are not preconditions, but their logical negation .
/ Client BankApp’s code complicated by repeating the list of try-catch statements.

● In Versions 3, 4, 5, class invariants and postconditions approximated as assertions.
/ Unlike exceptions, these assertions will not appear in the API of withdraw.
Potential clients of this method cannot know : 1) what their benefits are; and 2) what
their suppliers’ obligations are.
/ For postconditions, extra code needed to capture pre-execution values of attributes.

31 of 69

Version 5:
Contract between Client and Supplier

benefits obligations
BankAppV5.main balance deduction amount non-negative

(CLIENT) positive balance amount not too large
BankV5.withdraw amount non-negative balance deduction

(SUPPLIER) amount not too large positive balance

benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER precondition postcondition & invariant

32 of 69

DbC in Java
DbC is possible in Java, but not appropriate for your learning:

● Preconditions of a method:
Supplier
● Encode their logical negations as exceptions.
● In the beginning of that method, a list of if-statements for throwing

the appropriate exceptions.
Client
● A list of try-catch-statements for handling exceptions.

● Postconditions of a method:
Supplier
● Encoded as a list of assertions, placed at the end of that method.

Client
● All such assertions do not appear in the API of that method.

● Invariants of a class:
Supplier
● Encoded as a list of assertions, placed at the end of every method.

Client
● All such assertions do not appear in the API of that class.

33 of 69

DbC in Eiffel: Supplier
DbC is supported natively in Eiffel for supplier:
class ACCOUNT
create

make
feature -- Attributes

owner : STRING
balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive_balance: nb >= 0

do
owner := nn
balance := nb

end
feature -- Commands

withdraw(amount: INTEGER)
require -- precondition

non_negative_amount: amount >= 0
affordable_amount: amount <= balance

do
balance := balance - amount

ensure -- postcondition
balance_deducted: balance = old balance - amount

end
invariant -- class invariant

positive_balance: balance > 0
end

34 of 69

DbC in Eiffel: Contract View of Supplier
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):
class ACCOUNT
create

make
feature -- Attributes

owner : STRING
balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive_balance: nb >= 0

end
feature -- Commands

withdraw(amount: INTEGER)
require -- precondition

non_negative_amount: amount >= 0
affordable_amount: amount <= balance

ensure -- postcondition
balance_deducted: balance = old balance - amount

end
invariant -- class invariant

positive_balance: balance > 0
end

35 of 69

DbC in Eiffel: Anatomy of a Class
class SOME_CLASS
create
-- Explicitly list here commands used as constructors

feature -- Attributes
-- Declare attribute here

feature -- Commands
-- Declare commands (mutators) here

feature -- Queries
-- Declare queries (accessors) here

invariant
-- List of tagged boolean expressions for class invariants

end

● Use feature clauses to group attributes, commands, queries.
● Explicitly declare list of commands under create clause, so

that they can be used as class constructors.
[See the groups panel in Eiffel Studio.]

● The class invariant invariant clause may be omitted:
○ There’s no class invariant: any resulting object state is acceptable.
○ The class invariant is equivalent to writing invariant true

36 of 69

DbC in Eiffel: Anatomy of a Feature
some_command

-- Description of the command.
require
-- List of tagged boolean expressions for preconditions

local
-- List of local variable declarations

do
-- List of instructions as implementation

ensure
-- List of tagged boolean expressions for postconditions

end

● The precondition require clause may be omitted:
○ There’s no precondition: any starting state is acceptable.
○ The precondition is equivalent to writing require true

● The postcondition ensure clause may be omitted:
○ There’s no postcondition: any resulting state is acceptable.
○ The postcondition is equivalent to writing ensure true

37 of 69

Runtime Monitoring of Contracts

● All contracts are specified as Boolean expressions.
● Right before a feature call (e.g., acc.withdraw(10)):

○ The current state of acc is called the pre-state.
○ Evaluate feature withdraw’s pre-condition using current values

of attributes and queries.
○ Cache values (implicitly) of all expressions involving the old

keyword in the post-condition .

e.g., cache the value of old balance via old balance ∶= balance

● Right after the feature call:
○ The current state of acc is called the post-state.
○ Evaluate class ACCOUNT’s invariant using current values of

attributes and queries.
○ Evaluate feature withdraw’s post-condition using both current

and “cached” values of attributes and queries.
38 of 69

DbC in Eiffel: Precondition Violation (1.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
alan: ACCOUNT

do
-- A precondition violation with tag "positive_balance"
create {ACCOUNT} alan.make ("Alan", -10)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"positive balance").

39 of 69

DbC in Eiffel: Precondition Violation (1.2)

40 of 69

DbC in Eiffel: Precondition Violation (2.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
mark: ACCOUNT

do
-- A precondition violation with tag "non_negative_amount"
create {ACCOUNT} mark.make ("Mark", 100)
mark.withdraw(-1000000)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non negative amount").

41 of 69

DbC in Eiffel: Precondition Violation (2.2)

42 of 69

DbC in Eiffel: Precondition Violation (3.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
tom: ACCOUNT

do
-- A precondition violation with tag "affordable_amount"
create {ACCOUNT} tom.make ("Tom", 100)
tom.withdraw(150)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable amount").

43 of 69

DbC in Eiffel: Precondition Violation (3.2)

44 of 69

DbC in Eiffel: Class Invariant Violation (4.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
jim: ACCOUNT

do
-- A class invariant violation with tag "positive_balance"
create {ACCOUNT} tom.make ("Jim", 100)
jim.withdraw(100)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance").

45 of 69

DbC in Eiffel: Class Invariant Violation (4.2)

46 of 69

DbC in Eiffel: Class Invariant Violation (5.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit ARGUMENTS
create make
feature -- Initialization
make
-- Run application.

local
jeremy: ACCOUNT

do
-- Change withdraw in ACCOUNT to: balance := balance + amount
-- A postcondition violation with tag "balance_deducted"
create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy.withdraw(150)
-- Change withdraw in ACCOUNT back to: balance := balance - amount

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
"balance deducted").

47 of 69

DbC in Eiffel: Class Invariant Violation (5.2)

48 of 69

TDD: Test-Driven Development (1)
● How we have tested the software so far:

○ Executed each test case manually (by clicking Run in EStudio).
○ Compared with our eyes if actual results (produced by program)

match expected results (according to requirements).
● Software is subject to numerous revisions before delivery.

⇒ Testing manually, repetitively, is tedious and error-prone.
⇒We need automation in order to be cost-effective.

● Test-Driven Development
○ Test Case : Expected working scenario (expected outcome) or

problematic scenario (expected contract violation).
○ As soon as your code becomes executable (with a unit of

functionality completed), start translating relevant test cases into
an executable form and execute them.

○ Test Suite : Collection of test cases.
⇒ A test suite is supposed to measure “correctness” of software.
⇒ The larger the suite, the more confident you are.

49 of 69

TDD: Test-Driven Development (2)
● The ESpec (Eiffel Specification) library is a framework for:

○ Writing and accumulating test cases
Each list of relevant test cases is grouped into an ES TEST class,
which is just an Eiffel class that you can execute upon.

○ Executing the test suite whenever software undergoes a change
e.g., a bug fix
e.g., extension of a new functionality

● ESpec tests are helpful client of your classes, which may:
○ Either attempt to use a feature in a legal way (i.e., satisfying its

precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected:

e.g., state of object has not been updated properly
e.g., a postcondition violation or class invariant violation occurs

○ Or attempt to use a feature in an illegal way (e.g., not satisfying
its precondition), and report:
● Success if precondition violation occurs.
● Failure if precondition violation does not occur.

50 of 69

TDD: Test-Driven Development (3)

ESpec
Framework

Elffel Classes
(e.g., ACCOUNT, BANK)

ESpec Test Suite
(e.g., TEST_ACCOUT,

TEST_BANK)

derive (re-)run as
espec test suite

add more tests

fix the Eiffel class under test

when all tests pass

when some test fails

51 of 69

Adding the ESpec Library (1)
Step 1: Go to Project Settings.

52 of 69

Adding the ESpec Library (2)

Step 2: Right click on Libraries to add a library.

53 of 69

Adding the ESpec Library (3)
Step 3: Search for espec and then include it.

This will make two classes available to you:
● ES TEST for adding test cases
● ES SUITE for adding instances of ES TEST.

○ To run, an instance of this class must be set as the root.
54 of 69

ES TEST: Expecting to Succeed (1)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Add tests in constructor
5 make
6 do
7 add boolean case (agent test_valid_withdraw)
8 end
9 feature -- Tests

10 test_valid_withdraw: BOOLEAN
11 local
12 acc: ACCOUNT
13 do
14 comment("Test a valid withdrawal.")
15 create {ACCOUNT} acc.make ("Alan", 100)
16 Result := acc.balance = 100
17 check Result end
18 acc.withdraw (20)
19 Result := acc.balance = 80
20 end
21 end

55 of 69

ES TEST: Expecting to Succeed (2)
● L2: A test class is a subclass of ES TEST.
● L10 – 20 define a BOOLEAN test query . At runtime:

○ Success: Return value of test valid withdraw (final value of
variable Result) evaluates to true upon its termination.

○ Failure:
● The return value evaluates to false upon termination; or
● Some contract violation (which is unexpected) occurs.

● L7 calls feature add boolean case from ES TEST, which
expects to take as input a query that returns a Boolean value.
○ We pass query test valid withdraw as an input.
○ Think of the keyword agent acts like a function pointer.
● test invalid withdraw alone denotes its return value
● agent test invalid withdraw denotes address of query

● L14: Each test feature must call comment(. . .) (inherited
from ES TEST) to include the description in test report.

● L17: Check that each intermediate value of Result is true.
56 of 69

ES TEST: Expecting to Succeed (3)
● Why is the check Result end statement at L7 necessary?

○ When there are two or more assertions to make, some of which
(except the last one) may temporarily falsify return value Result.

○ As long as the last assertion assigns true to Result, then the
entire test query is considered as a success.
⇒ A false positive is possible!

● For the sake of demonstrating a false positive, imagine:
○ Constructor make mistakenly deduces 20 from input amount.
○ Command withdraw mistakenly deducts nothing.

1 test_query_giving_false_positive: BOOLEAN
2 local acc: ACCOUNT
3 do comment("Result temporarily false, but finally true.")
4 create {ACCOUNT} acc.make ("Jim", 100) -- balance set as 80
5 Result := acc.balance = 100 -- Result assigned to false
6 acc.withdraw (20) -- balance not deducted
7 Result := acc.balance = 80 -- Result re-assigned to true
8 -- Upon termination, Result being true makes the test query
9 -- considered as a success ==> false positive!

10 end

Fix? [insert check Result end] between L6 and L7.57 of 69

ES TEST: Expecting to Fail (1)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Add tests in constructor
5 make
6 do
7 add violation case with tag (
8 "non_negative_amount", agent test_invalid_withdraw)
9 end

10 feature -- Tests
11 test_invalid_withdraw
12 local
13 acc: ACCOUNT
14 do
15 comment("Test an invalid withdrawal.")
16 create {ACCOUNT} acc.make ("Mark", 100)
17 -- Precondition Violation
18 -- with tag "non_negative_amount" is expected.
19 Result := acc.withdraw (-1000000)
20 end
21 end

58 of 69

ES TEST: Expecting to Fail (2)
● L2: A test class is a subclass of ES TEST.
● L11 – 20 define a test command . At runtime:

○ Success: A precondition violation (with tag
"non negative amount") occurs at L19 before its termination.

○ Failure:
● No contract violation with the expected tag occurs before its

termination; or
● Some other contract violation (with a different tag) occurs.

● L7 calls feature add violation case with tag from

ES TEST, which expects to take as input a command .
○ We pass command test invalid withdraw as an input.
○ Think of the keyword agent acts like a function pointer.
● test invalid withdraw alone denotes a call to it
● agent test invalid withdraw denotes address of command

● L15: Each test feature must call comment(. . .) (inherited
from ES TEST) to include the description in test report.

59 of 69

ES SUITE: Collecting Test Classes

1 class TEST_SUITE
2 inherit ES SUITE
3 create make
4 feature -- Constructor for adding test classes
5 make
6 do
7 add test (create {TEST_ACCOUNT}.make)
8 show_browser
9 run_espec

10 end
11 end

● L2: A test suite is a subclass of ES SUITE.
● L7 passes an anonymous object of type TEST ACCOUNT to
add test inherited from ES SUITE).

● L8 & L9 have to be entered in this order!
60 of 69

Running ES SUITE (1)
Step 1: Change the root class (i.e., entry point of execution) to be
TEST SUITE.

61 of 69

Running ES SUITE (2)

Step 2: Run the Workbench System.

62 of 69

Running ES SUITE (3)
Step 3: See the generated test report.

63 of 69

Beyond this lecture...

● Study this tutorial series on DbC and TDD:
https://www.youtube.com/playlist?list=PL5dxAmCmjv_

6r5VfzCQ5bTznoDDgh__KS

64 of 69

https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS

Index (1)
Terminology: Contract, Client, Supplier
Client, Supplier, Contract in OOP (1)
Client, Supplier, Contract in OOP (2)
What is a Good Design?
A Simple Problem: Bank Accounts
Playing with the Various Versions in Java
Version 1: An Account Class
Version 1: Why Not a Good Design? (1)
Version 1: Why Not a Good Design? (2)
Version 1: Why Not a Good Design? (3)
Version 1: How Should We Improve it?
Version 2: Added Exceptions
to Approximate Method Preconditions
Version 2: Why Better than Version 1? (1)

65 of 69

Index (2)
Version 2: Why Better than Version 1? (2.1)
Version 2: Why Better than Version 1? (2.2)
Version 2: Why Better than Version 1? (3.1)
Version 2: Why Better than Version 1? (3.2)
Version 2: Why Still Not a Good Design? (1)
Version 2: Why Still Not a Good Design? (2.1)
Version 2: Why Still Not a Good Design? (2.2)
Version 2: How Should We Improve it?
Version 3: Added Assertions
to Approximate Class Invariants
Version 3: Why Better than Version 2?
Version 3: Why Still Not a Good Design? (1)
Version 4: What If the
Implementation of withdraw is Wrong? (1)

66 of 69

Index (3)
Version 4: What If the
Implementation of withdraw is Wrong? (2)
Version 4: How Should We Improve it?
Version 5: Added Assertions
to Approximate Method Postconditions
Version 5: Why Better than Version 4?
Evolving from Version 1 to Version 5
Version 5:
Contract between Client and Supplier
DbC in Java
DbC in Eiffel: Supplier
DbC in Eiffel: Contract View of Supplier
DbC in Eiffel: Anatomy of a Class
DbC in Eiffel: Anatomy of a Feature
Runtime Monitoring of Contracts

67 of 69

Index (4)
DbC in Eiffel: Precondition Violation (1.1)
DbC in Eiffel: Precondition Violation (1.2)
DbC in Eiffel: Precondition Violation (2.1)
DbC in Eiffel: Precondition Violation (2.2)
DbC in Eiffel: Precondition Violation (3.1)
DbC in Eiffel: Precondition Violation (3.2)
DbC in Eiffel: Class Invariant Violation (4.1)
DbC in Eiffel: Class Invariant Violation (4.2)
DbC in Eiffel: Class Invariant Violation (5.1)
DbC in Eiffel: Class Invariant Violation (5.2)
TDD: Test-Driven Development (1)
TDD: Test-Driven Development (2)
TDD: Test-Driven Development (3)
Adding the ESpec Library (1)

68 of 69

Index (5)
Adding the ESpec Library (2)

Adding the ESpec Library (3)

ES TEST: Expecting to Succeed (1)

ES TEST: Expecting to Succeed (2)

ES TEST: Expecting to Succeed (3)

ES TEST: Expecting to Fail (1)

ES TEST: Expecting to Fail (2)

ES SUITE: Collecting Test Classes

Running ES SUITE (1)

Running ES SUITE (2)

Running ES SUITE (3)

Beyond this lecture...
69 of 69

Syntax of Eiffel: a Brief Overview

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Escape Sequences

Escape sequences are special characters to be placed in your
program text.
○ In Java, an escape sequence starts with a backward slash \

e.g., \n for a new line character.
○ In Eiffel, an escape sequence starts with a percentage sign %

e.g., %N for a new line characgter.

See here for more escape sequences in Eiffel: https://www.
eiffel.org/doc/eiffel/Eiffel%20programming%
20language%20syntax#Special_characters

2 of 30

https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters
https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters
https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters

Commands, and Queries, and Features

● In a Java class:
○ Attributes: Data
○ Mutators: Methods that change attributes without returning
○ Accessors: Methods that access attribute values and returning

● In an Eiffel class:
○ Everything can be called a feature.
○ But if you want to be specific:
● Use attributes for data
● Use commands for mutators
● Use queries for accessors

3 of 30

Naming Conventions

● Cluster names: all lower-cases separated by underscores
e.g., root, model, tests, cluster number one

● Classes/Type names: all upper-cases separated by
underscores
e.g., ACCOUNT, BANK ACCOUNT APPLICATION

● Feature names (attributes, commands, and queries): all
lower-cases separated by underscores
e.g., account balance, deposit into, withdraw from

4 of 30

Operators: Assignment vs. Equality
● In Java:

○ Equal sign = is for assigning a value expression to some variable.
e.g., x = 5 * y changes x’s value to 5 * y
This is actually controversial, since when we first learned about =,
it means the mathematical equality between numbers.

○ Equal-equal == and bang-equal != are used to denote the equality
and inequality.
e.g., x == 5 * y evaluates to true if x’s value is equal to the
value of 5 * y, or otherwise it evaluates to false.

● In Eiffel:
○ Equal = and slash equal /= denote equality and inequality.

e.g., x = 5 * y evaluates to true if x’s value is equal to the value
of 5 * y, or otherwise it evaluates to false.

○ We use := to denote variable assignment.
e.g., x := 5 * y changes x’s value to 5 * y

○ Also, you are not allowed to write shorthands like x++,
just write x := x + 1.5 of 30

Attribute Declarations

● In Java, you write: int i, Account acc

● In Eiffel, you write: i: INTEGER, acc: ACCOUNT

Think of : as the set membership operator ∈:
e.g., The declaration acc: ACCOUNT means object acc is a
member of all possible instances of ACCOUNT.

6 of 30

Method Declaration
● Command

deposit (amount: INTEGER)
do
balance := balance + amount

end

Notice that you don’t use the return type void
● Query

sum_of (x: INTEGER; y: INTEGER): INTEGER
do
Result := x + y

end

○ Input parameters are separated by semicolons ;
○ Notice that you don’t use return; instead assign the return value

to the pre-defined variable Result.7 of 30

Operators: Logical Operators (1)

● Logical operators (what you learned from EECS1090) are for
combining Boolean expressions.

● In Eiffel, we have operators that EXACTLY correspond to
these logical operators:

LOGIC EIFFEL

Conjunction ∧ and
Disjunction ∨ or
Implication ⇒ implies

Equivalence ≡ =

8 of 30

Review of Propositional Logic (1)

● A proposition is a statement of claim that must be of either
true or false, but not both.

● Basic logical operands are of type Boolean: true and false.
● We use logical operators to construct compound statements.

○ Binary logical operators: conjunction (∧), disjunction (∨),
implication (⇒), and equivalence (a.k.a if-and-only-if ⇐⇒)

p q p ∧ q p ∨ q p⇒ q p ⇐⇒ q
true true true true true true
true false false true false false
false true false true true false
false false false false true true

○ Unary logical operator: negation (¬)
p ¬p

true false
false true

9 of 30

Review of Propositional Logic: Implication
○ Written as p⇒ q
○ Pronounced as “p implies q”
○ We call p the antecedent, assumption, or premise.
○ We call q the consequence or conclusion.
○ Compare the truth of p⇒ q to whether a contract is honoured : p ≈

promised terms; and q ≈ obligations.
○ When the promised terms are met, then:
● The contract is honoured if the obligations are fulfilled.
● The contract is breached if the obligations are not fulfilled.

○ When the promised terms are not met, then:
● Fulfilling the obligation (q) or not (¬q) does not breach the contract.

p q p⇒ q
true true true
true false false
false true true
false false true

10 of 30

Review of Propositional Logic (2)
● Axiom: Definition of⇒

p⇒ q ≡ ¬p ∨ q
● Theorem: Identity of⇒

true⇒ p ≡ p
● Theorem: Zero of⇒

false⇒ p ≡ true
● Axiom: De Morgan

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

● Axiom: Double Negation

p ≡ ¬ (¬ p)
● Theorem: Contrapositive

p⇒ q ≡ ¬q ⇒ ¬p
11 of 30

Review of Predicate Logic (1)

● A predicate is a universal or existential statement about
objects in some universe of disclosure.

● Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.

● We use the following symbols for common numerical ranges:
○ Z: the set of integers
○ N: the set of natural numbers

● Variable(s) in a predicate may be quantified :
○ Universal quantification :

All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.

○ Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.

12 of 30

Review of Predicate Logic (2.1)
● A universal quantification has the form (∀X ∣ R ● P)

○ X is a list of variable declarations
○ R is a constraint on ranges of declared variables
○ P is a property
○ (∀X ∣ R ● P) ≡ (∀X ● R ⇒ P)

e.g., (∀X ∣ True ● P) ≡ (∀X ● True⇒ P) ≡ (∀X ● P)
e.g., (∀X ∣ False ● P) ≡ (∀X ● False⇒ P) ≡ (∀X ● True) ≡ True

● For all (combinations of) values of variables declared in X that
satisfies R, it is the case that P is satisfied.
○ ∀i ∣ i ∈ N ● i ≥ 0 [true]
○ ∀i ∣ i ∈ Z ● i ≥ 0 [false]
○ ∀i , j ∣ i ∈ Z ∧ j ∈ Z ● i < j ∨ i > j [false]

● The range constraint of a variable may be moved to where the
variable is declared.
○ ∀i ∶ N ● i ≥ 0
○ ∀i ∶ Z ● i ≥ 0
○ ∀i , j ∶ Z ● i < j ∨ i > j

13 of 30

Review of Predicate Logic (2.2)
● An existential quantification has the form (∃X ∣ R ● P)

○ X is a list of variable declarations
○ R is a constraint on ranges of declared variables
○ P is a property
○ (∃X ∣ R ● P) ≡ (∃X ● R ∧P)

e.g., (∃X ∣ True ● P) ≡ (∃X ● True ∧P) ≡ (∀X ● P)
e.g., (∃X ∣ False ● P) ≡ (∃X ● False ∧P) ≡ (∃X ● False) ≡ False

● There exists a combination of values of variables declared in X
that satisfies R and P.
○ ∃i ∣ i ∈ N ● i ≥ 0 [true]
○ ∃i ∣ i ∈ Z ● i ≥ 0 [true]
○ ∃i , j ∣ i ∈ Z ∧ j ∈ Z ● i < j ∨ i > j [true]

● The range constraint of a variable may be moved to where the
variable is declared.
○ ∃i ∶ N ● i ≥ 0
○ ∃i ∶ Z ● i ≥ 0
○ ∃i , j ∶ Z ● i < j ∨ i > j

14 of 30

Predicate Logic (3)

● Conversion between ∀ and ∃
(∀X ∣ R ●P) ⇐⇒ ¬(∃X ●R ⇒ ¬P)
(∃X ∣ R ●P) ⇐⇒ ¬(∀X ●R ⇒ ¬P)

● Range Elimination

(∀X ∣ R ●P) ⇐⇒ (∀X ●R ⇒ P)
(∃X ∣ R ●P) ⇐⇒ (∃X ●R ∧P)

15 of 30

Operators: Logical Operators (2)
● How about Java?

○ Java does not have an operator for logical implication.
○ The == operator can be used for logical equivalence.
○ The && and || operators only approximate conjunction and

disjunction, due to the short-circuit effect (SCE):
● When evaluating e1 && e2, if e1 already evaluates to false, then e1

will not be evaluated.
e.g., In (y != 0) && (x / y > 10), the SCE guards the division
against division-by-zero error.

● When evaluating e1 || e2, if e1 already evaluates to true, then e1
will not be evaluated.
e.g., In (y == 0) || (x / y > 10), the SCE guards the division
against division-by-zero error.

○ However, in math, we always evaluate both sides.
● In Eiffel, we also have the version of operators with SCE:

short-circuit conjunction short-circuit disjunction
Java && ||
Eiffel and then or else

16 of 30

Operators: Division and Modulo

Division Modulo (Remainder)
Java 20 / 3 is 6 20 % 3 is 2
Eiffel 20 // 3 is 6 20 \\ 3 is 2

17 of 30

Class Declarations

● In Java:

class BankAccount {
/* attributes and methods */

}

● In Eiffel:

class BANK_ACCOUNT
/* attributes, commands, and queries */

end

18 of 30

Class Constructor Declarations (1)
● In Eiffel, constructors are just commands that have been

explicitly declared as creation features:

class BANK_ACCOUNT
-- List names commands that can be used as constructors
create
make

feature -- Commands
make (b: INTEGER)
do balance := b end

make2
do balance := 10 end

end

● Only the command make can be used as a constructor.
● Command make2 is not declared explicitly, so it cannot be used

as a constructor.19 of 30

Creations of Objects (1)

● In Java, we use a constructor Accont(int b) by:
○ Writing Account acc = new Account(10) to create a named

object acc
○ Writing new Account(10) to create an anonymous object

● In Eiffel, we use a creation feature (i.e., a command explicitly
declared under create) make (int b) in class ACCOUNT by:

○ Writing create {ACCOUNT} acc.make (10) to create a
named object acc

○ Writing create {ACCOUNT}.make (10) to create an
anonymous object

● Writing create {ACCOUNT} acc.make (10)

is really equivalent to writing

acc := create {ACCOUNT}.make (10)

20 of 30

Selections

if B1 then
-- B1
-- do something

elseif B2 then
-- B2 ∧ (¬B1)
-- do something else

else
-- (¬B1) ∧ (¬B2)
-- default action

end

21 of 30

Loops (1)

● In Java, the Boolean conditions in for and while loops are
stay conditions.

void printStuffs() {
int i = 0;
while(i < 10) {
System.out.println(i);
i = i + 1;

}
}

● In the above Java loop, we stay in the loop
as long as i < 10 is true.

