
Generics in Java

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Example: A Book of Objects
1 class Book {
2 String[] names;
3 Object[] records;
4 /* add a name-record pair to the book */
5 void add (String name, Object record) { . . . }
6 /* return the record associated with a given name */
7 Object get (String name) { . . . } }

Question: Which line has a type error?

1 Date birthday; String phoneNumber;
2 Book b; boolean isWednesday;
3 b = new Book();
4 phoneNumber = "416-67-1010";
5 b.add ("Suyeon", phoneNumber);
6 birthday = new Date(1975, 4, 10);
7 b.add ("Yuna", birthday);
8 isWednesday = b.get("Yuna").getDay() == 4;

2 of 22

Motivating Example: Observations (1)
● In the Book class:

○ By declaring the attribute

Object[] records

We meant that each book instance may store any object whose
static type is a descendant class of Object.

○ Accordingly, from the return type of the get method, we only know
that the returned record is an Object, but not certain about its
dynamic type (e.g., Date, String, etc.).
∴ a record retrieved from the book, e.g., b.get("Yuna"), may
only be called upon methods in its static type (i.e,. Object).

● In the tester code of the Book class:
○ In Line 1, the static types of variables birthday (i.e., Date) and
phoneNumber (i.e., String) are descendant classes of
Object.

○ So, Line 5 and Line 7 compile.
3 of 22

Motivating Example: Observations (2)
Due to polymorphism , the dynamic types of stored objects
(e.g., phoneNumber and birthday) need not be the same.
○ Methods supported in the dynamic types (e.g., method getDay of

class Date) may be new methods not inherited from Object.
○ This is why Line 8 would fail to compile, and may be fixed using an

explicit cast :

isWednesday = ((Date) b.get("Yuna")).getDay() == 4;

○ But what if the dynamic type of the returned object is not a Date?

isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;

○ To avoid such a ClassCastException at runtime, we need to
check its dynamic type before performing a cast:

if (b.get("Suyeon") instanceof Date) {
isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;

}

4 of 22

Motivating Example: Observations (2.1)

● It seems: combining instanceof check and type cast works.
● Can you see any potential problem(s)?
● Hints: What happens when you have a large number of

records of distinct dynamic types stored in the book
(e.g., Date, String, Person, Account, etc.)?

5 of 22

Motivating Example: Observations (2.2)
Imagine that the tester code (or an application) stores 100
different record objects into the book.
○ All of these records are of static type Object, but of distinct

dynamic types.

Object rec1 = new C1(); b.add(. . ., rec1);
Object rec2 = new C2(); b.add(. . ., rec2);
. . .
Object rec100 = new C100(); b.add(. . ., rec100);

where classes C1 to C100 are descendant classes of Object.
○ Every time you retrieve a record from the book, you need to check

“exhaustively” on its dynamic type before calling some method(s).

Object rec = b.get("Jim");
if (rec instanceof C1) { ((C1) rec).m1; }
. . .
else if (rec instanceof C100) { ((C100) rec).m100; }

○ Writing out this list multiple times is tedious and error-prone!
6 of 22

Motivating Example: Observations (3)
We need a solution that:
● Saves us from explicit instanceof checks and type casts
● Eliminates the occurrences of ClassCastException
As a sketch, this is how the solution looks like:
● When the user declares a Book object b, they must

commit to the kind of record that b stores at runtime .
e.g., b stores either Date objects only or String objects only,
but not a mix .

● When attempting to store a new record object rec into b, what
if rec’s static type is not a descendant class of the type of
book that the user previously commits to?
⇒ A compilation error

● When attempting to retrieve a record object from b, there is
no longer a need to check and cast .
∵ Static types of all records in b are guaranteed to be the same.

7 of 22

Parameters
● In mathematics:

○ The same function is applied with different argument values.
e.g., 2 + 3, 1 + 1, 10 + 101, etc.

