Inheritance

EECS2030: Advanced
Object Oriented Programming

' Fall 2017

LASSONDE

ooooooooooooooooo

No Inheritance: ResidentStudent Class

class ResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

7 .

double premiumRate; /+ there’s a mutator method

fFor thi
a ror tnis

o
D

ResidentStudent (String name) {
this.name = name;
registeredCourses = new Coursel[l0];

}

void register(Course c) {
registeredCourses|[numberOfCourses] = c;
numberOfCourses ++;

}

double getTuition() {

UNIVERSITE double tuition = 0;
UNIVERSITY CHEN-WEI WANG for(int i = 0; 1 < numberOfCourses; 1 ++) {
tuition += registeredCourses[i].fee;
}
‘ return tuition x premiumRate ;
}
_
Why Inheritance: A Motivating Example LASSONDE No Inheritance: NonResidentStudent ClasSssono:
T

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

class NonResidentStudent {
String name;
Course|] registeredCourses;
int numberOfCourses;

/ fharala 3 mitatar me
/* there”s a mutator m

double discountRate;

NonResidentStudent (String name) {
this.name = name;
registeredCourses = new Course[l0];
}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;
}
double getTuition() {
double tuition = 0;
for(int 1 = 0; 1 < numberOfCourses; 1 ++) {
tuition += registeredCourses|[1i].fee;
}
return tuition x

}

discountRate ;

1

Yaoter

20f97

No Inheritance: Testing Student Classes

LASSONDE

class Course {
String title;
double fee;
Course(String title, double fee) {
this.title = title; this.fee = fee; } }
class StudentTester {
static void main(String[] args) {
Course cl = new Course("EECS2030", 500.00); /* t le fee
Course c2 = new Course("EECS3311", 500.00); /* title and fee =«

ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate (1.25);

jim.register(cl); jim.register(c2);

NonResidentStudent jeremy = new NonResidentStudent ("J. Gibbons")
jeremy.setDiscountRate (0.75);

jeremy.register(cl); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());
}
}
50f97

LASSONDE

ooooooooooooooooo

No Inheritance:
Issues with the Student Classes

Implementations for the two student classes seem to work. But
can you see any potential problems with it?

The code of the two student classes share a lot in common.
Duplicates of code make it hard to maintain your software!

¢ This means that when there is a change of policy on the
common part, we need modify more than one places.

6 of 97

LASSONDE

ooooooooooooooooo

No Inheritance: Maintainability of Code (1)

What if the way for registering a course changes?
e.g.,

void register(Course c) {
if (numberOfCourses >= MAX ALLOWANCE) {
throw new IllegalArgumentException("Maximum allowance reached|");

}
else {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;
}
}

We need to change the register method in both student
classes!

7 of 97

LASSONDE

ooooooooooooooooo

No Inheritance: Maintainability of Code (2)

What if the way for calculating the base tuition changes?
e.g.,

double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;
}

/* ... can be premiumRate or discountRa
return tuition % inflationRate * ...;

}

We need to change the get Tuition method in both student
classes.

8 0of 97

No Inheritance: LASSONDE

ooooooooooooooooo

A Collection of Various Kinds of Students

How do you define a class StudentManagement System that
contains a list of resident and non-resident students?

ResidentStudent[] rss;
NonR951dentStudent[] nrss;
int nors; r o S
int nonrs;

for(int i = 0; i1 < nors;
for(int i = 0; i < nonrs;

b}

class StudentManagementSystem {

void addRS (R651dentStudent rs){ rsslnors]l=rs; nors++; }
void addNRS (NonResidentStudent nrs){ nrss|[nonrs]=nrs; nonrs++;
void registerAll (Course c) {

i ++) { rssl[i].register(c); }
i ++) { nrssl[i].register(c); }

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately!