● In Eiffel, we think the opposite: we exit the loop
as soon as i >= 10 is true.

22 of 30

Loops (2)
In Eiffel, the Boolean conditions you need to specify for loops
are exit conditions (logical negations of the stay conditions).

print_stuffs
local
i: INTEGER

do
from
i := 0

until
i >= 10

loop
print (i)
i := i + 1

end -- end loop
end -- end command

○ Don’t put () after a command or query with no input parameters.
○ Local variables must all be declared in the beginning.

23 of 30

Library Data Structures

Enter a DS name. Explore supported features.

24 of 30

Data Structures: Arrays
● Creating an empty array:

local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make empty

○ This creates an array of lower and upper indices 1 and 0.
○ Size of array a: a.upper - a.lower + 1 .

● Typical loop structure to iterate through an array:
local
a: ARRAY[INTEGER]
i, j: INTEGER

do
. . .

from
j := a.lower

until
j > a.upper

do
i := a [j]
j := j + 1

end25 of 30

Data Structures: Linked Lists (1)

26 of 30

Data Structures: Linked Lists (2)
● Creating an empty linked list:

local
list: LINKED_LIST[INTEGER]

do
create {LINKED_LIST[INTEGER]} list.make

● Typical loop structure to iterate through a linked list:
local
list: LINKED_LIST[INTEGER]
i: INTEGER

do
. . .

from
list.start

until
list.after

do
i := list.item
list.forth

end
27 of 30

Using across for Quantifications
● across . . . as . . . all . . . end

A Boolean expression acting as a universal quantification (∀)
1 local
2 allPositive: BOOLEAN
3 a: ARRAY[INTEGER]
4 do
5 . . .
6 Result :=
7 across
8 a.lower |..| a.upper as i
9 all

10 a [i.item] > 0
11 end

○ L8: a.lower |..| a.upper denotes a list of integers.
○ L8: as i declares a list cursor for this list.
○ L10: i.item denotes the value pointed to by cursor i.

● L9: Changing the keyword all to some makes it act like an
existential quantification ∃.

28 of 30

Index (1)
Escape Sequences
Commands, Queries, and Features
Naming Conventions
Operators: Assignment vs. Equality
Attribute Declarations
Method Declaration
Operators: Logical Operators (1)
Review of Propositional Logic (1)
Review of Propositional Logic: Implication
Review of Propositional Logic (2)
Review of Predicate Logic (1)
Review of Predicate Logic (2.1)
Review of Predicate Logic (2.2)
Predicate Logic (3)

29 of 30

Index (2)
Operators: Logical Operators (2)
Operators: Division and Modulo
Class Declarations
Class Constructor Declarations (1)
Creations of Objects (1)
Selections
Loops (1)
Loops (2)
Library Data Structures
Data Structures: Arrays
Data Structures: Linked Lists (1)
Data Structures: Linked Lists (2)
Using across to for Quantifications

30 of 30

Abstract Data Types (ADTs),
Classes, and Objects
Readings: OOSC2 Chapters 6, 7, 8

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Abstract Data Types (ADTs)

● Given a problem, you are required to filter out irrelevant details.
● The result is an abstract data type (ADT) , whose interface

consists of a list of (unimplemented) operations.

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier ’s Obligations:
○ Implement all operations
○ Choose the “right” data structure (DS)

● Client ’s Benefits:
○ Correct output
○ Efficient performance

● The internal details of an implemented ADT should be hidden.
2 of 33

Building ADTs for Reusability
● ADTs are reusable software components

e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs
● An ADT, once thoroughly tested, can be reused by:
○ Suppliers of other ADTs
○ Clients of Applications

● As a supplier, you are obliged to:
○ Implement given ADTs using other ADTs (e.g., arrays, linked lists,

hash tables, etc.)
○ Design algorithms that make use of standard ADTs

● For each ADT that you build, you ought to be clear about:
○ The list of supported operations (i.e., interface)

● The interface of an ADT should be more than method signatures and
natural language descriptions:

● How are clients supposed to use these methods? [preconditions]

● What are the services provided by suppliers? [postconditions]

○ Time (and sometimes space) complexity of each operation
3 of 33

Why Java Interfaces Unacceptable ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.
● A reasonably intuitive overview of the ADT.

Java 8 List API
4 of 33

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Why Java Interfaces Unacceptable ADTs (2)
Methods described in a natural language can be ambiguous:

5 of 33

Why Eiffel Contract Views are ADTs (1)
class interface ARRAYED_CONTAINER
feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position ’i’ to ’s’.
require
valid_index: 1 <= i and i <= count

ensure
size_unchanged:
imp.count = (old imp.twin).count

item_assigned:
imp [i] ∼ s

others_unchanged:
across
1 |..| imp.count as j

all
j.item /= i implies imp [j.item] ∼ (old imp.twin) [j.item]

end
count: INTEGER

invariant
consistency: imp.count = count

end -- class ARRAYED_CONTAINER

6 of 33

Why Eiffel Contract Views are ADTs (2)
Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

7 of 33

Uniform Access Principle (1)
● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.
○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● How the Point is implemented is irrelevant to users:
○ Imp. 1: Store x and y. [Compute r and phi on demand]
○ Imp. 2: Store r and phi. [Compute x and y on demand]

● As far as users of a Point object p is concerned, having a
uniform access by always being able to call p.x and p.y is
what matters, despite Imp. 1 or Imp. 2 being current strategy.

8 of 33

Uniform Access Principle (2)
class
POINT

create
make_cartisian, make_polar

feature -- Public, Uniform Access to x- and y-coordinates
x : REAL
y : REAL

end

● A class Point declares how users may access a point: either
get its x coordinate or its y coordinate.

● We offer two possible ways to instantiating a 2-D point:
○ make cartisian (nx: REAL; ny: REAL)
○ make polar (nr: REAL; np: REAL)

● Features x and y, from the client’s point of view, cannot tell
whether it is implemented via:
○ Storage [x and y stored as real-valued attributes]
○ Computation [x and y defined as queries returning real values]

9 of 33

Uniform Access Principle (3)
Let’s say the supplier decides to adopt strategy Imp. 1.
class POINT -- Version 1
feature -- Attributes
x : REAL
y : REAL

feature -- Constructors
make_cartisian(nx: REAL; nx: REAL)
do
x := nx
y := ny

end
end

● Attributes x and y represent the Cartesian system
● A client accesses a point p via p.x and p.y.
○ No Extra Computations: just returning current values of x and y.

● However, it’s harder to implement the other constructor: the
body of make polar (nr: REAL; np: REAL) has to
compute and store x and y according to the inputs nr and np.

10 of 33

Uniform Access Principle (4)
Let’s say the supplier decides (secretly) to adopt strategy Imp. 2.
class POINT -- Version 2
feature -- Attributes
r : REAL
p : REAL

feature -- Constructors
make_polar(nr: REAL; np: REAL)
do
r := nr
p := np

end
feature -- Queries
x : REAL do Result := r × cos(p) end
x : REAL do Result := r × sin(p) end

end

● Attributes r and p represent the Polar system
● A client still accesses a point p via p.x and p.y.
○ Extra Computations: computing x and y according to the current

values of r and p.
11 of 33

Uniform Access Principle (5.1)

Let’s consider the following scenario as an example:

Note: 360○ = 2π
12 of 33

Uniform Access Principle (5.2)

1 test_points: BOOLEAN
2 local
3 A, X, Y: REAL
4 p1, p2: POINT
5 do
6 comment("test: two systems of points")

7 A := 5; X := A ×√3; Y := A
8 create {POINT} p1.make_cartisian (X, Y)
9 create {POINT} p2.make_polar (2 × A, 1

6π)
10 Result := p1.x = p2.x and p1.y = p2.y
11 end

● If strategy Imp. 1 is adopted:
○ L8 is computationally cheaper than L9. [x and y attributes]
○ L10 requires no computations to access x and y.
If strategy Imp. 2 is adopted:
○ L9 is computationally cheaper than L8. [r and p attributes]
○ L10 requires computations to access x and y.

13 of 33

Uniform Access Principle (6)
The Uniform Access Principle :
● Allows clients to use services (e.g., p.x and p.y) regardless of

how they are implemented.
● Gives suppliers complete freedom as to how to implement the

services (e.g., Cartesian vs. Polar).
○ No right or wrong implementation; it depends!
○ Choose for storage if the services are frequently accessed and

their computations are expensive.
e.g. balance of a bank involves a large number of accounts
⇒ Implement balance as an attribute

○ Choose for computation if the services are not keeping their
values in sync is complicated.
e.g., update balance upon a local deposit or withdrawal
⇒ Implement balance as a query

● Whether it’s storage or computation, you can always change
secretly , since the clients’ access to the services is uniform .

14 of 33

Generic Collection Class: Motivation (1)
class STRING _STACK
feature {NONE} -- Implementation

imp: ARRAY[STRING] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: STRING do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: STRING) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

○ Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type STRING
(e.g., at, append)? [NO!]

○ How would you implement another class ACCOUNT STACK?
15 of 33

Generic Collection Class: Motivation (2)

class ACCOUNT _STACK
feature {NONE} -- Implementation

imp: ARRAY[ACCOUNT] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: ACCOUNT do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: ACCOUNT) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

○ Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type
ACCOUNT (e.g., deposit, withdraw)? [NO!]

16 of 33

Generic Collection Class: Supplier
● Your design “smells” if you have to create an almost identical

new class (hence code duplicates) for every stack element
type you need (e.g., INTEGER, CHARACTER, PERSON, etc.).

● Instead, as supplier, use G to parameterize element type:
class STACK [G]

feature {NONE} -- Implementation

imp: ARRAY[G] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: G do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: G) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

17 of 33

Generic Collection Class: Client (1.1)
As client, declaring ss: STACK[STRING] instantiates every
occurrence of G as STRING.

class STACK [�G STRING]

feature {NONE} -- Implementation

imp: ARRAY[�G STRING] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: �G STRING do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: �G STRING) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

18 of 33

Generic Collection Class: Client (1.2)
As client, declaring ss: STACK[ACCOUNT] instantiates every
occurrence of G as ACCOUNT.

class STACK [�G ACCOUNT]

feature {NONE} -- Implementation

imp: ARRAY[�G ACCOUNT] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: �G ACCOUNT do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: �G ACCOUNT) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

19 of 33

Generic Collection Class: Client (2)
As client, instantiate the type of G to be the one needed.

1 test_stacks: BOOLEAN
2 local
3 ss: STACK[STRING] ; sa: STACK[ACCOUNT]
4 s: STRING ; a: ACCOUNT
5 do
6 ss.push("A")
7 ss.push(create {ACCOUNT}.make ("Mark", 200))
8 s := ss.top
9 a := ss.top

10 sa.push(create {ACCOUNT}.make ("Alan", 100))
11 sa.push("B")
12 a := sa.top
13 s := sa.top
14 end

● L3 commits that ss stores STRING objects only.
○ L8 and L10 valid ; L9 and L11 invalid .

● L4 commits that sa stores ACCOUNT objects only.
○ L12 and L14 valid ; L13 and L15 invalid .

20 of 33

Expanded Class: Modelling
● We may want to have objects which are:
○ Integral parts of some other objects
○ Not shared among objects
e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.

21 of 33

Expanded Class: Programming (2)
class KEYBOARD . . . end class CPU . . . end
class MONITOR . . . end class NETWORK . . . end
class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

end

Alternatively:
expanded class KEYBOARD . . . end
expanded class CPU . . . end
expanded class MONITOR . . . end
class NETWORK . . . end
class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK

end
22 of 33

Expanded Class: Programming (3)

expanded class
B

feature
change_i (ni: INTEGER)
do
i := ni

end
feature
i: INTEGER

end

1 test_expanded: BOOLEAN
2 local
3 eb1, eb2: B
4 do
5 Result := eb1.i = 0 and eb2.i = 0
6 check Result end
7 Result := eb1 = eb2
8 check Result end
9 eb2.change_i (15)

10 Result := eb1.i = 0 and eb2.i = 15
11 check Result end
12 Result := eb1 /= eb2
13 check Result end
14 end

● L5: object of expanded type is automatically initialized.
● L9 & L10: no sharing among objects of expanded type.
● L7 & L12: = between expanded objects compare their contents.
23 of 33

Reference vs. Expanded (1)

● Every entity must be declared to be of a certain type (based on
a class).

● Every type is either referenced or expanded .
● In reference types:
○ y denotes a reference to some object
○ x := y attaches x to same object as does y
○ x = y compares references

● In expanded types:
○ y denotes some object (of expanded type)
○ x := y copies contents of y into x
○ x = y compares contents [x ∼ y]

24 of 33

Reference vs. Expanded (2)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author expanded-typed author

25 of 33

Copying Objects
Say variables c1 and c2 are both declared of type C. [c1, c2: C]
● There is only one attribute a declared in class C.
● c1.a and c2.a may be of either:
○ expanded type or
○ reference type

a

C

c1

a

C

c2

c1.a

c2.a

26 of 33

Copying Objects: Reference Copy
Reference Copy c1 := c2

○ Copy the address stored in variable c2 and store it in c1.
⇒ Both c1 and c2 point to the same object.
⇒ Updates performed via c1 also visible to c2. [aliasing]

a

C

c1

a

C

c2

c1.a

c2.a

27 of 33

Copying Objects: Shallow Copy
Shallow Copy c1 := c2.twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Initialize each attribute a of c3 via reference copy : c3.a := c2.a

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object. [c1 /= c2]
⇒ c1.a and c2.a are pointing to the same object.
⇒ Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

28 of 33

Copying Objects: Deep Copy
Deep Copy c1 := c2.deep_twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Recursively initialize each attribute a of c3 as follows:

Base Case: a is expanded (e.g., INTEGER). ⇒ c3.a := c2.a.
Recursive Case: a is referenced. ⇒ c3.a := c2.a.deep_twin

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object.
⇒ c1.a and c2.a are not pointing to the same object.
⇒ No aliasing occurs at any levels.

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

c2.a.deep_twin

29 of 33

Copying Objects: Example

EECS, York University Object Oriented Software Construction 15-05-27 16:29 28

Shallow and deep cloning

!  Initial situation:

!  Result of:

b := a

c := a.twin

d := a.deep_twin

“Almaviva” name
landlord

loved_one

a
O1

“Figaro”
O2

“Susanna”
O3

b

“Almaviva” O4

c

“Almaviva” name
landlord

loved_one

O5

“Figaro”
O6

“Susanna”
O7

d

30 of 33

Index (1)
Abstract Data Types (ADTs)
Building ADTs for Reusability
Why Java Interfaces Unacceptable ADTs (1)
Why Java Interfaces Unacceptable ADTs (2)
Why Eiffel Contract Views are ADTs (1)
Why Eiffel Contract Views are ADTs (2)
Uniform Access Principle (1)
Uniform Access Principle (2)
Uniform Access Principle (3)
Uniform Access Principle (4)
Uniform Access Principle (5.1)
Uniform Access Principle (5.2)
Uniform Access Principle (6)
Generic Collection Class: Motivation (1)

31 of 33

Index (2)
Generic Collection Class: Motivation (2)
Generic Collection Class: Supplier
Generic Collection Class: Client (1.1)
Generic Collection Class: Client (1.2)
Generic Collection Class: Client (2)
Expanded Class: Modelling
Expanded Class: Programming (2)
Expanded Class: Programming (3)
Reference vs. Expanded (1)
Reference vs. Expanded (2)
Copying Objects
Copying Objects: Reference Copy
Copying Objects: Shallow Copy
Copying Objects: Deep Copy

32 of 33

Index (3)
Copying Objects: Example

33 of 33

Design Patterns:
Singleton and Iterator

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What are design patterns?

● Solutions to problems that arise when software is being
developed within a particular context.○ Heuristics for structuring your code so that it can be systematically

maintained and extended.○ Caveat : A pattern is only suitable for a particular problem.○ Therefore, always understand problems before solutions!

2 of 31

Singleton Pattern: Motivation

Consider two problems:

1. Bank accounts share a set of data.
e.g., interest and exchange rates, minimum and maximum
balance, etc.

2. Processes are regulated to access some shared, limited
resources.

3 of 31

Shared Data through Inheritance

Client:
class DEPOSIT inherit SHARED_DATA

. . .
end

class WITHDRAW inherit SHARED_DATA
. . .

end

class ACCOUNT inherit SHARED_DATA
feature

deposits: DEPOSIT_LIST
withdraws: WITHDRAW_LIST
. . .

end

Supplier:
class
SHARED_DATA

feature
interest_rate: REAL
exchange_rate: REAL
minimum_balance: INTEGER
maximum_balance: INTEGER
. . .

end

Problems?

4 of 31

Sharing Data through Inheritance:
Architecture

○ Irreverent features are inherited, breaking descendants’ cohesion.○ Same set of data is duplicated as instances are created.
5 of 31

Sharing Data through Inheritance: Limitation

● Each instance at runtime owns a separate copy of the shared
data.

● This makes inheritance not an appropriate solution for both
problems:○ What if the interest rate changes? Apply the change to all

instantiated account objects?○ An update to the global lock must be observable by all regulated
processes.

Solution:○ Separate notions of data and its shared access in two separate
classes.○ Encapsulate the shared access itself in a separate class.

6 of 31

Introducing the Once Routine in Eiffel (1.1)
1 class A
2 create make
3 feature -- Constructor
4 make do end
5 feature -- Query
6 new_once_array (s: STRING): ARRAY[STRING]
7 -- A once query that returns an array.
8 once

9 create {ARRAY[STRING]} Result.make_empty
10 Result.force (s, Result.count + 1)
11 end
12 new_array (s: STRING): ARRAY[STRING]
13 -- An ordinary query that returns an array.
14 do

15 create {ARRAY[STRING]} Result.make_empty
16 Result.force (s, Result.count + 1)
17 end
18 end

L9 & L10 executed only once for initialization.
L15 & L16 executed whenever the feature is called.

7 of 31

Introducing the Once Routine in Eiffel (1.2)

1 test_query: BOOLEAN
2 local
3 a: A
4 arr1, arr2: ARRAY[STRING]
5 do
6 create a.make
7
8 arr1 := a.new_array ("Alan")
9 Result := arr1.count = 1 and arr1[1] ∼ "Alan"

10 check Result end
11
12 arr2 := a.new_array ("Mark")

13 Result := arr2.count = 1 and arr2[1] ∼ "Mark"
14 check Result end
15
16 Result := not (arr1 = arr2)
17 check Result end
18 end

8 of 31

Introducing the Once Routine in Eiffel (1.3)

1 test_once_query: BOOLEAN
2 local
3 a: A
4 arr1, arr2: ARRAY[STRING]
5 do
6 create a.make
7
8 arr1 := a.new_once_array ("Alan")
9 Result := arr1.count = 1 and arr1[1] ∼ "Alan"

10 check Result end
11
12 arr2 := a.new_once_array ("Mark")

13 Result := arr2.count = 1 and arr2[1] ∼ "Alan"
14 check Result end
15
16 Result := arr1 = arr2
17 check Result end
18 end

9 of 31

Introducing the Once Routine in Eiffel (2)
r (. . .): T

once
-- Some computations on Result
. . .

end

● The ordinary do . . . end is replaced by once . . . end.● The first time the once routine r is called by some client, it
executes the body of computations and returns the computed
result.● From then on, the computed result is “cached”.● In every subsequent call to r , possibly by different clients, the
body of r is not executed at all; instead, it just returns the
“cached” result, which was computed in the very first call.● How does this help us?
Cache the reference to the same shared object!

10 of 31

Introducing the Once Routine in Eiffel (3)
● In Eiffel, the once routine:○ Initializes its return value Result by some computation.○ The initial computation is invoked only once.○ Resulting value from the initial computation is cached and returned

for all later calls to the once routine.● Eiffel once routines are different from Java static accessors
In Java, a static accessor● Does not have its computed return value “cached”● Has its computation performed freshly on every invocation

● Eiffel once routines are different from Java static attributes
In Java, a static attribute● Is a value on storage● May be initialized via some simple expression

e.g., static int counter = 20;
but cannot be initialized via some sophisticated computation.● Note. By putting such initialization computation in a constructor, there
would be a fresh computation whenever a new object is created.

11 of 31

Singleton Pattern in Eiffel

Supplier:
class BANK_DATA
create {BANK_DATA_ACCESS} make
feature {BANK_DATA_ACCESS}
make do . . . end

feature -- Data Attributes
interest_rate: REAL
set_interest_rate (r: REAL)

end

expanded class
BANK_DATA_ACCESS

feature
data: BANK_DATA

-- The one and only access
once create Result.make end

invariant data = data

Client:
class
ACCOUNT

feature
data: BANK_DATA
make (. . .)

-- Init. access to bank data.
local
data_access: BANK_DATA_ACCESS

do
data := data_access.data
. . .

end
end

Writing create data.make in
client’s make feature does not
compile. Why?

12 of 31

Testing Singleton Pattern in Eiffel

test_bank_shared_data: BOOLEAN
-- Test that a single data object is manipulated

local
acc1, acc2: ACCOUNT

do
comment("t1: test that a single data object is shared")
create acc1.make ("Bill")
create acc2.make ("Steve")

Result := acc1.data ∼ acc2.data
check Result end

Result := acc1.data = acc2.data
check Result end

acc1.data.set_interest_rate (3.11)
Result := acc1.data.interest_rate = acc2.data.interest_rate

end

13 of 31

Singleton Pattern: Architecture

DATA_ACCESS +

data: DATA
 -- A shared data object.
 once
 create Result.make
 end

Invariant
shared_instance:
 data = data

DATA +

data +

DATA_ACCESS

v: VALUE
 -- An example query.
c
 -- An example command.

make
 - - Initialize a data object.

CLIENT_1

APPLICATION_2 +

CLIENT_2

APPLICATION_3 +

CLIENT_3

SUPPLIER_OF_SHARED_DATA
APPLICATION_1 +

Important Exercises: Instantiate this architecture to both
problems of shared bank data and shared lock. Draw them in
draw.io.

14 of 31

Iterator Pattern: Motivation

Supplier:
class
CART

feature
orders: ARRAY [ORDER]

end

class
ORDER

feature
price: INTEGER
quantity: INTEGER

end

Problems?

Client:
class
SHOP

feature
cart: CART
checkout: INTEGER
do
from
i := cart.orders.lower

until
i > cart.orders.upper

do
Result := Result +
cart.orders[i].price
*
cart.orders[i].quantity

i := i + 1
end

end
end

15 of 31

Iterator Pattern: Architecture

new_cursor*: ITERATION_CURSOR[G]
 -- Fresh cursor associated with current structure.
 ! Result ≠ Void item*: G

 -- Item at current cursor position.
 ? valid_position: not after

forth*
 -- Move to next position.
 ? valid_position: not after

after*: BOOLEAN
 -- Are there no more items to iterate over?

ITERABLE *

new_cursor*

ITERATION_CURSOR[G] *CLIENT_APPLICATION+

container+
increase_balance(v: INTEGER; name: STRING)
 -- Increase the balance for account with owner name .
 ? across container as cur
 all
 cur.item.balance ≥ v
 end
 ! across old container.deep_twin as cur
 all
 (cur.item.owner ~ name implies
 cur.item.balance = old cur.item.balance + v)
 and
 (cur.item.owner ~ name implies
 cur.item.balance = old cur.item.balance)
 end

container: ITERABLE+
 -- Fresh cursor of the container.

some_account_negative: BOOLEAN
 -- Is there some account negative?
 ! Result =
 across container as cur
 some
 cur.item.balance < v
 end

INDEXABLE_ITERATION_CURSOR[G] +

new_cursor+

after+: BOOLEAN
 -- Are there no more items to iterate over?

item+: G
 -- Item at current cursor position.

forth+
 -- Move to next position.

start+
 -- Move to first position.

CLIENT SUPPLIER

ARRAY[G] +

LINKED_LIST[G] + ARRAYED_LIST[G] +

ITERABLE_COLLECTION

16 of 31

Iterator Pattern: Supplier’s Side

● Information hiding: changing the secret, internal workings of
data structures should not affect any existing clients.

e.g., changing from ARRAY to LINKED LIST in the CART class
● Steps:

1. Let the supplier class inherit from the deferred class
ITERABLE[G] .

2. This forces the supplier class to implement the inherited feature:
new cursor: ITERATION CURSOR [G] , where the type parameter
G may be instantiated (e.g., ITERATION CURSOR[ORDER]).

2.1 If the internal, library data structure is already iterable
e.g., imp: ARRAY[ORDER], then simply return imp.new cursor.

2.2 Otherwise, say imp: MY TREE[ORDER], then create a new class
MY TREE ITERATION CURSOR that inherits from
ITERATION CURSOR[ORDER] , then implement the 3 inherited
features after , item, and forth accordingly.