○ We generalize these instance applications into a definition.
e.g., + ∶ (Z ×Z) →Z is a function that takes two integer
parameters and returns an integer.

● In Java programming:
○ We want to call a method , with different argument values, to

achieve a similar goal.
e.g., acc.deposit(100), acc.deposit(23), etc.

○ We generalize these possible method calls into a definition.
e.g., In class Account, a method void deposit(int amount)
takes one integer parameter .

● When you design a mathematical function or a Java method,
always consider the list of parameters , each of which
representing a set of possible argument values.

8 of 22

Java Generics: Design of a Generic Book

class Book <E> {
String[] names;
E [] records;
/* add a name-record pair to the book */
void add (String name, E record) { . . . }
/* return the record associated with a given name */
E get (String name) { . . . } }

Question: Which line has a type error?
1 Date birthday; String phoneNumber;

2 Book<Date> b ; boolean isWednesday;

3 b = new Book<Date>() ;

4 phoneNumber = "416-67-1010";
5 b.add ("Suyeon", phoneNumber);
6 birthday = new Date(1975, 4, 10);
7 b.add ("Yuna", birthday);
8 isWednesday = b.get("Yuna").getDay() == 4;

9 of 22

Java Generics: Observations
● In class Book:

○ At the class level, we parameterize the type of records that an

instance of book may store: class Book< E >

where E is the name of a type parameter, which should be
instantiated when the user declares an instance of Book.

○ Every occurrence of Object (the most general type of records) is
replaced by E .

○ As soon as E at the class level is committed to some known type
(e.g., Date, String, etc.), every occurrence of E will be
replaced by that type.

● In the tester code of Book:
○ In Line 2, we commit that the book b will store Date objects only.
○ Line 5 now fails to compile. [String is not a Date]
○ Line 7 still compiles.
○ Line 8 does not need any instance check and type cast, and does

not cause any ClassCastException.
∵ Only Date objects were allowed to be stored.10 of 22

Bad Example of using Generics

Has the following client made an appropriate choice?

Book<Object> book

NO!!!!!!!!!!!!!!!!!!!!!!!
○ It allows all kinds of objects to be stored.
∵ All classes are descendants of Object .

○ We can expect very little from an object retrieved from this book.
∵ The static type of book’s items are Object , root of the class
hierarchy, has the minimum amount of features available for use.
∵ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

11 of 22

Generic Classes: Singly-Linked List (1)

public class Node< E > {

private E element;

private Node< E > next;

public Node(E e, Node< E > n) { element = e; next = n; }

public E getElement() { return element; }

public Node< E > getNext() { return next; }

public void setNext(Node< E > n) { next = n; }

public void setElement(E e) { element = e; }
}

public class SinglyLinkedList< E > {

private Node< E > head;

private Node< E > tail;
private int size = null;
public void addFirst(E e) { . . . }

Node< E > getNodeAt (int i) { . . . }
. . .

}

12 of 22

Generic Classes: Singly-Linked List (2)Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

Approach 1
Node<String> tom = new Node<>("Tom", null);
Node<String> mark = new Node<>("Mark", tom);
Node<String> alan = new Node<>("Alan", mark);

Approach 2
Node<String> alan = new Node<>("Alan", null);
Node<String> mark = new Node<>("Mark", null);
Node<String> tom = new Node<>("Tom", null);
alan.setNext(mark);
mark.setNext(tom);

13 of 22

Generic Classes: Singly-Linked List (3)
Assume we are in the context of class SinglyLinkedList.
void addFirst (E e) {

head = new Node< E >(e, head);
if (size == 0) { tail = head; }
size ++;

}

Node< E > getNodeAt (int i) {
if (i < 0 || i >= size) {
throw new IllegalArgumentException("Invalid Index"); }

else {
int index = 0;
Node< E > current = head;
while (index < i) {

index ++; current = current.getNext();
}
return current;