9 0of 97

Inheritance Architecture

LASSONDE

ooooooooooooooooo

Student

extends

ResidentStudent

10 of 97

extends

NonResidentStudent

ooooooooooooooooo

T

}

}

}
}

class Student ({
String name;
Course|] registeredCourses;
int numberOfCourses;

void register(Course c) {

double getTuition() A

Student (String name) {
this.name = name;
registeredCourses = new Coursel[l0];

registeredCourses|[numberOfCourses] = c;
numberOfCourses ++;

double tuition = 0;

for(int i = 0; 1 < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition; /* base

onlv

11

of 97

Inheritance:

The Resident Student Child/Sub Class

OO N wN =

T
|
|
double ge%Tu;tlon() {
|

class ResidentStudent extends Student {
double premiumRate; /+ there’s a 1 for thi

1
R951dentStudent (Strlng name) { super (name); }
double base = super.getTuition();

return base * premiumRate ;

12

e L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L4 is as if calling Student (name)

e Use of super in L8 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L

of 97

Inheritance: ;jjiigm Visualizing Parent/Child Objects (1) e
The NonResidentStudent Child/Sub Class

T 1
1 ‘class NonResidentStudent extends Student { ‘
2 ‘ double discountRate; /* there’s a mutator method for this */ ‘ R A
, . child class inherits all attributes from its parent class.
3 ‘ NonResidentStudent (String name) { super (name); } ‘
g /+ register method is inherited */ = A child instance has at least as many attributes as an
double getTuition() { : :
6 doubleg base = super.getTuition(); instance Of its parent class.
7 return base * discountRate ; Consider the following instantiations:
8
9 |} } Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
o L1 declares that NonResidentStudent inherits all attributes and NonResidentStudent nrs = new NonResidentStudent ("Nancy");
methods (except constructors) from Student.
e There is no need to repeat the register method » How will these initial objects look like?
e Use of super in L4 is as if calling Student (name)
e Use of super in L8 returns what getTuition () in Student returns.
o Use super to refer to attributes/methods defined in the super class:
‘m’, ’ super.register(c) ‘
13 of 97 15 of 97
—]
|
Inheritance Architecture Revisited LASSONDE Visualizing Parent/Child Objects (2) LASSONDE
(—’ Student
“Stella”
Student s numberOfCourses 0 1 8 9
registeredCourses null ‘ null ‘ ‘ null ‘ null ‘
eXtendS (—’ ResidentStudent
extends “Rachael”
s numberOfCourses 0 1 8 9
registeredCourses ‘ null ‘ null ‘ ‘ null ‘ null ‘
ResidentStudent NonResidentStudent premiumRate
NonResidentStudent
¢ The class that defines the common attributes and methods is (—» wNancy”
called the parent or super class. e numberOfCourses 0 1 8 9
registeredCourses null ‘ null ‘ ‘ null ‘ null ‘

e Each “extended” class is called a child or sub class.
14 of 97 16 of 97

discountRate

Using Inheritance for Code Reuse

Inheritance in Java allows you to:
o Define common attributes and methods in a separate class.
e.g., the student class
o Define an “extended” version of the class which:
o inherits definitions of all attributes and methods
e.g., name, registeredCourses, numberOfCourses
e.g., register
e.g., base amount calculation in get Tuition
This means code reuse and elimination of code duplicates!
o defines new attributes and methods if necessary
e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent
o redefines/overrides methods if necessary
e.g., compounded tuition for Resident Student
e.g., discounted tuition for NonResidentStudent

17 of 97

Inheritance Architecture Revisited e

String name
Coursef[] registeredCourses
int numberOfCourses

/* new attributes, new methods */

Student(String name)
void register(Course) Student
double getTuition()

/* new attributes, new methods */ Y
ResidenlSlugem(S(ring name) ResidentStudent i :']oublc et ing name)
double premiumRate o sotDia: Y

S count

void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* redefined/overridden methods */
double getTuition()

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");

l H namel rcsl nocl reg lgetT H pr lsetPR H drl setDR

s. Vv X
rs. v v X
nrs. v X v

Testing the Two Student Sub-Classes

class StudentTester {
static void main(String[] args) |
Course cl = new Course("EECS2030", 500.00); /=
Course c2 = new Course("EECS3311", 500.00); /» title
ResidentStudent jim = new ResidentStudent ("J. Davis");

jim.setPremiumRate (1.25);

jim.register(cl); jim.register(c2);

NonResidentStudent jeremy = new NonResidentStudent ("J. Gibbons")
jeremy.setDiscountRate(0.75);

jeremy.register(cl); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

¢ The software can be used in exactly the same way as before
(because we did not modify method signatures).