17 of 31

Iterator Pattern: Supplier’s Implementation (1)

class
CART

inherit
ITERABLE[ORDER]

. . .

feature {NONE} -- Information Hiding
orders: ARRAY[ORDER]

feature -- Iteration
new_cursor: ITERATION_CURSOR[ORDER]
do
Result := orders.new_cursor

end

When the secrete implementation is already iterable, reuse it!

18 of 31

Iterator Pattern: Supplier’s Imp. (2.1)

class
GENERIC_BOOK[G]

inherit
ITERABLE[TUPLE[STRING, G]]

. . .
feature {NONE} -- Information Hiding
names: ARRAY[STRING]
records: ARRAY[G]

feature -- Iteration
new_cursor: ITERATION_CURSOR[TUPLE[STRING, G]]
local
cursor: MY ITERATION CURSOR[G]

do
create cursor.make (names, records)
Result := cursor

end

No Eiffel library support for iterable arrays⇒ Implement it yourself!

19 of 31

Iterator Pattern: Supplier’s Imp. (2.2)
class
MY_ITERATION_CURSOR[G]

inherit
ITERATION_CURSOR[TUPLE[STRING, G]]

feature -- Constructor
make (ns: ARRAY[STRING]; rs: ARRAY[G])
do . . . end

feature {NONE} -- Information Hiding
i: cursor_position
names: ARRAY[STRING]
records: ARRAY[G]

feature -- Cursor Operations
item: TUPLE[STRING, G]
do . . . end

after: Boolean
do . . . end

forth
do . . . end

You need to implement the three inherited features:
item, after, and forth.

20 of 31

Exercises

1. Draw the BON diagram showing how the iterator pattern is
applied to the CART (supplier) and SHOP (client) classes.

2. Draw the BON diagram showing how the iterator pattern is
applied to the supplier classes:○ GENERIC BOOK (a descendant of ITERABLE) and○ MY ITERATION CURSOR (a descendant of

ITERATION CURSOR).

21 of 31

Iterator Pattern: Client’s Side

Information hiding: the clients do not at all depend on how the
supplier implements the collection of data; they are only interested
in iterating through the collection in a linear manner.
Steps:

1. Obey the code to interface, not to implementation principle.
2. Let the client declare an attribute of type ITERABLE[G] (rather

than ARRAY, LINKED LIST, or MY TREE).
e.g., cart: CART, where CART inherits ITERATBLE[ORDER]

3. Eiffel supports, in both implementation and contracts, the
across syntax for iterating through anything that’s iterable.

22 of 31

Iterator Pattern:
Clients using across for Contracts (1)
class
CHECKER

feature -- Attributes
collection: ITERABLE [INTEGER]

feature -- Queries
is all positive: BOOLEAN

-- Are all items in collection positive?
do
. . .

ensure
across
collection as cursor

all
cursor.item > 0

end
end

● Using all corresponds to a universal quantification (i.e., ∀).● Using some corresponds to an existential quantification (i.e., ∃).
23 of 31

Iterator Pattern:
Clients using across for Contracts (2)
class BANK
. . .
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT

-- Search on accounts sorted in non-descending order.
require
across
1 |..| (accounts.count - 1) as cursor

all
accounts [cursor.item].id <= accounts [cursor.item + 1].id

end
do
. . .

ensure
Result.id = acc_id

end

This precondition corresponds to:
∀i ∶ INTEGER � 1 ≤ i < accounts.count ● accounts[i].id ≤ accounts[i +1].id

24 of 31

Iterator Pattern:
Clients using across for Contracts (3)
class BANK
. . .
accounts: LIST [ACCOUNT]
contains_duplicate: BOOLEAN

-- Does the account list contain duplicate?
do
. . .

ensure∀i, j ∶ INTEGER �
1 ≤ i ≤ accounts.count ∧ 1 ≤ j ≤ accounts.count ●

accounts[i] ∼ accounts[j]⇒ i = j
end

● Exercise: Convert this mathematical predicate for
postcondition into Eiffel.● Hint: Each across construct can only introduce one dummy
variable, but you may nest as many across constructs as
necessary.

25 of 31

Iterator Pattern:
Clients using Iterable in Imp. (1)
class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

-- Account with the maximum balance value.
require ??
local
cursor: ITERATION_CURSOR[ACCOUNT]; max: ACCOUNT

do
from max := accounts [1]; cursor := accounts. new cursor

until cursor. after
do
if cursor. item .balance > max.balance then
max := cursor. item

end
cursor. forth

end
ensure ??
end

26 of 31

Iterator Pattern:
Clients using Iterable in Imp. (2)

1 class SHOP
2 cart: CART
3 checkout: INTEGER
4 -- Total price calculated based on orders in the cart.
5 require ??
6 local
7 order: ORDER
8 do
9 across

10 cart as cursor
11 loop
12 order := cursor. item
13 Result := Result + order.price * order.quantity
14 end
15 ensure ??
16 end

● Class CART should inherit from ITERABLE[ORDER] .● L10 implicitly declares: cursor: ITERATION CURSOR[ORDER]
27 of 31

Iterator Pattern:
Clients using Iterable in Imp. (3)
class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

-- Account with the maximum balance value.
require ??
local
max: ACCOUNT

do
max := accounts [1]
across
accounts as cursor
loop

if cursor.item.balance > max.balance then
max := cursor. item

end
end

ensure ??
end

28 of 31

Index (1)
What are design patterns?
Singleton Pattern: Motivation
Shared Data through Inheritance
Sharing Data through Inheritance: Architecture
Sharing Data through Inheritance: Limitation
Introducing the Once Routine in Eiffel (1.1)
Introducing the Once Routine in Eiffel (1.2)
Introducing the Once Routine in Eiffel (1.3)
Introducing the Once Routine in Eiffel (2)
Introducing the Once Routine in Eiffel (3)
Singleton Pattern in Eiffel
Testing Singleton Pattern in Eiffel
Singleton Pattern: Architecture
Iterator Pattern: Motivation

29 of 31

Index (2)
Iterator Pattern: Architecture
Iterator Pattern: Supplier’s Side
Iterator Pattern: Supplier’s Implementation (1)
Iterator Pattern: Supplier’s Imp. (2.1)
Iterator Pattern: Supplier’s Imp. (2.2)
Exercises
Iterator Pattern: Client’s Side
Iterator Pattern:
Clients using across for Contracts (1)
Iterator Pattern:
Clients using across for Contracts (2)
Iterator Pattern:
Clients using across for Contracts (3)
Iterator Pattern:
Clients using Iterable in Imp. (1)

30 of 31

Index (3)
Iterator Pattern:
Clients using Iterable in Imp. (2)

Iterator Pattern:
Clients using Iterable in Imp. (3)

31 of 31

Writing Complete Contracts

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

How are contracts checked at runtime?

● All contracts are specified as Boolean expressions.
● Right before a feature call (e.g., acc.withdraw(10)):

○ The current state of acc is called its pre-state.
○ Evaluate pre-condition using current values of attributes/queries.
○ Cache values of all expressions involving the old keyword in the

post-condition .

e.g., cache the value of old balance via old balance ∶= balance
● Right after the feature call:

○ The current state of acc is called its post-state.
○ Evaluate invariant using current values of attributes and queries.
○ Evaluate post-condition using both current values and

“cached” values of attributes and queries.

2 of 25

When are contracts complete?

● In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
○ Eiffel supports this purpose using the old keyword.

● This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

● Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● The second contract is much harder to specify:
○ Reference aliasing [ref copy vs. shallow copy vs. deep copy]
○ Iterable structure [use across]

3 of 25

Account

class
ACCOUNT

inherit
ANY
redefine is_equal end

create
make

feature
owner: STRING
balance: INTEGER

make (n: STRING)
do
owner := n
balance := 0

end

deposit(a: INTEGER)
do
balance := balance + a

ensure
balance = old balance + a

end

is_equal(other: ACCOUNT): BOOLEAN
do
Result :=

owner ∼ other.owner
and balance = other.balance

end
end

4 of 25

Bank
class BANK
create make
feature
accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require
existing: across accounts as acc some acc.item.owner ∼ n end

do . . .
ensure Result.owner ∼ n
end

add (n: STRING)
require
non_existing:
across accounts as acc all acc.item.owner /∼ n end

local new_account: ACCOUNT
do
create new_account.make (n)
accounts.force (new_account, accounts.upper + 1)

end
end

5 of 25

Roadmap of Illustrations

We examine 5 different versions of a command

deposit on (n ∶ STRING; a ∶ INTEGER)

VERSION IMPLEMENTATION CONTRACTS SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

6 of 25

Object Structure for Illustration

We will test each version by starting with the same runtime object
structure:

BANK

b

accounts

0 1

ACCOUNT

owner

0balance

“Bill”

ACCOUNT

owner

0balance

“Steve”

b.accounts

7 of 25

Version 1:
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_v1 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ∼ n then accounts[i].deposit(a) end
i := i + 1

end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end
end

8 of 25

Test of Version 1

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t1: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v1 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

9 of 25

Test of Version 1: Result

10 of 25

Version 2:
Incomplete Contracts, Wrong Implementation
class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1

-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end
end

Current postconditions lack a check that accounts other than n
are unchanged.

11 of 25

Test of Version 2

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v2 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

12 of 25

Test of Version 2: Result

13 of 25

Version 3:
Complete Contracts with Reference Copy
class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of(n).balance = old account_of(n).balance + a

others unchanged :

across old accounts as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end

14 of 25

Test of Version 3

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN
local
b: BANK

do
comment("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v3 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

15 of 25

Test of Version 3: Result

16 of 25

Version 4:
Complete Contracts with Shallow Object Copy
class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :

across old accounts.twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end

17 of 25

Test of Version 4

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN
local
b: BANK

do
comment("t4: wrong imp and complete contract with shallow copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v4 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

18 of 25

Test of Version 4: Result

19 of 25

Version 5:
Complete Contracts with Deep Object Copy
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER

do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :

across old accounts.deep twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end

20 of 25

Test of Version 5

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
local
b: BANK

do
comment("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v5 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

21 of 25

Test of Version 5: Result

22 of 25

Exercise

● Consider the query account of (n: STRING) of BANK.
● How do we specify (part of) its postcondition to assert that the

state of the bank remains unchanged:
○ accounts = old accounts [×]
○ accounts = old accounts.twin [×]
○ accounts = old accounts.deep_twin [×]
○ accounts ˜ old accounts [×]
○ accounts ˜ old accounts.twin [×]
○ accounts ˜ old accounts.deep_twin [✓]

● Which equality of the above is appropriate for the
postcondition?

● Why is each one of the other equalities not appropriate?

23 of 25

Index (1)
How are contracts checked at runtime?
When are contracts complete?
Account
Bank
Roadmap of Illustrations
Object Structure for Illustration
Version 1:
Incomplete Contracts, Correct Implementation
Test of Version 1
Test of Version 1: Result
Version 2:
Incomplete Contracts, Wrong Implementation
Test of Version 2
Test of Version 2: Result

24 of 25

Index (2)
Version 3:
Complete Contracts with Reference Copy

Test of Version 3

Test of Version 3: Result
Version 4:
Complete Contracts with Shallow Object Copy

Test of Version 4

Test of Version 4: Result
Version 5:
Complete Contracts with Deep Object Copy

Test of Version 5

Test of Version 5: Result

Exercise
25 of 25

Inheritance
Readings: OOSCS2 Chapters 14 – 16

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

2 of 63

The COURSE Class

class
COURSE

create -- Declare commands that can be used as constructors
make

feature -- Attributes
title: STRING
fee: REAL

feature -- Commands
make (t: STRING; f: REAL)

-- Initialize a course with title ’t’ and fee ’f’.
do
title := t
fee := f

end
end

3 of 63

No Inheritance: RESIDENT STUDENT Class
class RESIDENT STUDENT
create make
feature -- Attributes
name: STRING
courses: LINKED_LIST[COURSE]

premium rate: REAL

feature -- Constructor
make (n: STRING)
do name := n ; create courses.make end

feature -- Commands

set pr (r: REAL) do premium rate := r end

register (c: COURSE) do courses.extend (c) end
feature -- Queries
tuition: REAL
local base: REAL
do base := 0.0

across courses as c loop base := base + c.item.fee end

Result := base * premium rate

end
end

4 of 63

No Inheritance: RESIDENT STUDENT Class
class NON RESIDENT STUDENT
create make
feature -- Attributes
name: STRING
courses: LINKED_LIST[COURSE]

discount rate: REAL
feature -- Constructor
make (n: STRING)
do name := n ; create courses.make end

feature -- Commands

set dr (r: REAL) do discount rate := r end

register (c: COURSE) do courses.extend (c) end
feature -- Queries
tuition: REAL
local base: REAL
do base := 0.0

across courses as c loop base := base + c.item.fee end

Result := base * discount rate
end

end

5 of 63

No Inheritance: Testing Student Classes

test_students: BOOLEAN
local
c1, c2: COURSE
jim: RESIDENT_STUDENT
jeremy: NON_RESIDENT_STUDENT

do
create c1.make ("EECS2030", 500.0)
create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25)
jim.register (c1)
jim.register (c2)
Result := jim.tuition = 1250
check Result end
create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75)
jeremy.register (c1)
jeremy.register (c2)
Result := jeremy.tuition = 750

end

6 of 63

No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.
⇒ This violates the Single Choice Principle

7 of 63

No Inheritance: Maintainability of Code (1)

What if a new way for course registration is to be implemented?
e.g.,

register(Course c)
do
if courses.count >= MAX_CAPACITY then
-- Error: maximum capacity reached.

else
courses.extend (c)

end
end

We need to change the register commands in both student
classes!
⇒ Violation of the Single Choice Principle

8 of 63

No Inheritance: Maintainability of Code (2)

What if a new way for base tuition calculation is to be
implemented?
e.g.,

tuition: REAL
local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base * inflation rate * . . .

end

We need to change the tuition query in both student
classes.
⇒ Violation of the Single Choice Principle

9 of 63

No Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM
rs : LINKED_LIST[RESIDENT STUDENT]
nrs : LINKED_LIST[NON RESIDENT STUDENT]
add_rs (rs: RESIDENT STUDENT) do . . . end
add_nrs (nrs: NON RESIDENT STUDENT) do . . . end
register_all (Course c) -- Register a common course ’c’.
do
across rs as c loop c.item.register (c) end
across nrs as c loop c.item.register (c) end

end
end

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the
same manner, separately !

10 of 63

Inheritance Architecture

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

11 of 63

Inheritance: The STUDENT Parent Class

1 class STUDENT
2 create make
3 feature -- Attributes
4 name: STRING
5 courses: LINKED_LIST[COURSE]
6 feature -- Commands that can be used as constructors.
7 make (n: STRING) do name := n ; create courses.make end
8 feature -- Commands
9 register (c: COURSE) do courses.extend (c) end

10 feature -- Queries
11 tuition: REAL
12 local base: REAL
13 do base := 0.0
14 across courses as c loop base := base + c.item.fee end
15 Result := base
16 end
17 end

12 of 63

Inheritance:
The RESIDENT STUDENT Child Class

1 class
2 RESIDENT_STUDENT
3 inherit
4 STUDENT
5 redefine tuition end
6 create make
7 feature -- Attributes

8 premium rate : REAL
9 feature -- Commands

10 set pr (r: REAL) do premium_rate := r end
11 feature -- Queries
12 tuition: REAL
13 local base: REAL

14 do base := Precursor ; Result := base * premium rate end
15 end

● L3: RESIDENT STUDENT inherits all features from STUDENT.
● There is no need to repeat the register command
● L14: Precursor returns the value from query tuition in STUDENT.13 of 63

Inheritance:
The NON RESIDENT STUDENT Child Class

1 class
2 NON_RESIDENT_STUDENT
3 inherit
4 STUDENT
5 redefine tuition end
6 create make
7 feature -- Attributes

8 discount rate : REAL
9 feature -- Commands

10 set dr (r: REAL) do discount_rate := r end
11 feature -- Queries
12 tuition: REAL
13 local base: REAL

14 do base := Precursor ; Result := base * discount rate end
15 end

● L3: NON RESIDENT STUDENT inherits all features from STUDENT.
● There is no need to repeat the register command
● L14: Precursor returns the value from query tuition in STUDENT.

14 of 63

Inheritance Architecture Revisited

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

● The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

● Each “specialized” class is called a child , sub , or
descendent class.

15 of 63

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:
○ Factor out common features (attributes, commands, queries) in a

separate class.
e.g., the STUDENT class

○ Define an “specialized” version of the class which:
● inherits definitions of all attributes, commands, and queries

e.g., attributes name, courses
e.g., command register
e.g., query on base amount in tuition

This means code reuse and elimination of code duplicates!
● defines new features if necessary

e.g., set pr for RESIDENT STUDENT
e.g., set dr for NON RESIDENT STUDENT

● redefines features if necessary
e.g., compounded tuition for RESIDENT STUDENT
e.g., discounted tuition for NON RESIDENT STUDENT

16 of 63

Testing the Two Student Sub-Classes
test_students: BOOLEAN
local
c1, c2: COURSE
jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_STUDENT
do
create c1.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25) ; jim.register (c1); jim.register (c2)
Result := jim.tuition = 1250
check Result end
create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75); jeremy.register (c1); jeremy.register (c2)
Result := jeremy.tuition = 750
end

● The software can be used in exactly the same way as before
(because we did not modify feature signatures).

● But now the internal structure of code has been made
maintainable using inheritance .

17 of 63

Static Type vs. Dynamic Type
● In object orientation , an entity has two kinds of types:

○ static type is declared at compile time [unchangeable]
An entity’s ST determines what features may be called upon it.

○ dynamic type is changeable at runtime
● In Java:

Student s = new Student("Alan");
Student rs = new ResidentStudent("Mark");

● In Eiffel:
local s: STUDENT

rs: STUDENT
do create {STUDENT} s.make ("Alan")

create {RESIDENT STUDENT} rs.make ("Mark")

○ In Eiffel, the dynamic type can be ignored if it is meant to be the
same as the static type:
local s: STUDENT
do create s.make ("Alan")

18 of 63

Inheritance Architecture Revisited

NON_RESIDENT_STUDENT

STUDENT

RESIDENT_STUDENT

name: STRING
courses: LINKED_LIST[COUNRSE]

register (Course c)
tuition: REAL

/* new features */
premium_rate: REAL
set_pr (r: REAL)
/* redefined features */
tuition: REAL

/* new features */
discount_rate: REAL
set_dr (r: REAL)
/* redefined features */
tuition: REAL

s1,s2,s3: STUDENT ; rs: RESIDENT STUDENT ; nrs : NON RESIDENT STUDENT
create {STUDENT} s1.make ("S1")
create {RESIDENT STUDENT} s2.make ("S2")
create {NON RESIDENT STUDENT} s3.make ("S3")
create {RESIDENT STUDENT} rs.make ("RS")
create {NON RESIDENT STUDENT} nrs.make ("NRS")

name courses reg tuition pr set pr dr set dr

s1. ✓ ×

s2. ✓ ×

s3. ✓ ×

rs. ✓ ✓ ×

nrs. ✓ × ✓

19 of 63

Polymorphism: Intuition (1)

1 local
2 s: STUDENT
3 rs: RESIDENT_STUDENT
4 do
5 create s.make ("Stella")
6 create rs.make ("Rachael")
7 rs.set_pr (1.25)
8 s := rs /* Is this valid? */
9 rs := s /* Is this valid? */

● Which one of L8 and L9 is valid? Which one is invalid?
○ L8: What kind of address can s store? [STUDENT]
∴ The context object s is expected to be used as:
● s.register(eecs3311) and s.tuition

○ L9: What kind of address can rs store? [RESIDENT STUDENT]
∴ The context object rs is expected to be used as:
● rs.register(eecs3311) and rs.tuition
● rs.set pr (1.50) [increase premium rate]

20 of 63

Polymorphism: Intuition (2)
1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3 create {RESIDENT_STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /* Is this valid? */
6 rs := s /* Is this valid? */

● rs := s (L6) should be invalid :

“Stella”name

STUDENTs:STUDENT

“Rachael”name

RESIDENT_STUDENT

rs:RESIDENT_STUDENT

courses

courses

1.25premium_rate

…

…

● rs declared of type RESIDENT STUDENT
∴ calling rs.set pr(1.50) can be expected.

● rs is now pointing to a STUDENT object.
● Then, what would happen to rs.set pr(1.50)?

CRASH ∵ rs.premium rate is undefined !!
21 of 63

Polymorphism: Intuition (3)
1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3 create {RESIDENT_STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /* Is this valid? */
6 rs := s /* Is this valid? */

● s := rs (L5) should be valid :

“Stella”name

STUDENTs:STUDENT

“Rachael”name

RESIDENT_STUDENT

rs:RESIDENT_STUDENT

courses

courses

1.25premium_rate

…

…

● Since s is declared of type STUDENT, a subsequent call
s.set pr(1.50) is never expected.

● s is now pointing to a RESIDENT STUDENT object.
● Then, what would happen to s.tuition?

OK ∵ s.premium rate is just never used !!
22 of 63

Dynamic Binding: Intuition (1)
1 local c : COURSE ; s : STUDENT
2 do crate c.make ("EECS3311", 100.0)
3 create {RESIDENT STUDENT} rs.make("Rachael")
4 create {NON RESIDENT STUDENT} nrs.make("Nancy")
5 rs.set_pr(1.25); rs.register(c)
6 nrs.set_dr(0.75); nrs.register(c)
7 s := rs; ; check s .tuition = 125.0 end
8 s := nrs; ; check s .tuition = 75.0 end

After s := rs (L7), s points to a RESIDENT STUDENT object.
⇒ Calling s .tuition applies the premium rate.

“Rachael”name

RESIDENT_STUDENTrs:RESIDENT_STUDENT
courses

1.25premium_rate

“Nancy”name

NON_RESIDENT_STUDENTnrs:NON_RESIDENT_STUDENT
courses

0.75discount_rate

“EECS3311”title

COURSE

100.0fee

s:STUDENT

23 of 63

Dynamic Binding: Intuition (2)
1 local c : COURSE ; s : STUDENT
2 do crate c.make ("EECS3311", 100.0)
3 create {RESIDENT STUDENT} rs.make("Rachael")
4 create {NON RESIDENT STUDENT} nrs.make("Nancy")
5 rs.set_pr(1.25); rs.register(c)
6 nrs.set_dr(0.75); nrs.register(c)
7 s := rs; ; check s .tuition = 125.0 end
8 s := nrs; ; check s .tuition = 75.0 end

After s:=nrs (L8), s points to a NON RESIDENT STUDENT object.
⇒ Calling s .tuition applies the discount rate.

“Rachael”name

RESIDENT_STUDENTrs:RESIDENT_STUDENT
courses

1.25premium_rate

“Nancy”name

NON_RESIDENT_STUDENTnrs:NON_RESIDENT_STUDENT
courses

0.75discount_rate

“EECS3311”title

COURSE

100.0fee

s:STUDENT

24 of 63

Multi-Level Inheritance Architecture (1)

DOMESTIC_RESIDENT_STUDENT DOMESTIC_NON_RESIDENT_STUDENT FOREIGN_RESIDENT_STUDENT FOREIGN_NON_RESIDENT_STUDENT

DOMESTIC_STUDENT FOREIGN_STUDENT

STUDENT

25 of 63

Multi-Level Inheritance Architecture (2)

IPHONE_6S IPHONE_6S_PLUS SAMSUNG HTC

IOS ANDROID

SMART_PHONE

GALAXY_S6_EDGE GALAXY_S6_EDGE_PLUS HTC_ONE_A9 HTC_ONE_M9

dial /* basic function */
surf_web /* basic function */

surf_web /* redefined using safari */

facetime /* new method */

surf_web /* redefined using firefox */

skype /* new method */

26 of 63

Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.

○ Every class can be used as a type: the set of runtime objects.
● Use of inheritance creates a hierarchy of classes:

○ (Implicit) Root of the hierarchy is ANY.
○ Each inherit declaration corresponds to an upward arrow.
○ The inherit relationship is transitive: when A inherits B and B

inherits C, we say A indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.

● Ancestor vs. Descendant classes:
○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, inherits.
● A inherits all features from its ancestor classes.
∴ A’s instances have a wider range of expected usages (i.e.,
attributes, queries, commands) than instances of its ancestor classes.

○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, inherits A.
● Code defined in A is inherited to all its descendant classes.

27 of 63

Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it

accumulates from its ancestor classes:
○ A descendant class inherits all code from its ancestor classes.
○ A descendant class may also:

● Declare new attributes.
● Define new queries or commands.
● Redefine inherited queries or commands.

● Consequently:
○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).

○ When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.

○ e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT STUDENT or a NON RESIDENT STUDENT object.

○ Justification: A descendant class contains at least as many
features as defined in its ancestor classes (but not vice versa!).

28 of 63

Substitutions via Assignments
● By declaring v1:C1 , reference variable v1 will store the

address of an object of class C1 at runtime.
● By declaring v2:C2 , reference variable v2 will store the

address of an object of class C2 at runtime.
● Assignment v1:=v2 copies the address stored in v2 into v1.

○ v1 will instead point to wherever v2 is pointing to. [object alias]

……

C1v1

……

C2v2

● In such assignment v1:=v2 , we say that we substitute an
object of type C1 with an object of type C2.

