
The Composite Design Pattern

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

Motivating Problem (1)

● Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
● Individual pieces of equipment (hard drives, cd-rom drives)

Each equipment has properties : e.g., power consumption and cost.
● Composites such as cabinets, busses, and chassis

Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

● Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

2 of 14

Motivating Problem (2)

Design for tree structures with whole-part hierarchies.

2

CABINET

HARD_DRIVE CARD

CHASSIS

POWER_SUPPLY

DVD-CDROM

CHASSIS

Challenge : There are base and recursive modelling artifacts.
3 of 14

Solution: The Composite Pattern

●
Design : Categorize into base artifacts or recursive artifacts.

●
Programming :

Build a tree structure representing the whole-part hierarchy .
●

Runtime :
Allow clients to treat base objects (leafs) and recursive

compositions (nodes) uniformly .

⇒ Polymorphism : leafs and nodes are “substitutable”.

⇒ Dynamic Binding : Different versions of the same

operation is applied on individual objects and composites.
e.g., Given e: EQUIPMENT :
○ e.price may return the unit price of a DISK DRIVE.
○ e.price may sum prices of a CHASIS’ containing equipments.

4 of 14

Composite Architecture: Design (1.1)

6

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

5 of 14

Composite Architecture: Design (1.2)

7

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

The client uses
abstract class
EQUIPMENT to
manipulate objects
in the composition.

Class EQUIPMENT defines an interface for all
objects in the composition: both the composite
and leaf nodes.
May implement default behavior for add(child)
etc.

Class
COMPOSITE �s
role is (a)
implement leaf
related ops
such as price
and (b) to
define
component
behaviour such
as storing a
child.

A leaf has no children.

Note that the leaf also
inherits features like
children and add that
don�t necessarily make
all that sense for a leaf
node.

6 of 14

Composite Architecture: Design (1.3)

Q: Any flaw of this first design?
A:

The add(child: EQUIPMENT) and
children: LIST[EQUIPMENT] features are defined at the
EQUIPMENT level.⇒ Inherited to all base equipments (e.g., HARD DRIVE) that do not
apply to such features.

7 of 14

Composite Architecture: Design (2.1)

8

Cleaner solution – Multiple Inheritance

8 of 14

Composite Architecture: Design (2.2)

9

Cleaner solution – Multiple Inheritance

Put the price &
power consumption
behavior here

Put the tree behavior
such as adding a child
and list of children
here where it is needed

9 of 14

Implementing the Composite Pattern (1)

deferred class
EQUIPMENT

feature
name: STRING
price: REAL -- uniform access principle

end

class
CARD

inherit
EQUIPMENT

feature
make (n: STRING; p: REAL)
do
name := n
price := p -- price is an attribute

end
end

10 of 14

Implementing the Composite Pattern (2.1)

deferred class
COMPOSITE[T]

feature
children: LINKED_LIST[T]

add_child (c: T)
do
children.extend (c) -- Polymorphism

end
end

Exercise: Make the COMPOSITE class iterable.

11 of 14

Implementing the Composite Pattern (2.2)

class
COMPOSITE_EQUIPMENT

inherit
EQUIPMENT
COMPOSITE [EQUIPMENT]

create
make

feature
make (n: STRING)
do name := n ; create children.make end

price : REAL -- price is a query
-- Sum the net prices of all sub-equipments

do
across
children as cursor

loop
Result := Result + cursor.item.price -- dynamic binding

end
end

end

12 of 14

Testing the Composite Pattern

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET -- holds a CHASSIS
chassis: CHASSIS -- contains a BUS and a DISK_DRIVE
bus: BUS -- holds a CARD

do
create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)
chassis.add(bus)
chassis.add(drive)
cabinet.add(chassis)
Result := cabinet.price = 700

end

13 of 14

Index (1)

Motivating Problem (1)

Motivating Problem (2)

Solution: The Composite Pattern

Composite Architecture: Design (1.1)

Composite Architecture: Design (1.2)

Composite Architecture: Design (1.3)

Composite Architecture: Design (2.1)

Composite Architecture: Design (2.2)

Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

14 of 14