¢ But now the internal structure of code has been made
maintainable using inheritance .

Multi-Level Inheritance Architecture e

Student

=

DomesticStudent

ForeignStudent

<

20 of 97

Root of the Java Class Hierarchy LASSONDE Behaviour of the Inherited equals Method (2)sonc:
° |mp||C|t|y 1 |class RectangleCollectorTester ({
. . . 2 Rectangle rl = new Rectangle(3, 6);
o Every class is a child/sub class of the object class. 3 Rectangle r2 = new Rectangle(2, 9);
o The Object class isthe parent/super class of every class. 4 | System.out.println(rl == r2); /+ false */
5 System.out.println(rl.equals(r2)); /* false =/
o Therg are two useful accessor methods that every class 6 | RectangleCollector rel = mew RectangleCollector();
inherits from the Object class: 7 rcl.addRectangle(rl);
o boolean equals (Object other) 8 RectangleCollector rc2 = new RectangleCollector();
Indicates whether some other object is “equal to” this one. 9 | re2.addRectangle(r2); _ L
e . X .] 10 System.out.println(rcl == rc2); /+ false x/
o The default definition inherited from object: 11 System.out.println(rcl.equals(rc2)); /« false +/
boolean equals (Object other) { 12 }

return (this == other); }

. ‘ e Lines 5 and 11 return false because we have not explicitly
° SRtfmg tots.trl“g() ation of the obiect redefined/overridden the equals method inherited from the
elurns a string representation of fhe object. Object class (which compares addressed by default).

¢ Very often when you define new classes, you want to . ;) i
redefine / override the inherited definitions of equals and * We need to redefine / override the inherited equals method
in both Rectangle and RectangleCollector.

toString.
21 of 97 23 of 97

Problem: Define equals method for the Rectangle class

Two rectangles are equal if their areas are equal:

class Rectangle{

double width; double length;
double getArea() { return width = length; } } class Rect.angle{
double width;
dth leColl | double length;
an e RectangleCollector class getarea() { ...}
class RectangleCollector({ bo_olean. equals(iject obj) |
Rectanglel|] rectangles; lf(tthls :t: Ob.j) {
final int MAX = 100; return true;
int nor; /% number of rectangles */ %f(bj == null || this tcl () '= obj tClass()) {
RectangleCollector() { rectangles = new Rectangle[MAX]; } * rei.ujrn__fa;se' 1s.9¢ ass T obJ-ge as
addRectangle (Rectangle c) { rectangles[nor] = c; nor++; } } !
} Rectangle other = (Rectangle) obj;
return getArea() == other.getAreal();
Two rectangles are equal if their areas are equal. }
. . }
Two rectangle collectors are equal if rectangles they contain
are equal .

22 of 97 24 of 97

ooooooooooooooooo

Rectangle collectors are equal if rectangles collected are equal:

1 | class RectangleCollector{
2 /* rectangles, RectangleCollector (), nor, ac s g) Point pl = new Point(2, 4);
3 ‘ boolean equals (Object obj) { ‘ System.out.println(pl);
4 if (this == ob7j) |
5 return true;
6 } Point@677327b6
7 if(obj == null || this.getClass() != obj.getClass()) {
8 return false; o
9 } ¢ Implicitly, the tostring method is called inside the print1ln
10 RectangleCollector other = (RectangleCollector) obj; n1ethoc
11 boolean soFarEqual = this.nor == other.nor; '
’ for(int i = 0; soFarEqual && 1 < this.norj 1 +4) { * By default, the address stored in p1 gets printed.
soFarEqual =
14 this.rectangles[i]. equals (other.rectangles([i]); o We need to redefine / override the toString methOd,
15 } inherited from the Object class, in the Point class.
16 return soFarEqual;
17 }
18 |}
25 of 97 27 of 97