● Substitutions are subject to rules!
29 of 63

Rules of Substitution
Given an inheritance hierarchy:
1. When expecting an object of class A, it is safe to substitute it

with an object of any descendant class of A (including A).
○ e.g., When expecting an IOS phone, you can substitute it with

either an IPhone6s or IPhone6sPlus.
○ ∵ Each descendant class of A is guaranteed to contain all code

of (non-private) attributes, commands, and queries defined in A.
○ ∴ All features defined in A are guaranteed to be available in the

new substitute.
2. When expecting an object of class A, it is unsafe to substitute

it with an object of any ancestor class of A’s parent .
○ e.g., When expecting an IOS phone, you cannot substitute it with

just a SmartPhone, because the facetime feature is not
supported in an Android phone.

○ ∵ Class A may have defined new features that do not exist in any
of its parent’s ancestor classes .

30 of 63

Reference Variable: Static Type
● A reference variable’s static type is what we declare it to be.

○ e.g., jim:STUDENT declares jim’s static type as STUDENT.
○ e.g., my phone:SMART PHONE

declares a variable my phone of static type SmartPhone.
○ The static type of a reference variable never changes.

● For a reference variable v , its static type C defines the

expected usages of v as a context object .
● A feature call v.m(. . .) is compilable if m is defined in C .

○ e.g., After declaring jim:STUDENT , we
● may call register and tuition on jim
● may not call set pr (specific to a resident student) or set dr

(specific to a non-resident student) on jim

○ e.g., After declaring my phone:SMART PHONE , we
● may call dial and surf web on my phone
● may not call facetime (specific to an IOS phone) or skype (specific

to an Android phone) on my phone31 of 63

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.
○ The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
○ There are two ways to re-assigning a reference variable.

32 of 63

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.
○ e.g., Given the declaration jim:STUDENT :

● create {RESIDENT STUDENT} jim.make("Jim")

changes the dynamic type of jim to RESIDENT STUDENT.
● create {NON RESIDENT STUDENT} jim.make("Jim")

changes the dynamic type of jim to NON RESIDENT STUDENT.

○ e.g., Given an alternative declaration jim:RESIDENT STUDENT :

● e.g., create {STUDENT} jim.make("Jim") is illegal
because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT STUDENT).

33 of 63

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.
○ e.g.,

jim: STUDENT ; rs: RESIDENT STUDENT; nrs: NON RESIDENT STUDENT
create {STUDENT} jim.make (. . .)
create {RESIDENT STUDENT} rs.make (. . .)
create {NON RESIDENT STUDENT} nrs.make (. . .)

● rs := jim ×

● nrs := jim ×

● jim := rs ✓

changes the dynamic type of jim to the dynamic type of rs
● jim := nrs ✓

changes the dynamic type of jim to the dynamic type of nrs
34 of 63

Polymorphism and Dynamic Binding (1)
● Polymorphism : An object variable may have “multiple possible

shapes” (i.e., allowable dynamic types).
○ Consequently, there are multiple possible versions of each feature

that may be called.
● e.g., 3 possibilities of tuition on a STUDENT reference variable:

In STUDENT: base amount
In RESIDENT STUDENT: base amount with premium rate
In NON RESIDENT STUDENT: base amount with discount rate

● Dynamic binding : When a feature m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
jim: STUDENT; rs: RESIDENT STUDENT; nrs: NON STUDENT
create {RESIDENT STUDENT} rs.make (. . .)
create {NON RESIDENT STUDENT} nrs.nrs (. . .)
jim := rs
jim.tuitoion; /* version in RESIDENT STUDENT */
jim := nrs
jim.tuition; /* version in NON RESIDENT STUDENT */

35 of 63

Polymorphism and Dynamic Binding (2.1)
1 test_polymorphism_students
2 local
3 jim: STUDENT
4 rs: RESIDENT STUDENT
5 nrs: NON RESIDENT STUDENT
6 do
7 create {STUDENT} jim.make ("J. Davis")
8 create {RESIDENT STUDENT} rs.make ("J. Davis")
9 create {NON RESIDENT STUDENT} nrs.make ("J. Davis")

10 jim := rs ✓
11 rs := jim ×
12 jim := nrs ✓
13 rs := jim ×
14 end

In (L3, L7), (L4, L8), (L5, L9), ST = DT , so we may abbreviate:
L7: create jim.make ("J. Davis")

L8: create rs.make ("J. Davis")

L9: create nrs.make ("J. Davis")

36 of 63

Polymorphism and Dynamic Binding (2.2)
test_dynamic_binding_students: BOOLEAN
local
jim: STUDENT
rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
c: COURSE

do
create c.make ("EECS3311", 500.0)
create {STUDENT} jim.make ("J. Davis")
create {RESIDENT STUDENT} rs.make ("J. Davis")
rs.register (c)
rs.set_pr (1.5)

jim := rs

Result := jim.tuition = 750.0
check Result end
create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
nrs.register (c)
nrs.set_dr (0.5)

jim := nrs

Result := jim.tuition = 250.0
end

37 of 63

Reference Type Casting: Motivation
1 local jim: STUDENT; rs: RESIDENT STUDENT
2 do create {RESIDENT STUDENT} jim.make ("J. Davis")
3 rs := jim
4 rs.setPremiumRate(1.5)

● Line 2 is legal : RESIDENT_STUDENT is a descendant class of the
static type of jim (i.e., STUDENT).

● Line 3 is illegal : jim’s static type (i.e., STUDENT) is not a
descendant class of rs’s static type (i.e., RESIDENT_STUDENT).

● Eiffel compiler is unable to infer that jim’s dynamic type in

Line 4 is RESIDENT_STUDENT. [Undecidable]
● Force the Eiffel compiler to believe so, by replacing L3, L4 by a

type cast (which temporarily changes the ST of jim):
check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim

end
rs.set_pr (1.5)

38 of 63

Reference Type Casting: Syntax
1 check attached {RESIDENT STUDENT} jim as rs_jim then
2 rs := rs_jim
3 end
4 rs.set_pr (1.5)

L1 is an assertion:
○ attached RESIDENT STUDENT jim is a Boolean expression

that is to be evaluated at runtime .
● If it evaluates to true, then the as rs jim expression has the effect

of assigning “the cast version” of jim to a new variable rs jim.
● If it evaluates to false, then a runtime assertion violation occurs.

○ Dynamic Binding : Line 4 executes the correct version of set pr.
● It is equivalent to the following Java code:

if(jim instanceof ResidentStudent) {
ResidentStudent rs_jim = (ResidentStudent) jim; }

else { throw new Exception("Illegal Cast"); }
rs.set_pr (1.5)

39 of 63

Notes on Type Cast (1)
● Given v of static type ST , it is compilable to cast v to C , as

long as C is a descendant or ancestor class of ST .
● Why Cast?

○ Without cast, we can only call features defined in ST on v .
○ By casting v to C , we change the static type of v from ST to C .
⇒ All features that are defined in C can be called.

my_phone: IOS
create {IPHONE 6S PLUS} my_phone.make
-- can only call features defined in IOS on myPhone
-- dial, surf_web, facetime ✓ three_d_touch, skype ×
check attached {SMART PHONE} my_phone as sp then
-- can now call features defined in SMART_PHONE on sp
-- dial, surf_web ✓ facetime, three_d_touch, skype ×

end
check attached {IPHONE 6S PLUS} my_phone as ip6s_plus then
-- can now call features defined in IPHONE_6S_PLUS on ip6s_plus
-- dial, surf_web, facetime, three_d_touch ✓ skype ×

end

40 of 63

Notes on Type Cast (2)
● A cast being compilable is not necessarily runtime-error-free!
● A cast check attached {C} v as ... triggers an assertion

violation if C is not along the ancestor path of v’s DT .
test_smart_phone_type_cast_violation
local mine: ANDROID
do create {SAMSUNG} mine.make

-- ST of mine is ANDROID; DT of mine is SAMSUNG
check attached {SMART PHONE} mine as sp then ... end
-- ST of sp is SMART_PHONE; DT of sp is SAMSUNG
check attached {SAMSUNG} mine as samsung then ... end
-- ST of android is SAMSNG; DT of samsung is SAMSUNG
check attached {HTC} mine as htc then ... end
-- Compiles ∵ HTC is descendant of mine’s ST (ANDROID)
-- Assertion violation
-- ∵ HTC is not ancestor of mine’s DT (SAMSUNG)
check attached {GALAXY S6 EDGE} mine as galaxy then ... end
-- Compiles ∵ GALAXY_S6_EDGE is descendant of mine’s ST (ANDROID)
-- Assertion violation
-- ∵ GALAXY_S6_EDGE is not ancestor of mine’s DT (SAMSUNG)

end
41 of 63

Why Inheritance:
A Collection of Various Kinds of Students

How do you define a class STUDENT MANAGEMENT SYSETM
that contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST[STUDENT]
add_student(s: STUDENT)
do
students.extend (s)

end
registerAll (c: COURSE)
do
across
students as s

loop
s.item.register (c)

end
end

end

42 of 63

Polymorphism and Dynamic Binding:
A Collection of Various Kinds of Students

test_sms_polymorphism: BOOLEAN
local
rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
c: COURSE
sms: STUDENT_MANAGEMENT_SYSTEM

do
create rs.make ("Jim")
rs.set_pr (1.5)
create nrs.make ("Jeremy")
nrs.set_dr (0.5)
create sms.make
sms.add_s (rs)
sms.add_s (nrs)
create c.make ("EECS3311", 500)
sms.register_all (c)
Result := sms.ss[1].tuition = 750 and sms.ss[2].tuition = 250

end

43 of 63

Polymorphism: Feature Call Arguments (1)
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss : ARRAY[STUDENT] -- ss[i] has static type Student
3 add_s (s: STUDENT) do ss[0] := s end
4 add_rs (rs: RESIDENT STUDENT) do ss[0] := rs end
5 add_nrs (nrs: NON RESIDENT STUDENT) do ss[0] := nrs end

● L4: ss[0]:=rs is valid. ∵ RHS’s ST RESIDENT STUDENT is
a descendant class of LHS’s ST STUDENT.

● Say we have a STUDENT MANAGEMENT SYSETM object sms:
○ ∵ call by reference , sms.add rs(o) attempts the following

assignment (i.e., replace parameter rs by a copy of argument o):

rs := o

○ Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class C, then we may call feature m by passing objects whose
static types are C’s descendants.

44 of 63

Polymorphism: Feature Call Arguments (2)

test_polymorphism_feature_arguments
local
s1, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON RESIDENT STUDENT
sms: STUDENT_MANAGEMENT_SYSTEM

do
create sms.make
create {STUDENT} s1.make ("s1")
create {RESIDENT_STUDENT} s2.make ("s2")
create {NON_RESIDENT_STUDENT} s3.make ("s3")
create {RESIDENT_STUDENT} rs.make ("rs")
create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
sms.add_s (s1) ✓ sms.add_s (s2) ✓ sms.add_s (s3) ✓
sms.add_s (rs) ✓ sms.add_s (nrs) ✓
sms.add_rs (s1) × sms.add_rs (s2) × sms.add_rs (s3) ×
sms.add_rs (rs) ✓ sms.add_rs (nrs) ×
sms.add_nrs (s1) × sms.add_nrs (s2) × sms.add_nrs (s3) ×
sms.add_nrs (rs) × sms.add_nrs (nrs) ✓

end

45 of 63

Polymorphism: Return Values (1)
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss: LINKED_LIST[STUDENT]
3 add_s (s: STUDENT)
4 do
5 ss.extend (s)
6 end
7 get_student(i: INTEGER): STUDENT
8 require 1 <= i and i <= ss.count
9 do

10 Result := ss[i]
11 end
12 end

● L2: ST of each stored item (ss[i]) in the list: [STUDENT]
● L3: ST of input parameter s: [STUDENT]
● L7: ST of return value (Result) of get student: [STUDENT]
● L11: ss[i]’s ST is descendant of Result’ ST .

Question: What can be the dynamic type of s after Line 11?
Answer: All descendant classes of Student.

46 of 63

Polymorphism: Return Values (2)
1 test_sms_polymorphism: BOOLEAN
2 local
3 rs: RESIDENT_STUDENT ; nrs: NON_RESIDENT_STUDENT
4 c: COURSE ; sms: STUDENT_MANAGEMENT_SYSTEM
5 do
6 create rs.make ("Jim") ; rs.set_pr (1.5)
7 create nrs.make ("Jeremy") ; nrs.set_dr (0.5)
8 create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)
9 create c.make ("EECS3311", 500) ; sms.register_all (c)

10 Result :=
11 get_student(1).tuition = 750
12 and get_student(2).tuition = 250
13 end

● L11: get student(1)’s dynamic type? [RESIDENT_STUDENT]
● L11: Version of tuition? [RESIDENT_STUDENT]
● L12: get student(2)’s dynamic type? [NON_RESIDENT_STUDENT]
● L12: Version of tuition? [NON_RESIDENT_STUDENT]
47 of 63

Design Principle: Polymorphism
● When declaring an attribute a: T

⇒ Choose static type T which “accumulates” all features that
you predict you will want to call on a.

e.g., Choose s: STUDENT if you do not intend to be specific about
which kind of student s might be.
⇒ Let dynamic binding determine at runtime which version of
tuition will be called.

● What if after declaring s: STUDENT you find yourself often
needing to cast s to RESIDENT STUDENT in order to access
premium rate?
check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(. . .) end

⇒ Your design decision should have been: s:RESIDENT_STUDENT

● Same design principle applies to:
○ Type of feature parameters: f(a: T)

○ Type of queries: q(...): T
48 of 63

Inheritance and Contracts (1)
● The fact that we allow polymorphism :

local my_phone: SMART PHONE
i_phone: IPHONE 6S PLUS
samsung_phone: GALAXY S6 EDGE
htc_phone: HTC ONE A9

do my_phone := i_phone
my_phone := samsung_phone
my_phone := htc_phone

suggests that these instances may substitute for each other.
● Intuitively, when expecting SMART PHONE, we can substitute it

by instances of any of its descendant classes.
∵ Descendants accumulate code from its ancestors and can
thus meet expectations on their ancestors.

● Such substitutability can be reflected on contracts, where a

substitutable instance will:
○ Not require more from clients for using the services.
○ Not ensure less to clients for using the services.49 of 63

Inheritance and Contracts (2.1)

50 of 63

Inheritance and Contracts (2.2)
class SMART_PHONE
get_reminders: LIST[EVENT]
require
α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e ∶ Result ∣ e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
γ: battery_level ≥ 0.05 -- 5%

ensure then
δ: ∀e ∶ Result ∣ e happens today between 9am and 5pm

end

Contracts in descendant class IPHONE_6S_PLUS are suitable.
○ Require the same or less α⇒ γ

Clients satisfying the precondition for SMART_PHONE are not shocked
by not being to use the same feature for IPHONE_6S_PLUS.

51 of 63

Inheritance and Contracts (2.3)
class SMART_PHONE
get_reminders: LIST[EVENT]
require
α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e ∶ Result ∣ e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
γ: battery_level ≥ 0.05 -- 5%

ensure then
δ: ∀e ∶ Result ∣ e happens today between 9am and 5pm

end

Contracts in descendant class IPHONE_6S_PLUS are suitable.
○ Ensure the same or more δ⇒ β

Clients benefiting from SMART_PHONE are not shocked by failing to
gain at least those benefits from same feature in IPHONE_6S_PLUS.

52 of 63

Inheritance and Contracts (2.4)
class SMART_PHONE
get_reminders: LIST[EVENT]
require
α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e ∶ Result ∣ e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
γ: battery_level ≥ 0.15 -- 15%

ensure then
δ: ∀e ∶ Result ∣ e happens today or tomorrow

end

Contracts in descendant class IPHONE_6S_PLUS are not suitable.
(battery level ≥ 0.1⇒ battery level ≥ 0.15) is not a tautology.
e.g., A client able to get reminders on a SMART_PHONE, when batter
level is 12%, will fail to do so on an IPHONE_6S_PLUS.

53 of 63

Inheritance and Contracts (2.5)
class SMART_PHONE
get_reminders: LIST[EVENT]
require
α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e ∶ Result ∣ e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
γ: battery_level ≥ 0.15 -- 15%

ensure then
δ: ∀e ∶ Result ∣ e happens today or tomorrow

end

Contracts in descendant class IPHONE_6S_PLUS are not suitable.
(e happens ty. or tw.) ⇒ (e happens ty.) not tautology.
e.g., A client receiving today’s reminders from SMART_PHONE are
shocked by tomorrow-only reminders from IPHONE_6S_PLUS.

54 of 63

Contract Redeclaration Rule (1)
● In the context of some feature in a descendant class:

○ Use require else to redeclare its precondition.
○ Use ensure then to redeclare its precondition.

● The resulting runtime assertions checks are:
○ original_pre or else new_pre

⇒ Clients able to satisfy original pre will not be shocked.
∵ true ∨ new pre ≡ true
A precondition violation will not occur as long as clients are able
to satisfy what is required from the ancestor classes.

○ original_post and then new_post

⇒ Failing to gain original post will be reported as an issue.
∵ false ∧ new post ≡ false
A postcondition violation occurs (as expected) if clients do not
receive at least those benefits promised from the ancestor classes.

55 of 63

Contract Redeclaration Rule (2)
class FOO
f require

original pre
do . . .
end

end

class BAR
inherit FOO redefine f end
f

do . . .
end

end

● Unspecified new pre is as if declaring require else false

∵ original pre ∨ false ≡ original pre
class FOO
f

do . . .
ensure

original post
end

end

class BAR
inherit FOO redefine f end
f
do . . .
end

end

● Unspecified new post is as if declaring ensure then true

∵ original post ∧ true ≡ original post
56 of 63

Invariant Accumulation
● Every class inherits invariants from all its ancestor classes.
● Since invariants are like postconditions of all features, they are

“conjoined” to be checked at runtime.
class POLYGON
vertices: ARRAY[POINT]

invariant
vertices.count ≥ 3

end

class RECTANGLE
inherit POLYGON
invariant
vertices.count = 4

end

● What is checked on a RECTANGLE instance at runtime:
(vertices.count ≥ 3) ∧ (vertices.count = 4) ≡ (vertices.count = 4)

● Can PENTAGON be a descendant class of RECTANGLE?
(vertices.count = 5) ∧ (vertices.count = 4) ≡ false

57 of 63

Inheritance and Contracts (3)
class FOO
f

require
original pre

ensure
original post

end
end

class BAR
inherit FOO redefine f end
f
require else

new pre
ensure then
new post

end
end

(Static) Design Time :
○ original pre ⇒ new pre should prove as a tautology

○ new post ⇒ original post should prove as a tautology

(Dynamic) Runtime :
○ original pre ∨ new pre is checked

○ original post ∧ new post is checked
58 of 63

Index (1)
Why Inheritance: A Motivating Example
The COURSE Class
No Inheritance: RESIDENT STUDENT Class
No Inheritance: RESIDENT STUDENT Class
No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes
No Inheritance: Maintainability of Code (1)
No Inheritance: Maintainability of Code (2)
No Inheritance:
A Collection of Various Kinds of Students
Inheritance Architecture
Inheritance: The STUDENT Parent Class
Inheritance:
The RESIDENT STUDENT Child Class

59 of 63

Index (2)
Inheritance:
The NON RESIDENT STUDENT Child Class
Inheritance Architecture Revisited
Using Inheritance for Code Reuse
Testing the Two Student Sub-Classes
Static Type vs. Dynamic Type
Inheritance Architecture Revisited
Polymorphism: Intuition (1)
Polymorphism: Intuition (2)
Polymorphism: Intuition (3)
Dynamic Binding: Intuition (1)
Dynamic Binding: Intuition (2)
Multi-Level Inheritance Architecture (1)
Multi-Level Inheritance Architecture (2)

60 of 63

Index (3)
Inheritance Forms a Type Hierarchy
Inheritance Accumulates Code for Reuse
Substitutions via Assignments
Rules of Substitution
Reference Variable: Static Type
Reference Variable: Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)
Polymorphism and Dynamic Binding (1)
Polymorphism and Dynamic Binding (2.1)
Polymorphism and Dynamic Binding (2.2)
Reference Type Casting: Motivation

61 of 63

Index (4)
Reference Type Casting: Syntax
Notes on Type Cast (1)
Notes on Type Cast (2)
Why Inheritance:
A Collection of Various Kinds of Students
Polymorphism and Dynamic Binding:
A Collection of Various Kinds of Students
Polymorphism: Feature Call Arguments (1)
Polymorphism: Feature Call Arguments (2)
Polymorphism: Return Values (1)
Polymorphism: Return Values (2)
Design Principle: Polymorphism
Inheritance and Contracts (1)
Inheritance and Contracts (2.1)
Inheritance and Contracts (2.2)

62 of 63

Index (5)
Inheritance and Contracts (2.3)

Inheritance and Contracts (2.4)

Inheritance and Contracts (2.5)

Contract Redeclaration Rule (1)

Contract Redeclaration Rule (2)

Invariant Accumulation

Inheritance and Contracts (3)

63 of 63

Generics

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Example: A Book of Any Objects
class BOOK
names: ARRAY[STRING]
records: ARRAY[ANY]
-- Create an empty book
make do . . . end
-- Add a name-record pair to the book
add (name: STRING; record: ANY) do . . . end
-- Return the record associated with a given name
get (name: STRING): ANY do . . . end

end

Question: Which line has a type error?
1 birthday: DATE; phone_number: STRING
2 b: BOOK; is_wednesday: BOOLEAN
3 create {BOOK} b.make
4 phone_number := "416-677-1010"
5 b.add ("SuYeon", phone_number)
6 create {DATE} birthday.make(1975, 4, 10)
7 b.add ("Yuna", birthday)
8 is_wednesday := b.get("Yuna").get_day_of_week = 4

2 of 16

Motivating Example: Observations (1)
● In the BOOK class:

○ In the attribute declaration

records: ARRAY[ANY]

● ANY is the most general type of records.
● Each book instance may store any object whose static type is a

descendant class of ANY .

○ Accordingly, from the return type of the get feature, we only know
that the returned record has the static type ANY , but not certain
about its dynamic type (e.g., DATE, STRING, etc.).
∴ a record retrieved from the book, e.g., b.get("Yuna"), may
only be called upon features defined in its static type (i.e,. ANY).

● In the tester code of the BOOK class:
○ In Line 1, the static types of variables birthday (i.e., DATE) and
phone_number (i.e., STRING) are descendant classes of ANY.
∴ Line 5 and Line 7 compile.

3 of 16

Motivating Example: Observations (2)
Due to polymorphism , in a collection, the dynamic types of
stored objects (e.g., phone number and birthday) need not
be the same.
○ Features specific to the dynamic types (e.g., get_day_of_week

of class Date) may be new features that are not inherited from
ANY.

○ This is why Line 8 would fail to compile, and may be fixed using an
explicit cast :
check attached {DATE} b.get("Yuna") as yuna_bday then
is_wednesday := yuna_bday.get_day_of_week = 4

end

○ But what if the dynamic type of the returned object is not a DATE?
check attached {DATE} b.get("SuYeon") as suyeon_bday then
is_wednesday := suyeon_bday.get_day_of_week = 4

end

⇒ An assertion violation at runtime!
4 of 16

Motivating Example: Observations (2.1)

● It seems that a combination of attached check (similar to an
instanceof check in Java) and type cast can work.

● Can you see any potential problem(s)?
● Hints:

○ Extensibility and Maintainability
○ What happens when you have a large number of records of

distinct dynamic types stored in the book
(e.g., DATE, STRING, PERSON, ACCOUNT, ARRAY CONTAINER,
DICTIONARY, etc.)? [all classes are descendants of ANY]

5 of 16

Motivating Example: Observations (2.2)
Imagine that the tester code (or an application) stores 100
different record objects into the book.

rec1: C1
. . . -- declarations of rec2 to rec99
rec100: C100
create {C1} rec1.make(. . .) ; b.add(. . ., rec1)
. . . -- additions of rec2 to rec99
create {C100} rec100.make(. . .) ; b.add(. . ., rec100)

where static types C1 to C100 are descendant classes of ANY.
○ Every time you retrieve a record from the book, you need to check

“exhaustively” on its dynamic type before calling some feature(s).

-- assumption: ’f1’ specific to C1, ’f2’ specific to C2, etc.
check attached {C1} b.get("Jim") as c1 then c1.f1 end
. . . -- casts for C2 to C99
check attached {C100} b.get("Jim") as c100 then c100.f100 end

○ Writing out this list multiple times is tedious and error-prone!
6 of 16

Motivating Example: Observations (3)
We need a solution that:
● Eliminates runtime assertion violations due to wrong casts
● Saves us from explicit attached checks and type casts
As a sketch, this is how the solution looks like:
● When the user declares a BOOK object b, they must commit to

the kind of record that b stores at runtime.
e.g., b stores either DATE objects (and its descendants) only
or String objects (and its descendants) only, but not a mix .

● When attempting to store a new record object rec into b, if
rec’s static type is not a descendant class of the type of book
that the user previously commits to, then:
○ It is considered as a compilation error
○ Rather than triggering a runtime assertion violation

● When attempting to retrieve a record object from b, there is no
longer a need to check and cast.

∵ Static types of all records in b are guaranteed to be the same.
7 of 16

Parameters
● In mathematics:

○ The same function is applied with different argument values.
e.g., 2 + 3, 1 + 1, 10 + 101, etc.

○ We generalize these instance applications into a definition.
e.g., + ∶ (Z ×Z) →Z is a function that takes two integer
parameters and returns an integer.

● In object-oriented programming:
○ We want to call a feature, with different argument values, to

achieve a similar goal.
e.g., acc.deposit(100), acc.deposit(23), etc.

○ We generalize these possible feature calls into a definition.
e.g., In class ACCOUNT, a feature deposit(amount: REAL)
takes a real-valued parameter .