}
}

14 of 22

Generic Stack: Interface

public interface Stack< E > {
public int size();
public boolean isEmpty();
public E top();

public void push(E e);

public E pop();
}

15 of 22

Generic Stack: Architecture

ArrayedStack⟨E⟩ LinkedStack⟨E⟩

Stack⟨E⟩

implements

implements

16 of 22

Generic Stack: Array Implementation
public class ArrayedStack< E > implements Stack< E > {
private static final int MAX_CAPACITY = 1000;
private E [] data;
private int t; /* top index */
public ArrayedStack() {
data = (E []) new Object[MAX_CAPACITY];
t = -1; }

public int size() { return (t + 1); }
public boolean isEmpty() { return (t == -1); }
public E top() {
if (isEmpty()) { /* Error: Empty Stack. */ }
else { return data[t]; } }

public void push(E e) {
if (size() == MAX_CAPACITY) { /* Error: Stack Full. */ }
else { t ++; data[t] = e; } }

public E pop() {

E result;
if (isEmpty()) { /* Error: Empty Stack */ }
else { result = data[t]; data[t] = null; t --; }
return result; }

}17 of 22

Generic Stack: SLL Implementation

public class LinkedStack< E > implements Stack< E > {

private SinglyLinkedList< E > data;
public LinkedStack() {
data = new SinglyLinkedList< E >();

}
public int size() { return data.size(); }
public boolean isEmpty() { return size() == 0; }
public E top() {
if (isEmpty()) { /* Error: Empty Stack. */ }
else { return data.getFirst(); } }

public void push(E e) {
data.addFirst(e); }

public E pop() {

E result;
if (isEmpty()) { /* Error: Empty Stack */ }
else { result = top(); data.removeFirst(); }
return result; }

}

18 of 22

Generic Stack: Testing Both Implementations

@Test
public void testPolymorphicStacks() {
Stack<String> s = new ArrayedStack<>();
s. push ("Alan"); /* dynamic binding */

s. push ("Mark"); /* dynamic binding */

s. push ("Tom"); /* dynamic binding */

assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s. top ());

s = new LinkedStack<>();
s. push ("Alan"); /* dynamic binding */

s. push ("Mark"); /* dynamic binding */

s. push ("Tom"); /* dynamic binding */

assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s. top ());

}

19 of 22

Beyond this lecture . . .

● Study https://docs.oracle.com/javase/tutorial/
java/generics/index.html for further details on Java
generics.

20 of 22

https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html

Index (1)
Motivating Example: A Book of Objects
Motivating Example: Observations (1)
Motivating Example: Observations (2)
Motivating Example: Observations (2.1)
Motivating Example: Observations (2.2)
Motivating Example: Observations (3)
Parameters
Java Generics: Design of a Generic Book
Java Generics: Observations
Bad Example of using Generics
Generic Classes: Singly-Linked List (1)
Generic Classes: Singly-Linked List (2)
Generic Classes: Singly-Linked List (3)
Generic Stack: Interface

21 of 22

Index (2)
Generic Stack: Architecture

Generic Stack: Array Implementation

Generic Stack: SLL Implementation

Generic Stack: Testing Both Implementations

Beyond this lecture . . .

22 of 22

	Motivating Example: A Book of Objects
	Motivating Example: Observations (1)
	Motivating Example: Observations (2)
	Motivating Example: Observations (2.1)
	Motivating Example: Observations (2.2)
	Motivating Example: Observations (3)
	Parameters
	Java Generics: Design of a Generic Book
	Java Generics: Observations
	Bad Example of using Generics
	Generic Classes: Singly-Linked List (1)
	Generic Classes: Singly-Linked List (2)
	Generic Classes: Singly-Linked List (3)
	Generic Stack: Interface
	Generic Stack: Architecture
	Generic Stack: Array Implementation
	Generic Stack: SLL Implementation
	Generic Stack: Testing Both Implementations
	Beyond this lecture …