Behaviour of the Inherited equals Method (

ooooooooooooooooo

Now that we have redefined / overridden the equals method, class Point |
inherited from the Ob ject class, in both Rectangle and double x;
. double y;
[vi
RectangleCollector, the test results shall be different! public String tostring() {
return "(" + this.x + ", " + this.y + ")";
class RectangleCollectorTester { }
Rectangle rl = new Rectangle(3, 6); }
Rectangle r2 = new Rectangle(2, 9);
System.out.println(rl == r2); /+ false +/ After redefining/overriding the toString method:
System.out.println(rl.equals(r2)); /* true =/
RectangleCollector rcl = new RectangleCollector(); Point pl = new Point (2, 4);
rcl.addRectangle(rl); System.out.println(pl);
RectangleCollector rc2 = new RectangleCollector();
rc2.addRectangle(r2) ;
System.out.println(rcl == rc2); /+ false */
System.out.println(rcl.equals(rc2)); /+ true */ (2, 4)
}
26 of 97 28 of 97

Behaviour of Inherited tostring Method (3)asson: Visibility of Attr./Meth.: Across All Methods 4%

Same Package and Sub-Classes (protected)

CollectionOfStuffs

animal
Cat

Exercise: Override the t oSt ring method for the Rectangle
and RectangleCollector classes.

furniture

Chair protected i, m

Exercise: Override the equals and toSt ring methods for

the ResidentStudent and NonResidentStudent classes. BubbleChair

Desk

shape

RockingChair

Circle

Square

29 of 97

Use of the protected Modifier :

R oho Visibility of Attributes/Methods AS5ONDE
. . . scope || CLASS | PACKAGE | SUBGLASS SUBCLASS PROJECT
e private attributes are not inherited to subclasses. m (same pkg) | (different pkg)
e package-level attributes (i.e., with no modifier) and -
. public
project-level attributes (i.e., public) are inherited.
. . protected

o What if we want attributes to be: o modifior

o visible to sub-classes outside the current package, but still -

o invisible to other non-sub-classes outside the current package? private

[
Use protectedl For the rest of this lecture, for simplicity, we assume that:
All relevant descendant classes are in the same package .
= Attributes with no modifiers (package-level visibility) suffice.

30 of 97

e —

Inheritance Architecture Revisited

Student(String name)
void register(Course c)
double getTuition()

Student

=

String name

Coursef[] registeredCourses

int numberOfCourses

/% new attributes, new methods */ /* new attributes, new methods */
ResidenlSlugem(S(rmg name) ResidentStudent :‘loublc HiseountRate ing name)
double premiumRate o satDio: Y

S count

void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* redefined/overridden methods */
double getTuition()

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");

l H name l rcs l noc l reg l getT H pr l setPR H dr l setDR

s. v X
rs. v v X
nrs. v X v

S———

Multi-Level Inheritance Hierarchy:
Smart Phones

dial /* basic function */
surfWeb /* basic function */

SmartPhone

surfWeb /* redefined using firefox */

surfWeb /* redefined using safari */
skype /* new method */

facetime /* new method */

b

‘ IPhone6s

IPhone6sPlus | threeDTouch /* new method */

‘ ‘ ‘ HTCOneA9 HTCOneM9

sideSync /* new method */

34 of 97

Polymorphism: Intuition (1) s

L\

SSONDE

HooL

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
rs.setPremiumRate (1.25);

apsr N =

¢ Which one of L4 and L5 is valid? Which one is invalid?
¢ Hints:
o L1: What kind of address can s store?
.. The context object s is expected to be used as:
e s.register (eecs2030) and s.getTuition ()
o L2: What kind of address can rs store? [ResidentStudent]
.. The context object rs is expected to be used as:

e rs.register (eecs2030) and rs.getTuition ()
e rs.setPremiumRate (1.50) [increase premium rate]

e

[student]