● When you design a mathematical function or a class feature,
always consider the list of parameters , each of which
representing a set of possible argument values.

8 of 16

Generics: Design of a Generic Book
class BOOK[G]
names: ARRAY[STRING]
records: ARRAY[G]
-- Create an empty book
make do . . . end
/* Add a name-record pair to the book */

add (name: STRING; record: G) do . . . end
/* Return the record associated with a given name */

get (name: STRING): G do . . . end
end

Question: Which line has a type error?
1 birthday: DATE; phone_number: STRING
2 b: BOOK[DATE] ; is_wednesday: BOOLEAN

3 create BOOK[DATE] b.make

4 phone_number = "416-67-1010"
5 b.add ("SuYeon", phone_number)
6 create {DATE} birthday.make (1975, 4, 10)
7 b.add ("Yuna", birthday)
8 is_wednesday := b.get("Yuna").get_day_of_week == 4

9 of 16

Generics: Observations
● In class BOOK:

○ At the class level, we parameterize the type of records :
class BOOK[G]

○ Every occurrence of ANY is replaced by E.
● As far as a client of BOOK is concerned, they must instantiate G.

⇒ This particular instance of book must consistently store items of
that instantiating type.

● As soon as E instantiated to some known type (e.g., DATE,
STRING), every occurrence of E will be replaced by that type.

● For example, in the tester code of BOOK:
○ In Line 2, we commit that the book b will store DATE objects only.
○ Line 5 fails to compile. [∵ STRING not descendant of DATE]
○ Line 7 still compiles. [∵ DATE is descendant of itself]
○ Line 8 does not need any attached check and type cast, and

does not cause any runtime assertion violation.
∵ All attempts to store non-DATE objects are caught at compile time.

10 of 16

Bad Example of using Generics

Has the following client made an appropriate choice?

book: BOOK[ANY]

NO!!!!!!!!!!!!!!!!!!!!!!!
○ It allows all kinds of objects to be stored.
∵ All classes are descendants of ANY .

○ We can expect very little from an object retrieved from this book.
∵ The static type of book’s items are ANY , root of the class
hierarchy, has the minimum amount of features available for use.
∵ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

11 of 16

Instantiating Generic Parameters
● Say the supplier provides a generic DICTIONARY class:

class DICTIONARY[V, K] -- V type of values; K type of keys
add_entry (v: V; k: K) do . . . end
remove_entry (k: K) do . . . end

end

● Clients use DICTIONARY with different degrees of instantiations:
class DATABASE_TABLE[K, V]
imp: DICTIONARY[V, K]

end

e.g., Declaring DATABSE_TABLE[INTEGER, STRING] instantiates
DICTIONARY[STRING, INTEGER] .
class STUDENT_BOOK[V]
imp: DICTIONARY[V, STRING]

end

e.g., Declaring STUDENT_BOOK[ARRAY[COURSE]] instantiates
DICTIONARY[ARRAY[COURSE], STRING] .

12 of 16

Generics vs. Inheritance (1)

13 of 16

Generics vs. Inheritance (2)

14 of 16

Beyond this lecture . . .

● Study the “Generic Parameters and the Iterator Pattern” Tutorial
Videos.

15 of 16

http://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#design
http://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#design

Index (1)
Motivating Example: A Book of Any Objects
Motivating Example: Observations (1)
Motivating Example: Observations (2)
Motivating Example: Observations (2.1)
Motivating Example: Observations (2.2)
Motivating Example: Observations (3)
Parameters
Generics: Design of a Generic Book
Generics: Observations
Bad Example of using Generics
Instantiating Generic Parameters
Generics vs. Inheritance (1)
Generics vs. Inheritance (2)
Beyond this lecture . . .

16 of 16

The State Design Pattern
Readings: OOSC2 Chapter 20

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Problem

Consider the reservation panel of an online booking system:

2 of 28

https://www.cheapflights.co.uk/

State Transition Diagram
Characterize interactive system as: 1) A set of states; and 2)
For each state, its list of applicable transitions (i.e., actions).
e.g., Above reservation system as a finite state machine :

(2)
Flight Enquiry

(1)
Initial

(3)
Seat Enquiry

(5)
Confirmation

(4)
Reservation

3

3

2

3

23

2

2

2

3

(6)
Final

1

3 of 28

Design Challenges

1. The state-transition graph may large and sophisticated .
A large number N of states and number of transitions ≈ N2

2. The graph structure is subject to extensions/modifications.
e.g., To merge “(2) Flight Enquiry” and “(3) Seat Enquiry”:

Delete the state “(3) Seat Enquiry”.
Delete its 4 incoming/outgoing transitions.

e.g., Add a new state “Dietary Requirements”

3. A general solution is needed for such interactive systems .
e.g., taobao, eBay, amazon, etc.

4 of 28

https://world.taobao.com/
https://www.ebay.ca/
https://www.amazon.ca/

A First Attempt

1 Initial panel:
-- Actions for Label 1.

2 Flight Enquiry panel:
-- Actions for Label 2.

3 Seat Enquiry panel:

-- Actions for Label 3.
4 Reservation panel:
-- Actions for Label 4.

5 Confirmation panel:
-- Actions for Label 5.

6 Final panel:
-- Actions for Label 6.

3 Seat Enquiry panel:

from
Display Seat Enquiry Panel

until
not (wrong answer or wrong choice)

do
Read user’s answer for current panel
Read user’s choice C for next step
if wrong answer or wrong choice then
Output error messages

end
end
Process user’s answer
case C in
2: goto 2 Flight Enquiry panel
3: goto 4 Reservation panel

end

5 of 28

A First Attempt: Good Design?

● Runtime execution ≈ a “bowl of spaghetti” .
⇒ The system’s behaviour is hard to predict, trace, and debug.

● Transitions hardwired as system’s central control structure.
⇒ The system is vulnerable to changes/additions of
states/transitions.

● All labelled blocks are largely similar in their code structures.
⇒ This design “smells” due to duplicates/repetitions!

● The branching structure of the design exactly corresponds to
that of the specific transition graph.
⇒ The design is application-specific and not reusable for
other interactive systems.

6 of 28

A Top-Down, Hierarchical Solution
● Separation of Concern Declare transition graph as a feature

the system, rather than its central control structure:
transition (src: INTEGER; choice: INTEGER): INTEGER

-- Return state by taking transition ’choice’ from ’src’ state.
require valid_source_state: 1 ≤ src ≤ 6

valid_choice: 1 ≤ choice ≤ 3
ensure valid_target_state: 1 ≤ Result ≤ 6

● We may implement transition via a 2-D array.
```````````SRC STATE

CHOICE
1 2 3

1 (Initial) 6 5 2
2 (Flight Enquiry) – 1 3
3 (Seat Enquiry) – 2 4
4 (Reservation) – 3 5
5 (Confirmation) – 4 1
6 (Final) – – –

7 of 28



Hierarchical Solution: Good Design?

● This is a more general solution.
∵ State transitions are separated from the system’s central
control structure.
⇒ Reusable for another interactive system by making
changes only to the transition feature.

● How does the central control structure look like in this design?

8 of 28



Hierarchical Solution:
Top-Down Functional Decomposition

Modules of execute session and execute state are general
enough on their control structures. ⇒ reusable

9 of 28



Hierarchical Solution: System Control
All interactive sessions share the following control pattern:
○ Start with some initial state.
○ Repeatedly make state transitions (based on choices read from

the user) until the state is final (i.e., the user wants to exit).

execute_session
-- Execute a full interactive session.

local
current state , choice: INTEGER

do
from
current_state := initial

until
is final (current_state)

do
choice := execute state ( current state )
current_state := transition (current_state, choice)

end
end

10 of 28



Hierarchical Solution: State Handling (1)
The following control pattern handles all states:

execute_state ( current state : INTEGER): INTEGER
-- Handle interaction at the current state.
-- Return user’s exit choice.

local
answer: ANSWER; valid_answer: BOOLEAN; choice: INTEGER

do
from
until
valid_answer

do
display( current state )

answer := read answer( current state )

choice := read choice( current state )

valid_answer := correct( current state , answer)

if not valid_answer then message( current state , answer)
end
process( current state , answer)
Result := choice

end
11 of 28



Hierarchical Solution: State Handling (2)

FEATURE CALL FUNCTIONALITY

display(s) Display screen outputs associated with state s
read answer(s) Read user’s input for answers associated with state s
read choice(s) Read user’s input for exit choice associated with state s

correct(s, answer) Is the user’s answer valid w.r.t. state s?
process(s, answer) Given that user’s answer is valid w.r.t. state s,

process it accordingly.
message(s, answer) Given that user’s answer is not valid w.r.t. state s,

display an error message accordingly.

Q: How similar are the code structures of the above
state-dependant commands or queries?

12 of 28



Hierarchical Solution: State Handling (3)
A: Actions of all such state-dependant features must explicitly
discriminate on the input state argument.
display(current_state: INTEGER)
require
valid_state: 1 ≤ current_state ≤ 6

do
if current_state = 1 then
-- Display Initial Panel

elseif current_state = 2 then
-- Display Flight Enquiry Panel

. . .
else
-- Display Final Panel

end
end

○ Such design smells !
∵ Same list of conditional repeats for all state-dependant features.

○ Such design violates the Single Choice Principle .
e.g., To add/delete a state⇒ Add/delete a branch in all such features.

13 of 28



Hierarchical Solution: Visible Architecture

14 of 28



Hierarchical Solution: Pervasive States

Too much data transmission: current state is passed
○ From execute session (Level 3) to execute state (Level 2)
○ From execute state (Level 2) to all features at Level 1

15 of 28



Law of Inversion
If your routines exchange too many data, then
put your routines in your data.
e.g.,

execute state (Level 2) and all features at Level 1:
● Pass around (as inputs) the notion of current state
● Build upon (via discriminations) the notion of current state

execute state ( s: INTEGER )
display ( s: INTEGER )
read answer ( s: INTEGER )
read choice ( s: INTEGER )
correct ( s: INTEGER ; answer: ANSWER)
process ( s: INTEGER ; answer: ANSWER)
message ( s: INTEGER ; answer: ANSWER)

⇒ Modularize the notion of state as class STATE.
⇒ Encapsulate state-related information via a STATE interface.
⇒ Notion of current state becomes implicit : the Current class.

16 of 28



Grouping by Data Abstractions

17 of 28



Architecture of the State Pattern

*
STATE

+
INITIAL

+
HELP

+
FINAL

+
FLIGHT_ENQUIRY

+
SEAT_ENQUIRY

+
RESERVATION

+
CONFIRMATION

state_implementations

read*
display*
correct*
process*
message*

execute+
+

APPLICATION ▶

18 of 28



The STATE ADT
deferred class STATE
read
-- Read user’s inputs
-- Set ’answer’ and ’choice’
deferred end

answer: ANSWER
-- Answer for current state

choice: INTEGER
-- Choice for next step

display
-- Display current state
deferred end

correct: BOOLEAN
deferred end

process
require correct
deferred end

message
require not correct
deferred end

execute
local
good: BOOLEAN

do
from
until
good

loop
display
-- set answer and choice
read
good := correct
if not good then
message

end
end
process

end
end

19 of 28



The APPLICATION Class: Array of STATE

APPLICATION
app

transition: ARRAY2[INTEGER] 1 2
app.states

INITIAL

3 4 5 6

states: ARRAY[STATE]

FINALFLIGHT_
ENQUIRY

SEAT_
ENQUIRY

RESERVATION CONFIRMATION

6

1

5

2

2

3

1 3

2 4

3 5

4 1

1

2

3

4

5

6

state

choice

20 of 28



The APPLICATION Class (1)
class APPLICATION create make
feature {NONE} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
-- State transitions: transition[state, choice]

states: ARRAY[STATE]
-- State for each index, constrained by size of ‘transition’

feature
initial: INTEGER
number_of_states: INTEGER
number_of_choices: INTEGER
make(n, m: INTEGER)
do number_of_states := n

number_of_choices := m
create transition.make_filled(0, n, m)
create states.make_empty

end
invariant

transition.height = number of states

transition.width = number of choices
end

21 of 28



The APPLICATION Class (2)
class APPLICATION
feature {NONE} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

feature
put_state(s: STATE; index: INTEGER)
require 1 ≤ index ≤ number_of_states
do states.force(s, index) end

choose_initial(index: INTEGER)
require 1 ≤ index ≤ number_of_states
do initial := index end

put_transition(tar, src, choice: INTEGER)
require
1 ≤ src ≤ number_of_states
1 ≤ tar ≤ number_of_states
1 ≤ choice ≤ number_of_choices

do
transition.put(tar, src, choice)

end
end

22 of 28



The APPLICATION Class (3)
class APPLICATION
feature {NONE} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

feature
execute_session
local
current_state: STATE
index: INTEGER

do
from
index := initial

until
is_final (index)

loop

current state := states[index] -- polymorphism

current state.execute -- dynamic binding
index := transition.item (index, current_state.choice)

end
end

end
23 of 28



Building an Application
○ Create instances of STATE.

s1: STATE
create {INITIAL} s1.make

○ Initialize an APPLICATION.
create app.make(number_of_states, number_of_choices)

○ Perform polymorphic assignments on app.states.
app.put_state(initial, 1)

○ Choose an initial state.
app.choose_initial(1)

○ Build the transition table.
app.put_transition(6, 1, 1)

○ Run the application.
app.execute_session

24 of 28



An Example Test
test_application: BOOLEAN
local
app: APPLICATION ; current_state: STATE ; index: INTEGER

do
create app.make (6, 3)
app.put_state (create {INITIAL}.make, 1)
-- Similarly for other 5 states.
app.choose_initial (1)
-- Transit to FINAL given current state INITIAL and choice 1.
app.put_transition (6, 1, 1)
-- Similarly for other 10 transitions.

index := app.initial
current_state := app.states [index]
Result := attached {INITIAL} current_state
check Result end
-- Say user’s choice is 3: transit from INITIAL to FLIGHT_STATUS
index := app.transition.item (index, 3)
current_state := app.states [index]
Result := attached {FLIGHT_ENQUIRY} current_state

end
25 of 28



Top-Down, Hierarchical vs. OO Solutions

● In the second (top-down, hierarchy) solution, it is required for
every state-related feature to explicitly and manually
discriminate on the argument value, via a a list of conditionals.
e.g., Given display(current state: INTEGER) , the

calls display(1) and display(2) behave differently.
● The third (OO) solution, called the State Pattern, makes such

conditional implicit and automatic, by making STATE as a
deferred class (whose descendants represent all types of
states), and by delegating such conditional actions to
dynamic binding .

e.g., Given s: STATE , behaviour of the call s.display
depends on the dynamic type of s (such as INITIAL vs.
FLIGHT ENQUIRY).

26 of 28



Index (1)
Motivating Problem
State Transition Diagram
Design Challenges
A First Attempt
A First Attempt: Good Design?
A Top-Down, Hierarchical Solution
Hierarchical Solution: Good Design?
Hierarchical Solution:
Top-Down Functional Decomposition
Hierarchical Solution: System Control
Hierarchical Solution: State Handling (1)
Hierarchical Solution: State Handling (2)
Hierarchical Solution: State Handling (3)
Hierarchical Solution: Visible Architecture

27 of 28



Index (2)
Hierarchical Solution: Pervasive States

Law of Inversion

Grouping by Data Abstractions

Architecture of the State Pattern

The STATE ADT

The APPLICATION Class: Array of STATE

The APPLICATION Class (1)

The APPLICATION Class (2)

The APPLICATION Class (3)

Building an Application

An Example Test

Top-Down, Hierarchical vs. OO Solutions
28 of 28



The Composite Design Pattern

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Motivating Problem (1)

● Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
● Individual pieces of equipment (hard drives, cd-rom drives)

Each equipment has properties : e.g., power consumption and cost.
● Composites such as cabinets, busses, and chassis

Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply ) and busses that
contain cards.

● Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

2 of 14



Motivating Problem (2)
Design for tree structures with whole-part hierarchies.

2 

CABINET 

HARD_DRIVE CARD 

CHASSIS 

POWER_SUPPLY 

DVD-CDROM 

CHASSIS 

Challenge : There are base and recursive modelling artifacts.
3 of 14



Solution: The Composite Pattern
● Design : Categorize into base artifacts or recursive artifacts.

● Programming :

Build a tree structure representing the whole-part hierarchy .
● Runtime :

Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

⇒ Polymorphism : leafs and nodes are “substitutable”.

⇒ Dynamic Binding : Different versions of the same

operation is applied on individual objects and composites.
e.g., Given e: EQUIPMENT :
○ e.price may return the unit price of a DISK DRIVE.
○ e.price may sum prices of a CHASIS’ containing equipments.

4 of 14



Composite Architecture: Design (1.1)

6 

price: VALUE 
add(child: EQUIPMENT) 
children: LIST[EQUIPMENT] 

5 of 14



Composite Architecture: Design (1.2)

7 

price: VALUE 
add(child: EQUIPMENT) 
children: LIST[EQUIPMENT] 

The client uses 
abstract class 
EQUIPMENT to 
manipulate objects 
in the composition. 

Class EQUIPMENT defines an interface for all 
objects in the composition: both the composite 
and leaf nodes. 
May implement default behavior for add(child) 
etc. 

Class 
COMPOSITE �s 
role is (a) 
implement leaf 
related ops 
such as price 
and (b) to 
define 
component 
behaviour such 
as storing a 
child. 

A leaf has no children.  
 
Note that the leaf also 
inherits  features like 
children and add that 
don�t necessarily make 
all that sense for a leaf 
node.  

6 of 14



Composite Architecture: Design (1.3)

Q: Any flaw of this first design?
A:

The add(child: EQUIPMENT) and
children: LIST[EQUIPMENT] features are defined at the
EQUIPMENT level.
⇒ Inherited to all base equipments (e.g., HARD DRIVE) that do not
apply to such features.

7 of 14



Composite Architecture: Design (2.1)

8 

Cleaner solution – Multiple Inheritance 

8 of 14



Composite Architecture: Design (2.2)

9 

Cleaner solution – Multiple Inheritance 

Put the price & 
power consumption 
behavior here 

Put the tree behavior 
such as adding a child 
and list of children 
here where it is needed 

9 of 14



Implementing the Composite Pattern (1)

deferred class
EQUIPMENT

feature
name: STRING
price: REAL -- uniform access principle

end

class
CARD

inherit
EQUIPMENT

feature
make (n: STRING; p: REAL)
do
name := n
price := p -- price is an attribute

end
end

10 of 14



Implementing the Composite Pattern (2.1)

deferred class
COMPOSITE[T]

feature
children: LINKED_LIST[T]

add_child (c: T)
do
children.extend (c) -- Polymorphism

end
end

Exercise: Make the COMPOSITE class iterable.

11 of 14



Implementing the Composite Pattern (2.2)

class
COMPOSITE_EQUIPMENT

inherit
EQUIPMENT
COMPOSITE [EQUIPMENT]

create
make

feature
make (n: STRING)
do name := n ; create children.make end

price : REAL -- price is a query
-- Sum the net prices of all sub-equipments

do
across
children as cursor

loop
Result := Result + cursor.item.price -- dynamic binding

end
end

end

12 of 14



Testing the Composite Pattern

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET -- holds a CHASSIS
chassis: CHASSIS -- contains a BUS and a DISK_DRIVE
bus: BUS -- holds a CARD

do
create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)
chassis.add(bus)
chassis.add(drive)
cabinet.add(chassis)
Result := cabinet.price = 700

end

13 of 14



Index (1)
Motivating Problem (1)
Motivating Problem (2)
Solution: The Composite Pattern
Composite Architecture: Design (1.1)
Composite Architecture: Design (1.2)
Composite Architecture: Design (1.3)
Composite Architecture: Design (2.1)
Composite Architecture: Design (2.2)
Implementing the Composite Pattern (1)
Implementing the Composite Pattern (2.1)
Implementing the Composite Pattern (2.2)
Testing the Composite Pattern

14 of 14



The Visitor Design Pattern

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Motivating Problem (1)
Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions
(e.g., 341, 2, 341 + 2).

2 of 12



Open/Closed Principle

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

⇒When extending the behaviour of a system, we may add
new code, but we should not modify the existing code.
e.g., In the design for structures of expressions:
○ Closed : Syntactic constructs of the language [stable]
○ Open: New operations on the language [unstable]

3 of 12



Motivating Problem (2)
Extend the composite pattern to support operations such as
evaluate, pretty printing (print prefix, print postfix),
and type check.

4 of 12



Problems of Extended Composite Pattern

● Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :

To add/delete/modify an operation
⇒ Change of all descendants of EXPRESSION

● Each node class lacks in cohesion :
A class is supposed to group relevant concepts in a single place.
⇒ Confusing to mix codes for evaluation, pretty printing, and type
checking.
⇒We want to avoid “polluting” the classes with these various
unrelated operations.

5 of 12



Visitor Pattern

● Separation of concerns :
○ Set of language constructs [closed , stable]
○ Set of operations [open, unstable]
⇒ Classes from these two sets are decoupled and organized into
two separate clusters.

6 of 12



Visitor Pattern: Architecture

7 of 12



Visitor Pattern Implementation: Structures
Cluster expression language
○ Declare deferred feature accept(v: VISITOR) in EXPRSSION.
○ Implement accept feature in each of the descendant classes.

class CONSTANT
. . .
accept(v: VISITOR)
do
v.visit_ constant (Current)

end
end

class ADDITION
. . .
accept(v: VISITOR)
do

v.visit_ addition (Current)
end

end

8 of 12



Visitor Pattern Implementation: Operations
Cluster expression operations
○ For each descendant class C of EXPRESSION, declare a deferred

feature visit_c (e: C) in the deferred class VISITOR.

class VISITOR
visit_constant(c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end

end

○ Each descendant of VISITOR denotes a kind of operation.
class EVALUATOR

value : INTEGER

visit_constant(c: CONSTANT) do value := c.value end
visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)

a.right.accept(eval_right)

value := eval_left.value + eval_right.value
end

end
9 of 12



Testing the Visitor Pattern
1 test_expression_evaluation: BOOLEAN
2 local add, c1, c2: EXPRESSION ; v: VISITOR
3 do
4 create {CONSTANT} c1.make (1) ; create {CONSTANT} c2.make (2)
5 create {ADDITION} add.make (c1, c2)
6 create {EVALUATOR} v.make

7 add.accept(v)

8 check attached {EVALUATOR} v as eval then
9 Result := eval.value = 3

10 end
11 end

Double Dispatch in Line 7:

1. DT of add is ADDITION⇒ Call accept in ADDITION

v.visit addition (add)

2. DT of v is EVALUATOR⇒ Call visit addition in EVALUATOR

visiting result of add.left + visiting result of add.right
10 of 12



To Use or Not to Use the Visitor Pattern
● In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?
○ Adding a new kind of operation element is easy.

To introduce a new operation for generating C code, we only need to
introduce a new descendant class C CODE GENERATOR of VISITOR,
then implement how to handle each language element in that class.
⇒ Single Choice Principle is obeyed .

○ Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSION,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new visit multiplication operation.

⇒ Single Choice Principle is violated .
● The applicability of the visitor pattern depends on to what

extent the structure will change.
⇒ Use visitor if operations applied to structure might change.
⇒ Do not use visitor if the structure might change.

11 of 12



Index (1)
Motivating Problem (1)

Open/Closed Principle

Motivating Problem (2)

Problems of Extended Composite Pattern

Visitor Pattern

Visitor Pattern: Architecture

Visitor Pattern Implementation: Structures

Visitor Pattern Implementation: Operations

Testing the Visitor Pattern

To Use or Not to Use the Visitor Pattern
12 of 12



Void Safety

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Java Program: Example 1
1 class Point {
2 double x;
3 double y;
4 Point(double x, double y) {
5 this.x = x;
6 this.y = y;
7 }

1 class PointCollector {
2 ArrayList<Point> points;
3 PointCollector() { }
4 void addPoint(Point p) {
5 points.add(p); }
6 Point getPointAt(int i) {
7 return points.get(i); } }

The above Java code compiles. But anything wrong?

1 @Test
2 public void test1() {
3 PointCollector pc = new PointCollector();
4 pc.addPoint(new Point(3, 4));
5 Point p = pc.getPointAt(0);
6 assertTrue(p.x == 3 && p.y == 4); }

L3 calls PointCollector constructor not initializing points.
∴ NullPointerException when L4 calls L5 of PointCollector.

2 of 12



Java Program: Example 2

1 class Point {
2 double x;
3 double y;
4 Point(double x, double y) {
5 this.x = x;
6 this.y = y;
7 }

1 class PointCollector {
2 ArrayList<Point> points;
3 PointCollector() {
4 points = new ArrayList<>(); }
5 void addPoint(Point p) {
6 points.add(p); }
7 Point getPointAt(int i) {
8 return points.get(i); } }

1 @Test
2 public void test2() {
3 PointCollector pc = new PointCollector();
4 Point p = null;
5 pc.addPoint(p);
6 p = pc.getPointAt(0);
7 assertTrue(p.x == 3 && p.y == 4); }

The above Java code compiles. But anything wrong?
L5 adds p (which stores null).
∴ NullPointerException when L7 calls p.x.

3 of 12



Java Program: Example 3
1 class Point {
2 double x;
3 double y;
4 Point(double x, double y) {
5 this.x = x;
6 this.y = y;
7 }

1 class PointCollector {
2 ArrayList<Point> points;
3 PointCollector() {
4 points = new ArrayList<>(); }
5 void addPoint(Point p) {
6 points.add(p); }
7 Point getPointAt(int i) {
8 return points.get(i); } }

1 public void test3() {
2 PointCollector pc = new PointCollector();
3 Scanner input = new Scanner(System.in);
4 System.out.println("Ener an integer:");
5 int i = input.nextInt();
6 if(i < 0) { pc = null; }
7 pc.addPoint(new Point(3, 4));
8 assertTrue(pc.getPointAt(0).x == 3 && pc.getPointAt(0).y == 4);
9 }

The above Java code compiles. But anything wrong?
NullPointerException when user’s input at L5 is non-positive.

4 of 12



Limitation of Java’s Type System
● A program that compiles does not guarantee that it is free from

NullPointerExceptions :
○ Uninitialized attributes (in constructors).
○ Passing nullable variable as a method argument.
○ Calling methods on nullable local variables.

● The notion of Null references was back in 1965 in ALGO W.
● Tony Hoare (inventor of Quick Sort), introduced this notion of
Null references “simply because it was so easy to implement”.

● But he later considers it as his “billion-dollar mistake”.
○ When your program manipulates reference/object variables whose

types include the legitimate value of Null or Void, then there is
always a possibility of having a NullPointerExceptions .

○ For undisciplined programmers, this means the final software
product crashes often!

5 of 12

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare


Eiffel’s Type System for Void Safety

● By default, a reference variable is non-detachable.
e.g., acc: ACCOUNT means that acc is always attached to
some valid ACCOUNT point.

● VOID is an illegal value for non-detachable variables.
⇒ Scenarios that might make a reference variable detached
are considered as compile-time errors:
○ Variables can not be assigned to Void directly.
○ Non-detachable variables can only be re-assigned to

non-detachable variables.
e.g., acc2: ACCOUNT ⇒ acc := acc2 compilable
e.g., acc3: detachable ACCOUNT ⇒ acc := acc3 non-compilable

○ Creating variables (e.g., create acc.make ) compilable
○ Non-detachable attribute not explicitly initialized (via creation or

assignment) in all constructors is non-compilable.

6 of 12



Eiffel Program: Example 1
1 class
2 POINT
3 create
4 make
5 feature
6 x: REAL
7 y: REAL
8 feature
9 make (nx: REAL; ny: REAL)

10 do x := nx
11 y := ny
12 end
13 end

1 class
2 POINT_COLLECTOR_1
3 create
4 make
5 feature
6 points: LINKED_LIST[POINT]
7 feature
8 make do end
9 add_point (p: POINT)

10 do points.extend (p) end
11 get_point_at (i: INTEGER): POINT
12 do Result := points [i] end
13 end

● Above code is semantically equivalent to Example 1 Java code.
● Eiffel compiler won’t allow you to run it.
∵ L8 does non compile
∴ It is void safe [Possibility of NullPointerException ruled out]

7 of 12



Eiffel Program: Example 2
1 class
2 POINT
3 create
4 make
5 feature
6 x: REAL
7 y: REAL
8 feature
9 make (nx: REAL; ny: REAL)

10 do x := nx
11 y := ny
12 end
13 end

1 class
2 POINT_COLLECTOR_2
3 create
4 make
5 feature
6 points: LINKED_LIST[POINT]
7 feature
8 make do create points.make end
9 add_point (p: POINT)

10 do points.extend (p) end
11 get_point_at (i: INTEGER): POINT
12 do Result := points [i] end
13 end

1 test_2: BOOLEAN
2 local
3 pc: POINT_COLLECTOR_2 ; p: POINT
4 do
5 create pc.make
6 p := Void
7 p.add_point (p)
8 p := pc.get_point_at (0)
9 Result := p.x = 3 and p.y = 4

10 end

● Above code is semantically equivalent to Example 2 Java code.
L7 does non compile ∵ pc might be void. [ void safe ]

8 of 12



Eiffel Program: Example 3
1 class
2 POINT
3 create
4 make
5 feature
6 x: REAL
7 y: REAL
8 feature
9 make (nx: REAL; ny: REAL)

10 do x := nx
11 y := ny
12 end
13 end

1 class
2 POINT_COLLECTOR_2
3 create
4 make
5 feature
6 points: LINKED_LIST[POINT]
7 feature
8 make do create points.make end
9 add_point (p: POINT)

10 do points.extend (p) end
11 get_point_at (i: INTEGER): POINT
12 do Result := points [i] end
13 end

1 test_3: BOOLEAN
2 local pc: POINT_COLLECTOR_2 ; p: POINT ; i: INTEGER
3 do create pc.make
4 io.print ("Enter an integer:%N")
5 io.read_integer
6 if io.last_integer < 0 then pc := Void end
7 pc.add_point (create {POINT}.make (3, 4))
8 p := pc.get_point_at (0)
9 Result := p.x = 3 and p.y = 4

10 end

● Above code is semantically equivalent to Example 3 Java code.
L7 and L8 do non compile ∵ pc might be void. [ void safe ]

9 of 12



Lessons from Void Safety

● It is much more costly to recover from crashing programs (due
to NullPointerException ) than to fix uncompilable
programs.
e.g., You’d rather have a void-safe design for an airplane,
rather than hoping that the plane won’t crash after taking off.

● If you are used to the standard by which Eiffel compiler checks
your code for void safety , then you are most likely to write

Java/C/C++/C#/Python code that is void-safe (i.e., free from
NullPointerExceptions).

10 of 12



Beyond this lecture. . .

● Tutorial Series on Void Safety by Bertrand Meyer (inventor of
Eiffel):
○ The End of Null Pointer Dereferencing
○ The Object Test
○ The Type Rules
○ Final Rules

● Null Pointer as a Billion-Dollar Mistake by Tony Hoare
● More notes on void safety

11 of 12

https://www.youtube.com/watch?v=1g3fDvaI7Cg&feature=youtu.be
https://www.youtube.com/watch?v=Y9D16WFnjJU
https://www.youtube.com/watch?v=dgM7PCgF_bc
https://www.youtube.com/watch?v=p00Bo_H_2yw
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://bertrandmeyer.com/tag/void-safety/


Index (1)
Java Program: Example 1

Java Program: Example 2

Java Program: Example 3

Limitation of Java’s Type System

Eiffel’s Type System for Void Safety

Eiffel Program: Example 1

Eiffel Program: Example 2

Eiffel Program: Example 3

Lessons from Void Safety

Beyond this lecture. . .
12 of 12



Observer Design Pattern
Event-Driven Design

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Motivating Problem

● A weather station maintains weather data such as temperature,
humidity , and pressure.

● Various kinds of applications on these weather data should
regularly update their displays:
○ Condition: temperature in celsius and humidity in percentages.
○ Forecast : if expecting for rainy weather due to reduced pressure.
○ Statistics: minimum/maximum/average measures of temperature.

2 of 35



First Design: Weather Station

Whenever the display feature is called, retrieve the current
values of temperature, humidity, and/or pressure via the
weather data reference.

3 of 35



Implementing the First Design (1)
class WEATHER_DATA create make
feature -- Data
temperature: REAL
humidity: REAL
pressure: REAL

feature -- Queries
correct_limits(t,p,h: REAL): BOOLEAN
ensure
Result implies -36 <=t and t <= 60
Result implies 50 <= p and p <= 110
Result implies 0.8 <= h and h <= 100

feature -- Commands
make (t, p, h: REAL)
require

correct limits(temperature, pressure, humidity)

ensure
temperature = t and pressure = p and humidity = h

invariant

correct limits(temperature, pressure, humidity)

end

4 of 35



Implementing the First Design (2.1)
class CURRENT_CONDITIONS create make
feature -- Attributes
temperature: REAL
humidity: REAL
weather_data: WEATHER_DATA

feature -- Commands
make(wd: WEATHER_DATA)

ensure weather data = wd
update
do temperature := weather_data.temperature

humidity := weather_data.humidity
end

display

do update
io.put_string("Current Conditions: ")
io.put_real (temperature) ; io.put_string (" degrees C and ")
io.put_real (humidity) ; io.put_string (" percent humidity%N")

end
end

5 of 35



Implementing the First Design (2.2)
class FORECAST create make
feature -- Attributes
current_pressure: REAL
last_pressure: REAL
weather_data: WEATHER_DATA

feature -- Commands

make(wd: WEATHER_DATA) ensure weather data = a weather data
update
do last_pressure := current_pressure

current_pressure := weather_data.pressure
end

display

do update

if current_pressure > last_pressure then
print("Improving weather on the way!%N")

elseif current_pressure = last_pressure then
print("More of the same%N")

else print("Watch out for cooler, rainy weather%N") end
end

end

6 of 35



Implementing the First Design (2.3)

class STATISTICS create make
feature -- Attributes
weather_data: WEATHER_DATA
current_temp: REAL
max, min, sum_so_far: REAL
num_readings: INTEGER

feature -- Commands
make(wd: WEATHER_DATA)

ensure weather data = a weather data
update
do current_temp := weather_data.temperature

-- Update min, max if necessary.
end

display

do update

print("Avg/Max/Min temperature = ")
print(sum_so_far / num_readings + "/" + max + "/" min + "%N")

end
end

7 of 35



Implementing the First Design (3)
1 class WEATHER_STATION create make
2 feature -- Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 feature -- Commands
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9

10 wd.set_measurements (15, 60, 30.4)
11 cc.display ; fd.display ; sd.display
12
13 cc.display ; fd.display ; sd.display
14
15 wd.set_measurements (11, 90, 20)
16 cc.display ; fd.display ; sd.display
17 end
18 end

L14: Updates occur on cc, fd, sd even with the same data.
8 of 35



First Design: Good Design?

● Each application (CURRENT CONDITION, FORECAST,
STATISTICS) cannot know when the weather data change.
⇒ All applications have to periodically initiate updates in order
to keep the display results up to date.
∵ Each inquiry of current weather data values is a remote call .
∴ Waste of computing resources (e.g., network bandwidth)
when there are actually no changes on the weather data.

● To avoid such overhead, it is better to let:
○ Each application subscribe the weather data.
○ The weather station publish/notify new changes.
⇒ Updates on the application side occur only when necessary .

9 of 35



Observer Pattern: Architecture

● Observer (publish-subscribe) pattern: one-to-many relation.
○ Observers (subscribers) are attached to a subject (publisher ).
○ The subject notify its attached observers about changes.

● Some interchangeable vocabulary:
○ subscribe ≈ attach ≈ register
○ unsubscribe ≈ detach ≈ unregister
○ publish ≈ notify
○ handle ≈ update

10 of 35



Observer Pattern: Weather Station

11 of 35



Implementing the Observer Pattern (1.1)

deferred class
OBSERVER

feature -- To be effected by a descendant
up_to_date_with_subject: BOOLEAN

-- Is this observer up to date with its subject?
deferred
end

update
-- Update the observer’s view of ‘s’

deferred
ensure
up_to_date_with_subject: up_to_date_with_subject

end
end

Each effective descendant class of OBSERVDER should:
○ Define what weather data are required to be up-to-date.
○ Define how to update the required weather data.

12 of 35



Implementing the Observer Pattern (1.2)
class CURRENT_CONDITIONS
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then Result = temperature = weather_data.temperature and

humidity = weather_data.humidity
update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
13 of 35



Implementing the Observer Pattern (1.3)
class FORECAST
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then
Result = current_pressure = weather_data.pressure

update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
14 of 35



Implementing the Observer Pattern (1.4)
class STATISTICS
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)

ensure weather_data = a_weather_data

weather data.observers.has (Current)

end
feature -- Queries
up_to_date_with_subject: BOOLEAN
ensure then
Result = current_temperature = weather_data.temperature

update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end
15 of 35



Implementing the Observer Pattern (2.1)
class SUBJECT create make
feature -- Attributes

observers : LIST[OBSERVER]
feature -- Commands
make
do create {LINKED_LIST[OBSERVER]} observers.make
ensure no observers: observers.count = 0 end

feature -- Invoked by an OBSERVER
attach (o: OBSERVER) -- Add ‘o’ to the observers
require not yet attached: not observers.has (o)