Polymorphism: Intuition (2) e

Student s = new Student ("Stella");

ResidentStudent rs = new ResidentStudent ("Rachael");
rs.setPremiumRate (1.25);
s =rs; /*x Is d
rs = s§; /* Is this vq

e rs=s(L5) should b

Student s ——————— Student
name o 1 2 5 29

apr O =

*/

e invalid:

e T 1-T]
numberOfCourses l l l

ResidentStudent rs

nu1l null null 2 nu1l

e Since rsis declared of type ResidentStudent, a subsequent
call rs.setPremiumRate (1.50) can be expected.

rs is now pointing to a student object.

Then, what would happen to rs. setPremiumRate (1.50)7?

CRASH -+ rs.premiumRate is undefined!!

S——

Polymorphism: Intuition (3)

1 |Student s = new Student ("Stella");
2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate(1.25);
4 |s = rs;
5 |rs = s; /* It s d? «/
¢ s =rs (L4) should be valid:
Student s <_— X% _ e--en
registe - T 11
Residentst% ""l” "“l“
LT
e Since s is declared of type Student, a subsequent call
s.setPremiumRate (1.50) is never expected.
* s is now pointing to @ ResidentStudent object.
e Then, what would happento s.getTuition ()?
OK "+ s.premiumRate is just never used!
37 of 97
Dynamic Binding: Intuition (1) LASSONDE

Course eecs2030 = new Course("EECS2030", 100.0);
Student s;

ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");
rs.setPremiumRate (1.25); rs.register(eecs2030);
nrs.setDiscountRate(0.75); nrs.register(eecs2030);
s = rs; System.out.println(s .getTuition());/+ o

o N wWN =

s = nrs; System.out.println(s .getTuition());/+*

After s = rs (L7), s points to a ResidentStudent object.
= Calling s .getTuition () applies the premiumRate.

ResidentStudent rs ResidentStudent

Student s

NonResidentStudent nrs

38 of 97

Dynamic Binding: Intuition (2)

Course eecs2030 = new Course("EECS2030", 100.0);
Student s;

ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");
rs.setPremiumRate (1.25); rs.register(eecs2030);
nrs.setDiscountRate(0.75); nrs.register(eecs2030);

s = rs; System.out.println(s .getTuition());

o NG wWN =

s = nrs; System.out.println(s .getTuition());

After s = nrs (L8), s points to a NonResidentStudent object.
= Calling s .getTuition () applies the discountRate.

ResidentStudent rs

e

Student s

NonResidentStudent nrs

39 of 97

Inheritance Forms a Type Hierarchy

e A (data) type denotes a set of related runtime values.
o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:

o (Implicit) Root of the hierarchy is Ob-ject.
o Each extends declaration corresponds to an upward arrow.
o The extends relationship is transitive: when A extends B and B
extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class 2 are: A itself and all classes that
A directly, or indirectly, extends.
o A inherits all code (attributes and methods) from its ancestor classes.
.. A’s instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.
o The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends a.

e Code defined in A is inherited to all its descendant classes.
40 of 97

Inheritance Accumulates Code for Reuse Lissonoe
e The lower a class is in the type hierarchy, the more code it
accumulates from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
e Declare new attributes
¢ Define new methods
o Redefine /| Override inherited methods
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).
o When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.
o e.g., When expecting a Student object, we may substitute it with
either a ResidentStudent Or a NonResidentStudent object.
o Justification: A descendant class contains at least as many

methods as defined in its ancestor classes (but not vice versal).
41 of 97

LASSONDE

Reference Variable: Static Type @ = Lssonee
* A reference variable’s static type is what we declare it to be.

o | Student jim|declares jim's ST as Student.

o ’ SmartPhone myPhone ‘ declares myPhone’s ST as SmartPhone.

o The static type of a reference variable never changes .