ensure is attached: observers.has (o) end

detach (o: OBSERVER) -- Add ‘o’ to the observers
require currently attached: observers.has (o)
ensure is attached: not observers.has (o) end

feature -- invoked by a SUBJECT
notify -- Notify each attached observer about the update.
do across observers as cursor loop cursor.item.update end
ensure all views updated:
across observers as o all o.item.up_to_date_with_subject end

end
end

16 of 35



Implementing the Observer Pattern (2.2)
class WEATHER_DATA
inherit SUBJECT rename make as make subject end
create make
feature -- data available to observers
temperature: REAL
humidity: REAL
pressure: REAL
correct_limits(t,p,h: REAL): BOOLEAN

feature -- Initialization
make (t, p, h: REAL)
do
make subject -- initialize empty observers
set_measurements (t, p, h)

end
feature -- Called by weather station
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)

invariant

correct limits(temperature, pressure, humidity)

end

17 of 35



Implementing the Observer Pattern (3)
1 class WEATHER_STATION create make
2 feature -- Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 feature -- Commands
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9

10 wd.set_measurements (15, 60, 30.4)

11 wd.notify

12
13 cc.display ; fd.display ; sd.display
14
15 wd.set_measurements (11, 90, 20)

16 wd.notify

17 end
18 end

L13: cc, fd, sd make use of “cached” data values.
18 of 35



Observer Pattern: Limitation? (1)

● The observer design pattern is a reasonable solution to building
a one-to-many relationship: one subject (publisher) and
multiple observers (subscribers).

● But what if a many-to-many relationship is required for the
application under development?
○ Multiple weather data are maintained by weather stations.

○ Each application observes all these weather data.
○ But, each application still stores the latest measure only.

e.g., the statistics app stores one copy of temperature
○ Whenever some weather station updates the temperature of its

associated weather data, all relevant subscribed applications (i.e.,
current conditions, statistics) should update their temperatures.

● How can the observer pattern solve this general problem?
○ Each weather data maintains a list of subscribed applications.
○ Each application is subscribed to multiple weather data.

19 of 35



Observer Pattern: Limitation? (2)
What happens at runtime when building a many-to-many
relationship using the observer pattern?

wd1wd1: WEATHER_DATA 

wd2wd2: WEATHER_DATA 

wdmwdm: WEATHER_DATA 

wdm�1wdm�1: WEATHER_DATA

application1application1

application2application2

applicationnapplicationn

…
…

Graph complexity, with m subjects and n observers? [ O( m ⋅ n ) ]
20 of 35



Event-Driven Design (1)
Here is what happens at runtime when building a many-to-many
relationship using the event-driven design.

wd1wd1: WEATHER_DATA

wd2wd2: WEATHER_DATA

wdnwdn: WEATHER_DATA

wdn�1wdn�1: WEATHER_DATA

application1application1

application2application2

applicationnapplicationn

… …change_on_temperature: EVENT

publish

applicationn�1applicationn�1

subscribe

Graph complexity, with m subjects and n observers? [O( m + n )]
Additional cost by adding a new subject? [O(1)]
Additional cost by adding a new observer? [O(1)]
Additional cost by adding a new event type? [O(m + n)]

21 of 35



Event-Driven Design (2)

In an event-driven design :
● Each variable being observed (e.g., temperature,
humidity, pressure) is called a monitored variable.
e.g., A nuclear power plant (i.e., the subject) has its
temperature and pressure being monitored by a shutdown
system (i.e., an observer ): as soon as values of these
monitored variables exceed the normal threshold, the SDS will
be notified and react by shutting down the plant.

● Each monitored variable is declared as an event :
○ An observer is attached /subscribed to the relevant events.
● CURRENT CONDITION attached to events for temperature, humidity.
● FORECAST only subscribed to the event for pressure.
● STATISTICS only subscribed to the event for temperature.

○ A subject notifies/publishes changes to the relevant events.
22 of 35



Event-Driven Design: Implementation

● Requirements for implementing an event-driven design are:
1. When an observer object is subscribed to an event , it attaches:

1.1 The reference/pointer to an update operation
Such reference/pointer is used for delayed executions.

1.2 Itself (i.e., the context object for invoking the update operation)
2. For the subject object to publish an update to the event , it:

2.1 Iterates through all its observers (or listeners)
2.2 Uses the operation reference/pointer (attached earlier) to update the

corresponding observer.

● Both requirements can be satisfied by Eiffel and Java.
● We will compare how an event-driven design for the weather

station problems is implemented in Eiffel and Java.
⇒ It’s much more convenient to do such design in Eiffel.

23 of 35



Event-Driven Design in Java (1)

1 public class Event {
2 Hashtable<Object, MethodHandle> listenersActions;
3 Event() { listenersActions = new Hashtable<>(); }
4 void subscribe(Object listener, MethodHandle action) {

5 listenersActions.put( listener , action );
6 }
7 void publish(Object arg) {
8 for (Object listener : listenersActions.keySet()) {
9 MethodHandle action = listenersActions.get(listener);

10 try {

11 action .invokeWithArguments( listener , arg);
12 } catch (Throwable e) { }
13 }
14 }
15 }

● L5: Both the delayed action reference and its context object (or call
target) listener are stored into the table.

● L11: An invocation is made from retrieved listener and action.
24 of 35



Event-Driven Design in Java (2)
1 public class WeatherData {
2 private double temperature;
3 private double pressure;
4 private double humidity;
5 public WeatherData(double t, double p, double h) {
6 setMeasurements(t, h, p);
7 }

8 public static Event changeOnTemperature = new Event();

9 public static Event changeOnHumidity = new Event();

10 public static Event changeOnPressure = new Event();

11 public void setMeasurements(double t, double h, double p) {
12 temperature = t;
13 humidity = h;
14 pressure = p;

15 changeOnTemperature .publish(temperature);

16 changeOnHumidity .publish(humidity);

17 changeOnPressure .publish(pressure);
18 }
19 }

25 of 35



Event-Driven Design in Java (3)

1 public class CurrentConditions {
2 private double temperature; private double humidity;
3 public void updateTemperature(double t) { temperature = t; }
4 public void updateHumidity(double h) { humidity = h; }
5 public CurrentConditions() {
6 MethodHandles.Lookup lookup = MethodHandles.lookup();
7 try {
8 MethodHandle ut = lookup.findVirtual(
9 this.getClass(), "updateTemperature",

10 MethodType.methodType(void.class, double.class));
11 WeatherData.changeOnTemperature.subscribe(this, ut);
12 MethodHandle uh = lookup.findVirtual(
13 this.getClass(), "updateHumidity",
14 MethodType.methodType(void.class, double.class));
15 WeatherData.changeOnHumidity.subscribe(this, uh);
16 } catch (Exception e) { e.printStackTrace(); }
17 }
18 public void display() {
19 System.out.println("Temperature: " + temperature);
20 System.out.println("Humidity: " + humidity); } }

26 of 35



Event-Driven Design in Java (4)

1 public class WeatherStation {
2 public static void main(String[] args) {
3 WeatherData wd = new WeatherData(9, 75, 25);
4 CurrentConditions cc = new CurrentConditions();
5 System.out.println("=======");
6 wd.setMeasurements(15, 60, 30.4);
7 cc.display();
8 System.out.println("=======");
9 wd.setMeasurements(11, 90, 20);

10 cc.display();
11 } }

L4 invokes
WeatherData.changeOnTemperature.subscribe(

cc, ‘‘updateTemperature handle’’)
L6 invokes

WeatherData.changeOnTemperature.publish(15)
which in turn invokes

‘‘updateTemperature handle’’.invokeWithArguments(cc, 15)
27 of 35



Event-Driven Design in Eiffel (1)
1 class EVENT [ARGUMENTS -> TUPLE ]
2 create make
3 feature -- Initialization
4 actions: LINKED_LIST[PROCEDURE[ARGUMENTS]]
5 make do create actions.make end
6 feature
7 subscribe (an_action: PROCEDURE[ARGUMENTS])
8 require action_not_already_subscribed: not actions.has(an_action)
9 do actions.extend (an_action)

10 ensure action_subscribed: action.has(an_action) end
11 publish (args: G)
12 do from actions.start until actions.after
13 loop actions.item.call (args) ; actions.forth end
14 end
15 end

● L1 constrains the generic parameter ARGUMENTS: any class that instantiates
ARGUMENTS must be a descendant of TUPLE.

● L4: The type PROCEDURE encapsulates both the context object and the
reference/pointer to some update operation.

28 of 35



Event-Driven Design in Eiffel (2)
1 class WEATHER_DATA
2 create make
3 feature -- Measurements
4 temperature: REAL ; humidity: REAL ; pressure: REAL
5 correct_limits(t,p,h: REAL): BOOLEAN do . . . end
6 make (t, p, h: REAL) do . . . end
7 feature -- Event for data changes

8 change on temperature : EVENT[TUPLE[REAL]]once create Result end

9 change on humidity : EVENT[TUPLE[REAL]]once create Result end

10 change on pressure : EVENT[TUPLE[REAL]]once create Result end
11 feature -- Command
12 set_measurements(t, p, h: REAL)
13 require correct_limits(t,p,h)
14 do temperature := t ; pressure := p ; humidity := h

15 change on temperature .publish ([t])

16 change on humidity .publish ([p])

17 change on pressure .publish ([h])

18 end
19 invariant correct_limits(temperature, pressure, humidity) end

29 of 35



Event-Driven Design in Eiffel (3)
1 class CURRENT_CONDITIONS
2 create make
3 feature -- Initialization
4 make(wd: WEATHER_DATA)
5 do
6 wd.change on temperature.subscribe (agent update_temperature)
7 wd.change on temperature.subscribe (agent update_humidity)
8 end
9 feature

10 temperature: REAL
11 humidity: REAL
12 update_temperature (t: REAL) do temperature := t end
13 update_humidity (h: REAL) do humidity := h end
14 display do . . . end
15 end

● agent cmd retrieves the pointer to cmd and its context object.

● L6 ≈ . . . (agent Current .update temperature)

● Contrast L6 with L8–11 in Java class CurrentConditions.
30 of 35



Event-Driven Design in Eiffel (4)
1 class WEATHER_STATION create make
2 feature
3 cc: CURRENT_CONDITIONS
4 make
5 do create wd.make (9, 75, 25)
6 create cc.make (wd)
7 wd.set measurements (15, 60, 30.4)
8 cc.display
9 wd.set measurements (11, 90, 20)

10 cc.display
11 end
12 end

L6 invokes
wd.change on temperature.subscribe(

agent cc.update temperature)

L7 invokes
wd.change on temperature.publish([15])

which in turn invokes cc.update temperature(15)
31 of 35



Event-Driven Design: Eiffel vs. Java
● Storing observers/listeners of an event

○ Java, in the Event class:
Hashtable<Object, MethodHandle> listenersActions;

○ Eiffel, in the EVENT class:
actions: LINKED_LIST[PROCEDURE[ARGUMENTS]]

● Creating and passing function pointers
○ Java, in the CurrentConditions class constructor:

MethodHandle ut = lookup.findVirtual(
this.getClass(), "updateTemperature",
MethodType.methodType(void.class, double.class));

WeatherData.changeOnTemperature.subscribe(this, ut);

○ Eiffel, in the CURRENT CONDITIONS class construction:
wd.change on temperature.subscribe (agent update_temperature)

⇒ Eiffel’s type system has been better thought-out for design .
32 of 35



Index (1)
Motivating Problem
First Design: Weather Station
Implementing the First Design (1)
Implementing the First Design (2.1)
Implementing the First Design (2.2)
Implementing the First Design (2.3)
Implementing the First Design (3)
First Design: Good Design?
Observer Pattern: Architecture
Observer Pattern: Weather Station
Implementing the Observer Pattern (1.1)
Implementing the Observer Pattern (1.2)
Implementing the Observer Pattern (1.3)
Implementing the Observer Pattern (1.4)

33 of 35



Index (2)
Implementing the Observer Pattern (2.1)
Implementing the Observer Pattern (2.2)
Implementing the Observer Pattern (3)
Observer Pattern: Limitation? (1)
Observer Pattern: Limitation? (2)
Event-Driven Design (1)
Event-Driven Design (2)
Event-Driven Design: Implementation
Event-Driven Design in Java (1)
Event-Driven Design in Java (2)
Event-Driven Design in Java (3)
Event-Driven Design in Java (4)
Event-Driven Design in Eiffel (1)
Event-Driven Design in Eiffel (2)

34 of 35



Index (3)
Event-Driven Design in Eiffel (3)

Event-Driven Design in Eiffel (4)

Event-Driven Design: Eiffel vs. Java

35 of 35



Abstractions via Mathematical Models

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Motivating Problem: Complete Contracts

● Recall what we learned in the Complete Contracts lecture:
○ In post-condition , for each attribute , specify the relationship

between its pre-state value and its post-state value.
○ Use the old keyword to refer to post-state values of expressions.
○ For a composite-structured attribute (e.g., arrays, linked-lists,

hash-tables, etc.), we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● Let’s now revisit this technique by specifying a LIFO stack .

2 of 35



Motivating Problem: LIFO Stack (1)

● Let’s consider three different implementation strategies:

Stack Feature
Array Linked List

Strategy 1 Strategy 2 Strategy 3

count imp.count

top imp[imp.count] imp.first imp.last

push(g) imp.force(g, imp.count + 1) imp.put font(g) imp.extend(g)

pop
imp.list.remove tail (1) list.start imp.finish

list.remove imp.remove

● Given that all strategies are meant for implementing the same
ADT , will they have identical contracts?

3 of 35



Motivating Problem: LIFO Stack (2.1)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 1: array
imp: ARRAY[G]

feature -- Initialization
make do create imp.make_empty ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ∼ g
unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.remove_tail(1)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

4 of 35



Motivating Problem: LIFO Stack (2.2)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 2: linked-list first item as top
imp: LINKED_LIST[G]

feature -- Initialization
make do create imp.make ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.put_front(g)
ensure
changed: imp.first ∼ g
unchanged: across 2 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item + 1] end
end

5 of 35



Motivating Problem: LIFO Stack (2.3)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 3: linked-list last item as top
imp: LINKED_LIST[G]

feature -- Initialization
make do create imp.make ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.extend(g)
ensure
changed: imp.last ∼ g
unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

6 of 35



Motivating Problem: LIFO Stack (3)
● Postconditions of all 3 versions of stack are complete .

i.e., Not only the new item is pushed/popped , but also the
remaining part of the stack is unchanged .

● But they violate the principle of information hiding :
Changing the secret , internal workings of data structures
should not affect any existing clients.

● How so?
The private attribute imp is referenced in the postconditions ,
exposing the implementation strategy not relevant to clients:
● Top of stack may be imp[count] , imp.first , or imp.last .

● Remaining part of stack may be across 1 |..| count - 1 or

across 2 |..| count .

⇒ Changing the implementation strategy from one to another will
also change the contracts for all features .

⇒ This also violates the Single Choice Principle .
7 of 35



Implementing an Abstraction Function (1)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 1
imp: ARRAY[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make from array (imp)
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make empty ensure model.count = 0 end
push (g: G) do imp.force(g, imp.count + 1)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.remove tail(1)

ensure popped: model ∼ (old model.deep twin).front end
end

8 of 35



Abstracting ADTs as Math Models (1)

old model: SEQ[G] model: SEQ[G]

old imp: ARRAY[G] map: SEQ[G]

abstraction 
function

abstraction 
function

convert the current array 
into a math sequence

convert the current array 
into a math sequence

imp.force(g, imp.count + 1)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 1 Abstraction function : Convert the implementation
array to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

9 of 35



Implementing an Abstraction Function (2)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 2 (first as top)
imp: LINKED LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.prepend(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[count - i.item + 1]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end
push (g: G) do imp.put front(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.start ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end
end

10 of 35



Abstracting ADTs as Math Models (2)

old model: SEQ[G] model: SEQ[G]

old imp: ARRAY[G] map: SEQ[G]

abstraction 
function

abstraction 
function

convert the current liked list 
into a math sequence

convert the current array 
into a math sequence

imp.put_front(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 2 Abstraction function : Convert the implementation
list (first item is top) to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

11 of 35



Implementing an Abstraction Function (3)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 3 (last as top)
imp: LINKED LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.append(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end
push (g: G) do imp.extend(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.finish ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end
end

12 of 35



Abstracting ADTs as Math Models (3)

old model: SEQ[G] model: SEQ[G]

old imp: ARRAY[G] map: SEQ[G]

abstraction 
function

abstraction 
function

convert the current liked list 
into a math sequence

convert the current array 
into a math sequence

imp.extend(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 3 Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

13 of 35



Solution: Abstracting ADTs as Math Models
● Writing contracts in terms of implementation attributes (arrays,

LL’s, hash tables, etc.) violates information hiding principle.
● Instead:

○ For each ADT, create an abstraction via a mathematical model .
e.g., Abstract a LIFO STACK as a mathematical sequence .

○ For each ADT, define an abstraction function (i.e., a query)
whose return type is a kind of mathematical model .
e.g., Convert implementation array to mathematical sequence

○ Write contracts in terms of the abstract math model .
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.

○ Upon changing the implementation:
● No change on what the abstraction is, hence no change on contracts.
● Only change how the abstraction is constructed, hence changes on

the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
⇒ The Single Choice Principle is obeyed.

14 of 35



Math Review: Set Definitions and Membership
● A set is a collection of objects.

○ Objects in a set are called its elements or members.
○ Order in which elements are arranged does not matter.
○ An element can appear at most once in the set.

● We may define a set using:
○ Set Enumeration: Explicitly list all members in a set.

e.g., {1,3,5,7,9}
○ Set Comprehension: Implicitly specify the condition that all

members satisfy.
e.g., {x ∣ 1 ≤ x ≤ 10 ∧ x is an odd number}

● An empty set (denoted as {} or ∅) has no members.
● We may check if an element is a member of a set:

e.g., 5 ∈ {1,3,5,7,9} [true]
e.g., 4 /∈ {x ∣ x ≤ 1 ≤ 10,x is an odd number} [true]

● The number of elements in a set is called its cardinality .
e.g., ∣∅∣ = 0, ∣{x ∣ x ≤ 1 ≤ 10,x is an odd number}∣ = 5

15 of 35



Math Review: Set Relations

Given two sets S1 and S2:
● S1 is a subset of S2 if every member of S1 is a member of S2.

S1 ⊆ S2 ⇐⇒ (∀x ● x ∈ S1 ⇒ x ∈ S2)

● S1 and S2 are equal iff they are the subset of each other.

S1 = S2 ⇐⇒ S1 ⊆ S2 ∧S2 ⊆ S1

● S1 is a proper subset of S2 if it is a strictly smaller subset.

S1 ⊂ S2 ⇐⇒ S1 ⊆ S2 ∧ ∣S1∣ < ∣S2∣

16 of 35



Math Review: Set Operations

Given two sets S1 and S2:
● Union of S1 and S2 is a set whose members are in either.

S1 ∪S2 = {x ∣ x ∈ S1 ∨ x ∈ S2}

● Intersection of S1 and S2 is a set whose members are in both.

S1 ∩S2 = {x ∣ x ∈ S1 ∧ x ∈ S2}

● Difference of S1 and S2 is a set whose members are in S1 but
not S2.

S1 ∖S2 = {x ∣ x ∈ S1 ∧ x /∈ S2}

17 of 35



Math Review: Power Sets

The power set of a set S is a set of all S’ subsets.

P(S) = {s ∣ s ⊆ S}

The power set contains subsets of cardinalities 0, 1, 2, . . . , ∣S∣.
e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

∅,
{1}, {2}, {3},
{1,2}, {2,3}, {3,1},
{1,2,3}

⎫
⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪
⎭

18 of 35



Math Review: Set of Tuples

Given n sets S1, S2, . . . , Sn, a cross product of theses sets is
a set of n-tuples.
Each n-tuple (e1,e2, . . . ,en) contains n elements, each of
which a member of the corresponding set.

S1 ×S2 × ⋅ ⋅ ⋅ ×Sn = {(e1,e2, . . . ,en) ∣ ei ∈ Si ∧ 1 ≤ i ≤ n}

e.g., {a,b} × {2,4} × {$,&} is a set of triples:

{a,b} × {2,4} × {$,&}
= { (e1,e2,e3) ∣ e1 ∈ {a,b} ∧ e2 ∈ {2,4} ∧ e3 ∈ {$,&} }

=
{(a,2,$), (a,2,&), (a,4,$), (a,4,&),
(b,2,$), (b,2,&), (b,4,$), (b,4,&)}

19 of 35



Math Models: Relations (1)
● A relation is a collection of mappings, each being an ordered

pair that maps a member of set S to a member of set T .
e.g., Say S = {1,2,3} and T = {a,b}
○ ∅ is an empty relation.
○ S × T is a relation (say r1) that maps from each member of S to

each member in T : {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}
○ {(x ,y) ∶ S × T ∣ x ≠ 1} is a relation (say r2) that maps only some

members in S to every member in T : {(2,a), (2,b), (3,a), (3,b)}.
● Given a relation r :

○ Domain of r is the set of S members that r maps from.

dom(r) = {s ∶ S ∣ (∃t ● (s, t) ∈ r)}
e.g., dom(r1) = {1,2,3}, dom(r2) = {2,3}

○ Range of r is the set of T members that r maps to.

ran(r) = {t ∶ T ∣ (∃s ● (s, t) ∈ r)}
e.g., ran(r1) = {a,b} = ran(r2)

20 of 35



Math Models: Relations (2)

● We use the power set operator to express the set of all possible
relations on S and T :

P(S × T )

● To declare a relation variable r , we use the colon (:) symbol to
mean set membership:

r ∶ P(S × T )

● Or alternatively, we write:

r ∶ S↔ T

where the set S↔ T is synonymous to the set P(S × T )
21 of 35



Math Models: Relations (3.1)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}

● r.domain : set of first-elements from r
○ r.domain = { d ∣ (d , r) ∈ r }
○ e.g., r.domain = {a,b,c,d ,e, f}

● r.range : set of second-elements from r
○ r.range = { r ∣ (d , r) ∈ r }
○ e.g., r.range = {1,2,3,4,5,6}

● r.inverse : a relation like r except elements are in reverse order
○ r.inverse = { (r ,d) ∣ (d , r) ∈ r }
○ e.g., r.inverse = {(1,a), (2,b), (3, c), (4,a), (5,b), (6, c), (1,d), (2,e), (3, f)}

22 of 35



Math Models: Relations (3.2)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}

● r.domain restricted(ds) : sub-relation of r with domain ds.
○ r.domain restricted(ds) = { (d , r) ∣ (d , r) ∈ r ∧ d ∈ ds }
○ e.g., r.domain restricted({a, b}) = {(a,1), (b,2), (a,4), (b,5)}

● r.domain subtracted(ds) : sub-relation of r with domain not ds.
○ r.domain subtracted(ds) = { (d , r) ∣ (d , r) ∈ r ∧ d /∈ ds }
○ e.g., r.domain subtracted({a, b}) = {(c,6), (d,1), (e,2), (f,3)}

● r.range restricted(rs) : sub-relation of r with range rs.
○ r.range restricted(rs) = { (d , r) ∣ (d , r) ∈ r ∧ r ∈ rs }
○ e.g., r.range restricted({1, 2}) = {(a,1), (b,2), (d ,1), (e,2)}

● r.range subtracted(ds) : sub-relation of r with range not ds.
○ r.range subtracted(rs) = { (d , r) ∣ (d , r) ∈ r ∧ r /∈ rs }
○ e.g., r.range subtracted({1, 2}) = {(c,3), (a,4), (b,5), (c,6)}

23 of 35



Math Models: Relations (3.3)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}

● r.overridden(t) : a relation which agrees on r outside domain of
t .domain, and agrees on t within domain of t .domain
○ r.overridden(t) t ∪ r .domain subtracted(t .domain)
○

r .overridden({(a,3), (c,4)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

)

= {(a,3), (c,4)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

∪{(b,2), (b,5), (d ,1), (e,2), (f ,3)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r .domain subtracted(t .domain
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

{a,c}

)

= {(a,3), (c,4), (b,2), (b,5), (d ,1), (e,2), (f ,3)}

24 of 35



Math Review: Functions (1)

A function f on sets S and T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T .

∀s ∶ S; t1 ∶ T ; t2 ∶ T ● (s, t1) ∈ f ∧ (s, t2) ∈ f ⇒ t1 = t2

e.g., Say S = {1,2,3} and T = {a,b}, which of the following
relations are also functions?
○ S × T [No]
○ (S × T ) − {(x ,y) ∣ (x ,y) ∈ S × T ∧ x = 1} [No]
○ {(1,a), (2,b), (3,a)} [Yes]
○ {(1,a), (2,b)} [Yes]

25 of 35



Math Review: Functions (2)

● We use set comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

{r ∶ S↔ T ∣
(∀s ∶ S; t1 ∶ T ; t2 ∶ T ● (s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2)}

● This set (of possible functions) is a subset of the set (of
possible relations): P(S × T ) and S↔ T .

● We abbreviate this set of possible functions as S→ T and use it
to declare a function variable f :

f ∶ S→ T

26 of 35



Math Review: Functions (3.1)
Given a function f ∶ S→ T :
● f is injective (or an injection) if f does not map a member of S

to more than one members of T .

f is injective ⇐⇒
(∀s1 ∶ S;s2 ∶ S; t ∶ T ● (s1, t) ∈ r ∧ (s2, t) ∈ r ⇒ s1 = s2)

e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

● f is surjective (or a surjection) if f maps to all members of T .

f is surjective ⇐⇒ ran(f ) = T

● f is bijective (or a bijection) if f is both injective and surjective.
27 of 35



Math Review: Functions (3.2)

28 of 35



Math Models: Command-Query Separation
Command Query

domain restrict domain restricted
domain restrict by domain restricted by
domain subtract domain subtracted

domain subtract by domain subtracted by

range restrict range restricted
range restrict by range restricted by
range subtract range subtracted

range subtract by range subtracted by

override overridden
override by overridden by

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}
● Commands modify the context relation objects.

r.domain restrict({a}) changes r to {(a,1), (a,4)}
● Queries return new relations without modifying context objects.

r.domain restricted({a}) returns {(a,1), (a,4)} with r untouched
29 of 35



Math Models: Example Test

test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]

do
create r.make_from_tuple_array (
<<["a", 1], ["b", 2], ["c", 3],

["a", 4], ["b", 5], ["c", 6],
["d", 1], ["e", 2], ["f", 3]>>)

create ds.make_from_array (<<"a">>)
-- r is not changed by the query ‘domain_subtracted’
t := r.domain subtracted (ds)
Result :=
t /∼ r and not t.domain.has ("a") and r.domain.has ("a")

check Result end
-- r is changed by the command ‘domain_subtract’
r.domain subtract (ds)
Result :=
t ∼ r and not t.domain.has ("a") and not r.domain.has ("a")

end

30 of 35



Math Models: Command or Query
● Use the state-changing commands to define the body of an

abstraction function .
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation
imp: LINKED_LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.append(cursor.item) end
end

● Use the side-effect-free queries to write contracts.
class LIFO_STACK[G -> attached ANY] create make
feature -- Abstraction function of the stack ADT
model: SEQ[G]

feature -- Commands
push (g: G)
ensure pushed: model ∼ (old model.deep_twin).appended(g) end

31 of 35



Beyond this lecture . . .

Familiarize yourself with the features of classes REL and SET
for the exam.

32 of 35



Index (1)
Motivating Problem: Complete Contracts
Motivating Problem: LIFO Stack (1)
Motivating Problem: LIFO Stack (2.1)
Motivating Problem: LIFO Stack (2.2)
Motivating Problem: LIFO Stack (2.3)
Motivating Problem: LIFO Stack (3)
Implementing an Abstraction Function (1)
Abstracting ADTs as Math Models (1)
Implementing an Abstraction Function (2)
Abstracting ADTs as Math Models (2)
Implementing an Abstraction Function (3)
Abstracting ADTs as Math Models (3)
Solution: Abstracting ADTs as Math Models
Math Review: Set Definitions and Membership

33 of 35



Index (2)
Math Review: Set Relations
Math Review: Set Operations
Math Review: Power Sets
Math Review: Set of Tuples
Math Models: Relations (1)
Math Models: Relations (2)
Math Models: Relations (3.1)
Math Models: Relations (3.2)
Math Models: Relations (3.3)
Math Review: Functions (1)
Math Review: Functions (2)
Math Review: Functions (3.1)
Math Review: Functions (3.2)
Math Models: Command-Query Separation

34 of 35



Index (3)
Math Models: Example Test

Math Models: Command or Query

Beyond this lecture . . .

35 of 35



Eiffel Testing Framework (ETF):
Acceptance Tests via Abstract User Interface

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Bank ATM

The ATM application has a variety of concrete user interfaces.

2 of 12



Separation of Concerns
● The (Concrete) User Interface
○ The executable of your application hides the implementing classes

and features.
○ Users typically interact with your application via some GUI.

e.g., web app, mobile app, or desktop app
● The Business Logic (Model)
○ When you develop your application software, you implement

classes and features.
e.g., How the bank stores, processes, retrieves information about
accounts and transactions

In practice:
● You need to test your software as if it were a real app way

before dedicating to the design of an actual GUI.
● The model should be independent of the View, Input and

Output.
3 of 12



Prototyping System with Abstract UI

● For you to quickly prototype a working system, you do not need
to spend time on developing a fancy GUI.

● The Eiffel Testing Framework (ETF) allows you to:
○ Focus on developing the business model;
○ Test your business model as if it were a real app.

● In ETF, observable interactions with the application GUI (e.g.,
“button clicks”) are abstracted as monitored events.

Events Features
interactions computations

external internal
observable hidden

acceptance tests unit tests
users, customers programmers, developers

4 of 12



Abstract Events: Bank ATM

5 of 12



ETF in a Nutshell
● Eiffel Testing Framework (ETF) facilitates engineers to write

and execute input-output-based acceptance tests.
○ Inputs are specified as traces of events (or sequences).
○ The boundary of the system under development (SUD) is defined

by declaring the list of input events that might occur.
○ Outputs (from executing events in the input trace) are by default

logged onto the terminal, and their formats may be customized.
● An executable ETF that is tailored for the SUD can already be

generated, using these event declarations (documented
documented in a plain text file), with a default business model .

● Once the business model is implemented, there is only a
small number of steps to follow for the developers to connect it
to the generated ETF.

● Once connected, developers may re-run all use cases and
observe if the expected state effects take place.

6 of 12



Workflow: Develop-Connect-Test

ETF

monitored 
events

Code 
Skeleton

business 
model

use 
cases

Abstract 
State

implement

(re)new

generate

connect to

define

test fix or add

debug

run

derive

redefine

7 of 12



ETF: Abstract User Interface

8 of 12



ETF: Generating a New Project

9 of 12



ETF: Architecture

● Classes in the model cluster are hidden from the users.
● All commands reference to the same model (bank) instance.
● When a user’s request is made:
○ A command object of the corresponding type is created, which

invokes relevant feature(s) in the model cluster.
○ Updates to the model are published to the output handler.

10 of 12



ETF: Input Errors

11 of 12



Index (1)
Bank ATM

Separation of Concerns

Prototyping System with Abstract UI

Abstract Events: Bank ATM

ETF in a Nutshell

Workflow: Develop-Connect-Test

ETF: Abstract User Interface

ETF: Generating a New Project

ETF: Architecture

ETF: Input Errors
12 of 12



Program Correctness
OOSC2 Chapter 11

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Weak vs. Strong Assertions
● Describe each assertion as a set of satisfying value.

x > 3 has satisfying values {4,5,6,7, . . .}
x > 4 has satisfying values {5,6,7, . . .}

● An assertion p is stronger than an assertion q if p’s set of
satisfying values is a subset of q’s set of satisfying values.
○ Logically speaking, p being stronger than q (or, q being weaker

than p) means p⇒ q.
○ e.g., x > 4⇒ x > 3

● What’s the weakest assertion? [ TRUE ]
● What’s the strongest assertion? [ FALSE ]
● In Design by Contract :

○ A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

○ A weaker precondition has more acceptable input values

○ A weaker postcondition has more acceptable output values
2 of 43



Motivating Examples (1)

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require

i > 3
do
i := i + 9

ensure
i > 13

end
end

Q: Is i > 3 is too weak or too strong?
A: Too weak
∵ assertion i > 3 allows value 4 which would fail postcondition.

3 of 43



Motivating Examples (2)
Is this feature correct?
class FOO
i: INTEGER
increment_by_9
require

i > 5
do
i := i + 9

ensure
i > 13

end
end

Q: Is i > 5 too weak or too strong?
A: Maybe too strong
∵ assertion i > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.
4 of 43



Software Correctness

● Correctness is a relative notion:

consistency of implementation with respect to specification.
⇒ This assumes there is a specification!

● We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : {Q} S {R}

○ e.g., {i > 3} i := i + 9 {i > 13}
○ e.g., {i > 5} i := i + 9 {i > 13}
○ If {Q} S {R} can be proved TRUE, then the S is correct.

e.g., {i > 5} i := i + 9 {i > 13} can be proved TRUE.
○ If {Q} S {R} cannot be proved TRUE, then the S is incorrect.

e.g., {i > 3} i := i + 9 {i > 13} cannot be proved TRUE.

5 of 43



Hoare Logic

● Consider a program S with precondition Q and postcondition R.
○ {Q} S {R} is a correctness predicate for program S
○ {Q} S {R} is TRUE if program S starts executing in a state

satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

● Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

6 of 43



Hoare Logic and Software Correctness
Consider the contract view of a feature f (whose body of
implementation is S) as a Hoare Triple :

{Q} S {R}

Q is the precondition of f .
S is the implementation of f .
R is the postcondition of f .
○ {true} S {R}

All input values are valid [ Most-user friendly ]
○ {false} S {R}

All input values are invalid [ Most useless for clients ]
○ {Q} S {true}

All output values are valid [ Most risky for clients; Easiest for suppliers ]
○ {Q} S {false}

All output values are invalid [ Most challenging coding task ]
○ {true} S {true}

All inputs/outputs are valid (No contracts) [ Least informative ]
7 of 43



Hoare Logic A Simple Example

Given {??}n ∶= n + 9{n > 13}:

● n > 4 is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

● Any precondition that is equal to or stronger than the wp
(n > 4) will result in a correct program.
e.g., {n > 5}n ∶= n + 9{n > 13} can be proved TRUE.

● Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n > 3}n ∶= n + 9{n > 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n > 13.

8 of 43



Proof of Hoare Triple using wp

{Q} S {R} ≡ Q ⇒ wp(S,R)

● wp(S,R) is the weakest precondition for S to establish R .
● S can be:

○ Assignments (x := y)
○ Alternations (if . . . then . . . else . . . end)
○ Sequential compositions (S1 ; S2)
○ Loops (from . . . until . . . loop . . . end)

● We now show how to calculate the wp for the above
programming constructs.

9 of 43



Denoting New and Old Values

In the postcondition , for a program variable x :
○ We write x0 to denote its pre-state (old) value.
○ We write x to denote its post-state (new) value.

Implicitly, in the precondition , all program variables have their
pre-state values.

e.g., {b0 > a} b := b - a {b = b0 − a}
● Notice that:

○ We don’t write b0 in preconditions
∵ All variables are pre-state values in preconditions

○ We don’t write b0 in program
∵ there might be multiple intermediate values of a variable due to
sequential composition

10 of 43



wp Rule: Assignments (1)

wp(x := e, R) = R[x ∶= e]

R[x ∶= e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

11 of 43



wp Rule: Assignments (2)

How do we prove {Q} x := e {R}?

{Q} x := e {R} ⇐⇒ Q⇒ R[x ∶= e]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

wp(x := e,R)

12 of 43



wp Rule: Assignments (3) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x > x0}

For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x > x0).

wp(x := x + 1, x > x0)

= {Rule of wp: Assignments}
x > x0[x ∶= x0 + 1]

= {Replacing x by x0 + 1}
x0 + 1 > x0

= {1 > 0 always true}
True

Any precondition is OK. False is valid but not useful.
13 of 43



wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x = 23}

For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x = 23).

wp(x := x + 1, x = 23)
= {Rule of wp: Assignments}

x = 23[x ∶= x0 + 1]
= {Replacing x by x0 + 1}

x0 + 1 = 23
= {arithmetic}

x0 = 22

Any precondition weaker than x = 22 is not OK.
14 of 43



wp Rule: Alternations (1)

wp(if B then S1 else S2 end, R) =

⎛
⎜
⎜
⎝

B ⇒ wp(S1, R)

∧

¬ B ⇒ wp(S2, R)

⎞
⎟
⎟
⎠

The wp of an alternation is such that all branches are able to
establish the postcondition R.

15 of 43



wp Rule: Alternations (2)

How do we prove that {Q} if B then S1 else S2 end {R}?

{Q}
if B then
{Q ∧ B } S1 {R}

else
{Q ∧ ¬ B } S2 {R}

end
{R}

{Q} if B then S1 else S2 end {R}

⇐⇒

⎛
⎜
⎜
⎝

{ Q ∧ B } S1 { R }

∧

{ Q ∧ ¬ B } S2 { R }

⎞
⎟
⎟
⎠

⇐⇒

⎛
⎜
⎜
⎝

(Q ∧ B ) ⇒ wp(S1, R)

∧

(Q ∧ ¬ B ) ⇒ wp(S2, R)

⎞
⎟
⎟
⎠

16 of 43



wp Rule: Alternations (3) Exercise
Is this program correct?

{x > 0 ∧ y > 0}
if x > y then
bigger := x ; smaller := y

else
bigger := y ; smaller := x

end
{bigger ≥ smaller}

⎛
⎜
⎝

{(x > 0 ∧ y > 0) ∧ (x > y)}
bigger := x ; smaller := y

{bigger ≥ smaller}

⎞
⎟
⎠

∧

⎛
⎜
⎝

{(x > 0 ∧ y > 0) ∧ ¬(x > y)}
bigger := y ; smaller := x

{bigger ≥ smaller}

⎞
⎟
⎠

17 of 43



wp Rule: Sequential Composition (1)

wp(S1 ; S2, R) = wp(S1, wp(S2, R))

The wp of a sequential composition is such that the first phase

establishes the wp for the second phase to establish the
postcondition R.

18 of 43



wp Rule: Sequential Composition (2)

How do we prove {Q} S1 ; S2 {R}?

{Q} S1 ; S2 {R} ⇐⇒ Q⇒ wp(S1, wp(S2, R))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wp(S1 ; S2,R)

19 of 43



wp Rule: Sequential Composition (3) Exercise
Is { True } tmp := x; x := y; y := tmp { x > y } correct?
If and only if True⇒ wp(tmp := x ; x := y ; y := tmp, x > y)

wp(tmp := x ; x := y ; y := tmp , x > y)
= {wp rule for seq. comp.}

wp(tmp := x, wp(x := y ; y := tmp , x > y))
= {wp rule for seq. comp.}

wp(tmp := x, wp(x := y, wp(y := tmp, x > y )))

= {wp rule for assignment}
wp(tmp := x, wp(x := y, x > tmp))

= {wp rule for assignment}
wp(tmp := x, y > tmp )

= {wp rule for assignment}
y > x

∵ True⇒ y > x does not hold in general.
∴ The above program is not correct.

20 of 43



Loops

● A loop is a way to compute a certain result by successive
approximations.
e.g. computing the maximum value of an array of integers

● Loops are needed and powerful
● But loops very hard to get right:

○ Infinite loops [ termination ]
○ “off-by-one” error [ partial correctness ]
○ Improper handling of borderline cases [ partial correctness ]
○ Not establishing the desired condition [ partial correctness ]

21 of 43



Loops: Binary Search

4 implementations for
binary search: published,
but wrong!

See page 381 in Object Oriented
Software Construction

22 of 43



Correctness of Loops

How do we prove that the following loops are correct?

{Q}
from

Sinit
until

B
loop

Sbody
end
{R}

{Q}
Sinit
while(¬ B) {

Sbody
}
{R}

● In case of C/Java, ¬B denotes the stay condition.

● In case of Eiffel, B denotes the exit condition.
There is native, syntactic support for checking/proving the
total correctness of loops.

23 of 43



Contracts for Loops: Syntax

from
Sinit

invariant
invariant_tag: I -- Boolean expression for partial correctness

until
B

loop
Sbody

variant
variant_tag: V -- Integer expression for termination

end

24 of 43



Contracts for Loops
● Use of loop invariants (LI) and loop variants (LV).

○ Invariants: Boolean expressions for partial correctness.
● Typically a special case of the postcondition.

e.g., Given postcondition “ Result is maximum of the array ”:

LI can be “ Result is maximum of the part of array scanned so far ”.
● Established before the very first iteration.
● Maintained TRUE after each iteration.

○ Variants: Integer expressions for termination

● Denotes the number of iterations remaining
● Decreased at the end of each subsequent iteration
● Maintained positive in all iterations
● As soon as value of LV reaches zero, meaning that no more iterations

remaining, the loop must exit.
● Remember:

total correctness = partial correctness + termination
25 of 43



Contracts for Loops: Visualization

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
26 of 43



Contracts for Loops: Example 1.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

27 of 43



Contracts for Loops: Example 1.2
Consider the feature call find max( ⟨⟨20, 10, 40, 30⟩⟩ ) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
● Loop Variant : a.upper − i + 1
● Postcondition : ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

AFTER ITERATION i Result LI EXIT (i > a.upper )? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 ✓ × 2

3rd 4 40 ✓ × 1

4th 5 40 ✓ ✓ 0

28 of 43



Contracts for Loops: Example 2.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j ≤ i ● Result ≥ a[j]
across a.lower |..| i as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

29 of 43



Contracts for Loops: Example 2.2
Consider the feature call find max( ⟨⟨20, 10, 40, 30⟩⟩ ) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j ≤ i ● Result ≥ a[j]
● Loop Variant : a.upper − i + 1

AFTER ITERATION i Result LI EXIT (i > a.upper )? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 × – –

Loop invariant violation at the end of the 2nd iteration:

∀j ∣ a.lower ≤ j ≤ 3 ● 20 ≥ a[j]

evaluates to false ∵ 20 /≥ a[3] = 40
30 of 43



Contracts for Loops: Example 3.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

31 of 43



Contracts for Loops: Example 3.2
Consider the feature call find max( ⟨⟨20, 10, 40, 30⟩⟩ ) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
● Loop Variant : a.upper − i

AFTER ITERATION i Result LI EXIT (i > a.upper )? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 2

2nd 3 20 ✓ × 1

3rd 4 40 ✓ × 0

4th 5 40 ✓ ✓ -1

Loop variant violation at the end of the 2nd iteration
∵ a.upper − i = 4 − 5 evaluates to non-zero.

32 of 43



Contracts for Loops: Exercise
class DICTIONARY[V, K]
feature {NONE} -- Implementations
values: ARRAY[K]
keys: ARRAY[K]

feature -- Abstraction Function
model: FUN[K, V]

feature -- Queries
get_keys(v: V): ITERABLE[K]
local i: INTEGER; ks: LINKED_LIST[K]
do
from i := keys.lower ; create ks.make_empty

invariant ??

until i > keys.upper
do if values[i] ∼ v then ks.extend(keys[i]) end
end
Result := ks.new_cursor

ensure
result valid: ∀k ∣ k ∈ Result ● model.item(k) ∼ v
no missing keys: ∀k ∣ k ∈ model.domain ● model.item(k) ∼ v ⇒ k ∈ Result

end

33 of 43



Proving Correctness of Loops (1)
{Q} from

Sinit
invariant

I
until

B
loop

Sbody
variant

V
end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.
● At the end of Sbody , if not yet to exit, LI I is maintained.
● If ready to exit and LI I maintained, postcondition R is established.

○ A loop terminates if:
● Given LI I, and not yet to exit, Sbody maintains LV V as positive.
● Given LI I, and not yet to exit, Sbody decrements LV V .

34 of 43



Proving Correctness of Loops (2)

{Q} from Sinit invariant I until B loop Sbody variant V end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.

{Q} Sinit {I}
● At the end of Sbody , if not yet to exit, LI I is maintained.

{I ∧ ¬B} Sbody {I}
● If ready to exit and LI I maintained, postcondition R is established.

I ∧ B ⇒ R

○ A loop terminates if:
● Given LI I, and not yet to exit, Sbody maintains LV V as positive.

{I ∧ ¬B} Sbody {V > 0}
● Given LI I, and not yet to exit, Sbody decrements LV V .

{I ∧ ¬B} Sbody {V < V0}

35 of 43



Proving Correctness of Loops: Exercise (1.1)
Prove that the following program is correct:
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

end
end

36 of 43



Proving Correctness of Loops: Exercise (1.2)
Prove that each of the following Hoare Triples is TRUE.

1. Establishment of Loop Invariant:
{ True }

i := a.lower
Result := a[i]

{ ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j] }

2. Maintenance of Loop Invariant:
{ ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j] ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j] }

3. Establishment of Postcondition upon Termination:

∀j ∣ a.lower ≤ j < i ● Result ≥ a[j] ∧ i > a.upper
⇒ ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

37 of 43



Proving Correctness of Loops: Exercise (1.3)

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Positive Before Exit:

{ ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j] ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ a.upper − i + 1 > 0 }

5. Loop Variant Keeps Decrementing before Exit:

{ ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j] ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ a.upper − i + 1 < (a.upper − i + 1)0 }

where (a.upper − i + 1)0 ≡ a.upper0 − i0 + 1

38 of 43



Proof Tips (1)

{Q} S {R} ⇒ {Q ∧P} S {R}

In order to prove {Q ∧P} S {R}, it is sufficient to prove a version
with a weaker precondition: {Q} S {R}.

Proof:
○ Assume: {Q} S {R}

It’s equivalent to assuming: Q ⇒ wp(S, R) (A1)
○ To prove: {Q ∧P} S {R}

● It’s equivalent to proving: Q ∧ P ⇒ wp(S, R)
● Assume: Q ∧ P, which implies Q
● According to (A1), we have wp(S, R). ∎

39 of 43



Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

wp(S, a.lower ≤ i ≤ a.upper ∧ a[i] > 0)

e.g., Before calculating wp(x := a[i], R), augment it as

wp(x := a[i], a.lower ≤ i ≤ a.upper ∧R)

40 of 43



Index (1)
Weak vs. Strong Assertions
Motivating Examples (1)
Motivating Examples (2)
Software Correctness
Hoare Logic
Hoare Logic and Software Correctness
Hoare Logic: A Simple Example
Proof of Hoare Triple using wp
Denoting New and Old Values
wp Rule: Assignments (1)
wp Rule: Assignments (2)
wp Rule: Assignments (3) Exercise
wp Rule: Assignments (4) Exercise
wp Rule: Alternations (1)

41 of 43



Index (2)
wp Rule: Alternations (2)
wp Rule: Alternations (3) Exercise
wp Rule: Sequential Composition (1)
wp Rule: Sequential Composition (2)
wp Rule: Sequential Composition (3) Exercise
Loops
Loops: Binary Search
Correctness of Loops
Contracts for Loops: Syntax
Contracts for Loops
Contracts for Loops: Visualization
Contracts for Loops: Example 1.1
Contracts for Loops: Example 1.2
Contracts for Loops: Example 2.1

42 of 43



Index (3)
Contracts for Loops: Example 2.2

Contracts for Loops: Example 3.1

Contracts for Loops: Example 3.2

Contracts for Loops: Exercise

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.1)

Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)

Proof Tips (1)

Proof Tips (2)
43 of 43



Wrap-Up

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


What You Learned
● Design Principles:
○ Abstraction [ contracts, architecture, math models ]

Think above the code level
○ Information Hiding
○ Single Choice Principle
○ Open-Closed Principle
○ Uniform Access Principle

● Design Patterns:
○ Singleton
○ Iterator
○ State
○ Composite
○ Visitor
○ Observer
○ Event-Driven Design
○ Undo/Redo, Command [ lab 4 ]
○ Model-View-Controller [ project ]

2 of 4



Beyond this course. . . (1)
● How do I program in a language not supporting DbC natively?
○ Document your contracts (e.g., JavaDoc)
○ But, it’s critical to ensure (manually) that contracts are in sync

with your latest implementations.
○ Incorporate contracts into your Unit and Regression tests

● How do I program in a language without a math library ?
○ Again, before diving into coding, always start by

thinking above the code level .
○ Plan ahead how you intend for your system to behaviour at

runtime, in terms of interactions among mathematical objects .
A mathematical relation, a formal model of the graph data
structure, suffices to cover all the common problems.

○ Use efficient data structures to support the math operations.
○ Document your code with contracts specified in terms of the

math models.
○ Test!

3 of 4



Beyond this course. . . (2)

● Software fundamentals:
collected papers by David L.
Parnas

● Design Techniques:
○ Tabular Expressions
○ Information Hiding

4 of 4


	01.1-DbC-and-TDD
	Terminology: Contract, Client, Supplier
	Client, Supplier, Contract in OOP (1)
	Client, Supplier, Contract in OOP (2)
	What is a Good Design?
	A Simple Problem: Bank Accounts
	Playing with the Various Versions in Java
	Version 1: An Account Class
	Version 1: Why Not a Good Design? (1)
	Version 1: Why Not a Good Design? (2)
	Version 1: Why Not a Good Design? (3)
	Version 1: How Should We Improve it?
	Version 2: Added Exceptions to Approximate Method Preconditions
	Version 2: Why Better than Version 1? (1)
	Version 2: Why Better than Version 1? (2.1)
	Version 2: Why Better than Version 1? (2.2)
	Version 2: Why Better than Version 1? (3.1)
	Version 2: Why Better than Version 1? (3.2)
	Version 2: Why Still Not a Good Design? (1)
	Version 2: Why Still Not a Good Design? (2.1)
	Version 2: Why Still Not a Good Design? (2.2)
	Version 2: How Should We Improve it?
	Version 3: Added Assertions to Approximate Class Invariants
	Version 3: Why Better than Version 2?
	Version 3: Why Still Not a Good Design? (1)
	Version 4: What If the Implementation of withdraw is Wrong? (1)
	Version 4: What If the Implementation of withdraw is Wrong? (2)
	Version 4: How Should We Improve it?
	Version 5: Added Assertions to Approximate Method Postconditions
	Version 5: Why Better than Version 4?
	Evolving from Version 1 to Version 5
	Version 5: Contract between Client and Supplier
	DbC in Java
	DbC in Eiffel: Supplier
	DbC in Eiffel: Contract View of Supplier
	DbC in Eiffel: Anatomy of a Class
	DbC in Eiffel: Anatomy of a Feature
	Runtime Monitoring of Contracts
	DbC in Eiffel: Precondition Violation (1.1)
	DbC in Eiffel: Precondition Violation (1.2)
	DbC in Eiffel: Precondition Violation (2.1)
	DbC in Eiffel: Precondition Violation (2.2)
	DbC in Eiffel: Precondition Violation (3.1)
	DbC in Eiffel: Precondition Violation (3.2)
	DbC in Eiffel: Class Invariant Violation (4.1)
	DbC in Eiffel: Class Invariant Violation (4.2)
	DbC in Eiffel: Class Invariant Violation (5.1)
	DbC in Eiffel: Class Invariant Violation (5.2)
	TDD: Test-Driven Development (1)
	TDD: Test-Driven Development (2)
	TDD: Test-Driven Development (3)
	Adding the ESpec Library (1)
	Adding the ESpec Library (2)
	Adding the ESpec Library (3)
	ES_TEST: Expecting to Succeed (1)
	ES_TEST: Expecting to Succeed (2)
	ES_TEST: Expecting to Succeed (3)
	ES_TEST: Expecting to Fail (1)
	ES_TEST: Expecting to Fail (2)
	ES_SUITE: Collecting Test Classes
	Running ES_SUITE (1)
	Running ES_SUITE (2)
	Running ES_SUITE (3)
	Beyond this lecture...

	01.2-Eiffel-vs-Java
	Escape Sequences
	Commands, Queries, and Features
	Naming Conventions
	Operators: Assignment vs. Equality
	Attribute Declarations
	Method Declaration
	Operators: Logical Operators (1)
	Review of Propositional Logic (1)
	Review of Propositional Logic: Implication
	Review of Propositional Logic (2)
	Review of Predicate Logic (1)
	Review of Predicate Logic (2.1)
	Review of Predicate Logic (2.2)
	Predicate Logic (3)
	Operators: Logical Operators (2)
	Operators: Division and Modulo
	Class Declarations
	Class Constructor Declarations (1)
	Creations of Objects (1)
	Selections
	Loops (1)
	Loops (2)
	Library Data Structures
	Data Structures: Arrays
	Data Structures: Linked Lists (1)
	Data Structures: Linked Lists (2)
	Using across to for Quantifications

	02-Classes-and-Objects
	Abstract Data Types (ADTs)
	Building ADTs for Reusability
	Why Java Interfaces Unacceptable ADTs (1)
	Why Java Interfaces Unacceptable ADTs (2)
	Why Eiffel Contract Views are ADTs (1)
	Why Eiffel Contract Views are ADTs (2)
	Uniform Access Principle (1)
	Uniform Access Principle (2)
	Uniform Access Principle (3)
	Uniform Access Principle (4)
	Uniform Access Principle (5.1)
	Uniform Access Principle (5.2)
	Uniform Access Principle (6)
	Generic Collection Class: Motivation (1)
	Generic Collection Class: Motivation (2)
	Generic Collection Class: Supplier
	Generic Collection Class: Client (1.1)
	Generic Collection Class: Client (1.2)
	Generic Collection Class: Client (2)
	Expanded Class: Modelling
	Expanded Class: Programming (2)
	Expanded Class: Programming (3)
	Reference vs. Expanded (1)
	Reference vs. Expanded (2)
	Copying Objects
	Copying Objects: Reference Copy
	Copying Objects: Shallow Copy
	Copying Objects: Deep Copy
	Copying Objects: Example

	03-Singleton-Iterator-Patterns
	What are design patterns?
	Singleton Pattern: Motivation
	Shared Data through Inheritance
	Sharing Data through Inheritance: Architecture
	Sharing Data through Inheritance: Limitation
	Introducing the Once Routine in Eiffel (1.1)
	Introducing the Once Routine in Eiffel (1.2)
	Introducing the Once Routine in Eiffel (1.3)
	Introducing the Once Routine in Eiffel (2)
	Introducing the Once Routine in Eiffel (3)
	Singleton Pattern in Eiffel
	Testing Singleton Pattern in Eiffel
	Singleton Pattern: Architecture
	Iterator Pattern: Motivation
	Iterator Pattern: Architecture
	Iterator Pattern: Supplier's Side
	Iterator Pattern: Supplier's Implementation (1)
	Iterator Pattern: Supplier's Imp. (2.1)
	Iterator Pattern: Supplier's Imp. (2.2)
	Exercises
	Iterator Pattern: Client's Side
	Iterator Pattern: Clients using across for Contracts (1)
	Iterator Pattern: Clients using across for Contracts (2)
	Iterator Pattern: Clients using across for Contracts (3)
	Iterator Pattern: Clients using Iterable in Imp. (1)
	Iterator Pattern: Clients using Iterable in Imp. (2)
	Iterator Pattern: Clients using Iterable in Imp. (3)

	04-Complete-Contract
	How are contracts checked at runtime?
	When are contracts complete?
	Account
	Bank
	Roadmap of Illustrations
	Object Structure for Illustration
	Version 1: Incomplete Contracts, Correct Implementation
	Test of Version 1
	Test of Version 1: Result
	Version 2: Incomplete Contracts, Wrong Implementation
	Test of Version 2
	Test of Version 2: Result
	Version 3: Complete Contracts with Reference Copy
	Test of Version 3
	Test of Version 3: Result
	Version 4: Complete Contracts with Shallow Object Copy
	Test of Version 4
	Test of Version 4: Result
	Version 5: Complete Contracts with Deep Object Copy
	Test of Version 5
	Test of Version 5: Result
	Exercise

	05-Inheritance
	Why Inheritance: A Motivating Example
	The COURSE Class
	No Inheritance: RESIDENT_STUDENT Class
	No Inheritance: RESIDENT_STUDENT Class
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Inheritance Architecture
	Inheritance: The STUDENT Parent Class
	Inheritance: The RESIDENT_STUDENT Child Class
	Inheritance: The NON_RESIDENT_STUDENT Child Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Testing the Two Student Sub-Classes
	Static Type vs. Dynamic Type
	Inheritance Architecture Revisited
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture (1)
	Multi-Level Inheritance Architecture (2)
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Static Type
	Reference Variable: Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Reference Type Casting: Motivation
	Reference Type Casting: Syntax
	Notes on Type Cast (1)
	Notes on Type Cast (2)
	Why Inheritance: A Collection of Various Kinds of Students
	Polymorphism and Dynamic Binding: A Collection of Various Kinds of Students
	Polymorphism: Feature Call Arguments (1)
	Polymorphism: Feature Call Arguments (2)
	Polymorphism: Return Values (1)
	Polymorphism: Return Values (2)
	Design Principle: Polymorphism 
	Inheritance and Contracts (1)
	Inheritance and Contracts (2.1)
	Inheritance and Contracts (2.2)
	Inheritance and Contracts (2.3)
	Inheritance and Contracts (2.4)
	Inheritance and Contracts (2.5)
	Contract Redeclaration Rule (1)
	Contract Redeclaration Rule (2)
	Invariant Accumulation
	Inheritance and Contracts (3)

	06-Generics
	Motivating Example: A Book of Any Objects
	Motivating Example: Observations (1)
	Motivating Example: Observations (2)
	Motivating Example: Observations (2.1)
	Motivating Example: Observations (2.2)
	Motivating Example: Observations (3)
	Parameters
	Generics: Design of a Generic Book
	Generics: Observations
	Bad Example of using Generics
	Instantiating Generic Parameters
	Generics vs. Inheritance (1)
	Generics vs. Inheritance (2)
	Beyond this lecture …

	07-State-Pattern
	Motivating Problem
	State Transition Diagram
	Design Challenges
	A First Attempt
	A First Attempt: Good Design?
	A Top-Down, Hierarchical Solution
	Hierarchical Solution: Good Design?
	Hierarchical Solution: Top-Down Functional Decomposition
	Hierarchical Solution: System Control
	Hierarchical Solution: State Handling (1)
	Hierarchical Solution: State Handling (2)
	Hierarchical Solution: State Handling (3)
	Hierarchical Solution: Visible Architecture
	Hierarchical Solution: Pervasive States
	Law of Inversion
	Grouping by Data Abstractions
	Architecture of the State Pattern
	The STATE ADT
	The APPLICATION Class: Array of STATE
	The APPLICATION Class (1)
	The APPLICATION Class (2)
	The APPLICATION Class (3)
	Building an Application
	An Example Test
	Top-Down, Hierarchical vs. OO Solutions

	08-Composite-Pattern
	Motivating Problem (1)
	Motivating Problem (2)
	Solution: The Composite Pattern
	Composite Architecture: Design (1.1)
	Composite Architecture: Design (1.2)
	Composite Architecture: Design (1.3)
	Composite Architecture: Design (2.1)
	Composite Architecture: Design (2.2)
	Implementing the Composite Pattern (1)
	Implementing the Composite Pattern (2.1)
	Implementing the Composite Pattern (2.2)
	Testing the Composite Pattern

	09-Visitor-Pattern
	Motivating Problem (1)
	Open/Closed Principle
	Motivating Problem (2)
	Problems of Extended Composite Pattern
	Visitor Pattern
	Visitor Pattern: Architecture
	Visitor Pattern Implementation: Structures
	Visitor Pattern Implementation: Operations
	Testing the Visitor Pattern
	To Use or Not to Use the Visitor Pattern

	10-Void-Safety
	Java Program: Example 1
	Java Program: Example 2
	Java Program: Example 3
	Limitation of Java's Type System
	Eiffel's Type System for Void Safety
	Eiffel Program: Example 1
	Eiffel Program: Example 2
	Eiffel Program: Example 3
	Lessons from Void Safety
	Beyond this lecture…

	11-Observer-Pattern
	Motivating Problem
	First Design: Weather Station
	Implementing the First Design (1)
	Implementing the First Design (2.1)
	Implementing the First Design (2.2)
	Implementing the First Design (2.3)
	Implementing the First Design (3)
	First Design: Good Design?
	Observer Pattern: Architecture
	Observer Pattern: Weather Station
	Implementing the Observer Pattern (1.1)
	Implementing the Observer Pattern (1.2)
	Implementing the Observer Pattern (1.3)
	Implementing the Observer Pattern (1.4)
	Implementing the Observer Pattern (2.1)
	Implementing the Observer Pattern (2.2)
	Implementing the Observer Pattern (3)
	Observer Pattern: Limitation? (1)
	Observer Pattern: Limitation? (2)
	Event-Driven Design (1)
	Event-Driven Design (2)
	Event-Driven Design: Implementation
	Event-Driven Design in Java (1)
	Event-Driven Design in Java (2)
	Event-Driven Design in Java (3)
	Event-Driven Design in Java (4)
	Event-Driven Design in Eiffel (1)
	Event-Driven Design in Eiffel (2)
	Event-Driven Design in Eiffel (3)
	Event-Driven Design in Eiffel (4)
	Event-Driven Design: Eiffel vs. Java

	12-Math-Models
	Motivating Problem: Complete Contracts
	Motivating Problem: LIFO Stack (1)
	Motivating Problem: LIFO Stack (2.1)
	Motivating Problem: LIFO Stack (2.2)
	Motivating Problem: LIFO Stack (2.3)
	Motivating Problem: LIFO Stack (3)
	Implementing an Abstraction Function (1)
	Abstracting ADTs as Math Models (1)
	Implementing an Abstraction Function (2)
	Abstracting ADTs as Math Models (2)
	Implementing an Abstraction Function (3)
	Abstracting ADTs as Math Models (3)
	Solution: Abstracting ADTs as Math Models
	Math Review: Set Definitions and Membership
	Math Review: Set Relations
	Math Review: Set Operations
	Math Review: Power Sets
	Math Review: Set of Tuples
	Math Models: Relations (1)
	Math Models: Relations (2)
	Math Models: Relations (3.1)
	Math Models: Relations (3.2)
	Math Models: Relations (3.3)
	Math Review: Functions (1)
	Math Review: Functions (2)
	Math Review: Functions (3.1)
	Math Review: Functions (3.2)
	Math Models: Command-Query Separation
	Math Models: Example Test
	Math Models: Command or Query
	Beyond this lecture …

	13-Eiffel-Testing-Framework
	Bank ATM
	Separation of Concerns
	Prototyping System with Abstract UI
	Abstract Events: Bank ATM
	ETF in a Nutshell
	Workflow: Develop-Connect-Test
	ETF: Abstract User Interface
	ETF: Generating a New Project
	ETF: Architecture
	ETF: Input Errors

	14-Program-Correctness
	Weak vs. Strong Assertions
	Motivating Examples (1)
	Motivating Examples (2)
	Software Correctness
	Hoare Logic
	Hoare Logic and Software Correctness
	Hoare Logic: A Simple Example
	Proof of Hoare Triple using wp
	Denoting New and Old Values
	wp Rule: Assignments (1)
	wp Rule: Assignments (2)
	wp Rule: Assignments (3) Exercise
	wp Rule: Assignments (4) Exercise
	wp Rule: Alternations (1)
	wp Rule: Alternations (2)
	wp Rule: Alternations (3) Exercise
	wp Rule: Sequential Composition (1)
	wp Rule: Sequential Composition (2)
	wp Rule: Sequential Composition (3) Exercise
	Loops
	Loops: Binary Search
	Correctness of Loops
	Contracts for Loops: Syntax
	Contracts for Loops
	Contracts for Loops: Visualization
	Contracts for Loops: Example 1.1
	Contracts for Loops: Example 1.2
	Contracts for Loops: Example 2.1
	Contracts for Loops: Example 2.2
	Contracts for Loops: Example 3.1
	Contracts for Loops: Example 3.2
	Contracts for Loops: Exercise
	Proving Correctness of Loops (1)
	Proving Correctness of Loops (2)
	Proving Correctness of Loops: Exercise (1.1)
	Proving Correctness of Loops: Exercise (1.2)
	Proving Correctness of Loops: Exercise (1.3)
	Proof Tips (1)
	Proof Tips (2)

	15-Wrap-Up
	What You Learned
	Beyond this course… (1)
	Beyond this course… (2)