e For a reference variable v, its static type defines the
expected usages of v as a context object .

e Amethod call v.m(...) is compilable if mis defined in .

o e.g., After declaring | student jim|, we

e may call register and getTuition on jim

e may nof call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim

o e.g., After declaring ’ SmartPhone myPhone ‘, we

e may call dial and surfWeb on myPhone

e may nof call facetime (specific to an IOS phone) or skype (specific
to an Android phone) on myPhone

42 of 97

LASSONDE

ooooooooooooooooo

Substitutions via Assighments

e By declaring c1 v1, reference variable v1 will store the
address of an object “of class c1” at runtime.

e By declaring c2 v2, reference variable v2 will store the
address of an object “of class c2” at runtime.

* Assignment copies address stored in v2 into v1.
o v1 will instead point to wherever v2 is pointing to. [object alias |

x|

c2 v2

e In such assignment vl = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type C2.

e Substitutions are subject to rules!
43 of 97

\y,

Rules of Substitution

1. When expecting an object of static type 2, it is safe to
substitute it with an object whose static type is any of the
descendant class of a (including 2).

o - Each descendant class of A is guaranteed to contain code for
all (non-private) attributes and methods that are defined in A.

o .. All attributes and methods defined in A are guaranteed to be
available in the new substitute.

o e.g., When expecting an 10s phone, you can substitute it with
either an IPhone6s Or IPhone6sPlus.

2. When expecting an object of static type 2, it is unsafe to
substitute it with an object whose static type is any of the
ancestor classes of A’s parent (excluding a).

o - Class A may have defined new methods that do not exist in any
of its parent’s ancestor classes .
o e.g., When expecting 10s phone, unsafe to substitute it with a

SmartPhone ' facetime not supported in Android phone.
4401 97

=

SSOND

i
>

LASSONDE

ooooooooooooooooo

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it

is currently pointing to at runtime.

o The dynamic type of a reference variable may change whenever
we re-assign that variable to a different object.

o There are two ways to re-assigning a reference variable.

45 of 97

LASSONDE

ooooooooooooooooo

Visualizing Static Type vs. Dynamic Type

—

Student s

ResidentStudent

name “Rachael”

numberOfCourses

registeredCourses

premiumRate

e Each segmented box denotes a runtime object.

¢ Arrow denotes a variable (e.g., s) storing the object’s address.
Usually, when the context is clear, we leave the variable’s static
type implicit (Student).

¢ Title of box indicates type of runtime object, which denotes the

dynamic type of the variable (ResidentStudent).
46 of 97

LASSONDE

ooooooooooooooooo

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

o

Substitution Principle ‘: the new object’s class must be a

descendant class of the reference variable’s static type.
° e.9.,|Student jim = new ResidentStudent(...)]
changes the dynamic type of jimto ResidentStudent.

o e.g., ’ Student jim = new NonResidentStudent(...) ‘
changes the dynamic type of jim to NonResidentStudent.

o eg., ’ ResidentStudent jim = new Student(...) ‘ is illegal

because studnet is not a descendant class of the static type of
jim (i.e., ResidentStudent).

47 of 97

\u,

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is

referenced by another variable other (i.e.,[v = other)):

Substitution Principle ‘: the static type of other must be a

=

SSOND

i
>

[e]

descendant class of v's static type.
o e.g., Say we declare

Student jim = new Student(...);
ResidentStudent rs = new ResidentStudnet(...);
NonResidentStudnet nrs = new NonResidentStudent(...);

e |[rs = jim X

e | jim = rs v
changes the dynamic type of jim to the dynamic type of rs

+ [im = nrs] ‘

changes the dynamic type of jim to the dynamic type of nrs
48 of 97

e
Polymorphism and Dynamic Binding (1)

EaSaRNDE

e Polymorphism : An object variable may have “multiple possible

shapes” (i.e., allowable dynamic types).
o Consequently, there are multiple possible versions of each method
that may be called.
e e.g., A Student variable may have the dynamic type of Student,
ResidentStudent, or NonResidentStudent,
e This means that there are three possible versions of the
getTuition () that may be called.

e Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.

Student jim = new ResidentStudent(...);

jim.getTuition(); /+ version in ResidentStuder */

jim = new anReszdentStudent(.“);

jim.getTuition(); /* version in N tStudent
49 of 97

EaSaRNDE

Polymorphism and Dynamic Binding (2.1)

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}

class StudentTesterl {
public static void main(String[] args) {
Student jim = new Student ("J. Davis");
Re51dentStudent rs = new ResidentStudent ("J. Davis");
jim = rs; z

rs = jim; /* egal =/

anRe51dentStudnet nrs = new NonResidentStudent ("J. Davis");
jim = nrs; /

nrs = jim;

50 of 97

e
Polymorphism and Dynamic Binding (2.2)

EaSaRNDE

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course("EECS2030", 500.0);
Student jim = new Student ("J. Davis");
ResidentStudent rs = new ResidentStudent ("J. Davis");
rs.setPremiumRate (1.5);
‘ jim = rs ; ‘
‘ System.out.println(jim.getTuition()); /+ 750.0 */
NonResidentStudnet nrs = new NonResidentStudent ("J. Davis");
nrs.setDiscountRate (0.5);
‘ jim = nrs ; ‘
System.out.println(jim.getTuition()); /+» 250.0 */
}
}

51 0f 97

EaSaRNDE

Polymorphism and Dynamic Binding (3.1)

dial /* basic function */
surfWeb /* basic function */

SmartPhone

SurfWeb /* redefined using safari */

surfWeb /* redefined using firefox */
skype /* new method */

facetime /* new method */

IPhoneés IPhone6sPlus

threeDTouch /* new method */

‘ ‘ ‘ HTCOneA9 HTCOneM9

sideSync /* new method */

52 of 97

LASSONDE

ooooooooooooooooo

Polymorphism and Dynamic Binding (3.2)

class SmartPhoneTestl {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneé6sPlus () ;
Samsung ss = new GalaxyS6Edge();
myPhone ip; /* 1 /
myPhone ss; /x 1

IOS presentForHeeyeon;
presentForHeeyeon = ip; /x*
presentForHeeyeon = sSs; VA

SE———

LASSONDE

Polymorphism and Dynamic Binding (3.3)

class SmartPhoneTest2 |
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneé6sPlus () ;
myPhone = ip;
myPhone. surfWeb () ; /* version of surfWeb in IPhone6sPlus =/

Samsung ss = new GalaxyS6Edge() ;
myPhone = ss;
myPhone. surfWeb (); /* version of surfWeb in GalaxyS6Edge #/

54 of 97

LASSONDE

ooooooooooooooooo

Reference Type Casting: Motivation (1)

1 Student jim = new ResidentStudent ("J. Davis");
ResidentStudent rs = jim;
rs.setPremiumRate (1.5);

w N

e L1is /egal: ResidentStudent is a descendant class of the
static type of jim (i.e., Student).

e L2is illegal: jim’s ST (i.e., student) is not a descendant
class of rs’s ST (i.e., ResidentStudent).

e Java compiler is unable to infer that §im’s dynamic type in L2
is ResidentStudent!

¢ Force the Java compiler to believe so via a cast in L2:

ResidentStudent rs = (ResidentStudent) jim;
= Now it compiles - §im’s ST (ResidentStudent)
is a descendant of rs’ ST (ResidentStudent).

e dynamic binding : After the cast, L3 will execute the correct
version of setPremiumRate.

e

LASSONDE

ooooooooooooooooo

Reference Type Casting: Motivation (2)

SmartPhone aPhone = new IPhone6sPlus();
IOS forHeeyeon = aPhone;
3 | forHeeyeon. facetime () ;

N —

e L1is /egal: IPhone6sPlus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

e L2 is illegal: aphone’s ST (i.e., SmartPhone) is not a
descendant class of forHeeyeon’s ST (i.e., 10S3).

e Java compiler is unable to infer that aPhone’s dynamic type in

L2 is IPhone6sPlus!
¢ Force Java compiler to believe so via a cast in L2:

IOS forHeeyeon = (IPhone6sPlus) aPhone;
= Now it compiles -- aPhone’s ST (IPhone6sPlus)
is a descendant of forHeeyeon’ ST (I108S).

e dynamic binding : After the cast, L3 will execute the correct
version of facetime.

S

LASSONDE

ooooooooooooooooo

Type Cast: Named or Anonymous

Named Cast: Use intermediate variable to store the cast result.

SmartPhone aPhone = new IPhoneé6sPlus();
IOS forHeeyeon = (IPhone6sPlus) aPhone;
forHeeyeon. facetime () ;

Anonymous Cast: Use the cast result directly.

SmartPhone aPhone = new IPhoneé6sPlus();
((IPhone6sPlus) aPhone) .facetime();

Common Mistake:

1 SmartPhone aPhone = new IPhone6sPlus();
2 | (IPhone6sPlus) aPhone.facetime();

L2 z] (IPhone6sPlus) (aPhone.facetime ()) \: Call, then cast.

= This does not compile - facetime () is not declared in the
static type of aPhone (SmartPhone).

57 of 97

LASSONDE

ooooooooooooooooo

Notes on Type Cast (1)

o Given variable v of static type ST,, itis compilable to cast v to
C ,aslongas C is an ancestor or descendant of ST,.

o Without cast, we can only call methods defined in ST, on v.

o Casting vto C temporarily changes the ST of v from ST, to C.
= All methods that are defined in C can be called.

new GalaxyS6EdgePlus();
d in Android on 1
sideSync x #*/
(SmartPhone) myPhone;
ancestor class of Android
SmartPhone

SmartPhone sp
/x C I . SmartPhone is
> narrowed

* Sp. D. b v sp.skype, sp.sideSync x #*/
GalaxyS6EdgePlus ga = (GalaxyS6EdgePlus) myPhone;
'+ Compiles OK * 2 descendant class of Android

{ " GalaxyS6EdgePlus is

in GalaxyS6EdgePlus
1C v %/

58 of 97

LASSONDE

ooooooooooooooooo

Reference Type Casting: Danger (1)

1 ’Student jim = new NonResidentStudent ("J. Davis"); ‘
2 ‘ResidentStudent rs = (ResidentStudent) jim;
3 ‘rs.setPremiumRate(l.S);

e L1is legal: NonResidentStudent is a descendant of the
static type of jim (Student).

e L2 is legal (where the cast type is ResidentStudent):
o cast type is descendant of jim's ST (Student).
o cast type is descendant of rs’s ST (ResidentStudent).

e L3is legal - setPremiumRate isin rs’ ST
ResidentStudent.

e Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.

e Executing L2 will resultina ClassCastException .
-+ Attribute premiumRate (expected from a ResidentStudent)

is undefined on the NonResidentStudent object being cast.
59 of 97

LASSONDE

ooooooooooooooooo

Reference Type Casting: Danger (2)

1 ’SmartPhone aPhone = new GalaxyS6EdgePlus () ; ‘
2 ‘IPhone6sPlus forHeeyeon = (IPhoneé6sPlus) aPhone;
3 ‘forHeeyeon.threeDTouch();
e L1is legal: GalaxyS6EdgePlus is a descendant of the static
type of aPhone (SmartPhone).
e L2 is legal (where the cast type is Iphone6sPlus):
o cast type is descendant of aPhone’s ST (SmartPhone).
o cast type is descendant of forHeeyeon’s ST (IPhone6sPlus).
e L3is legal - threeDTouch isin forHeeyeon’ ST
IPhone6sPlus.
e Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually NonResident Student.
e Executing L2 will resultina ClassCastException .
-~ Methods facetime, threeDTouch (expected from an
IPhone6sPlus) is undefined on the GalaxyS6EdgePlus object

0 D8iNg cast.

LASSONDE

ooooooooooooooooo

Notes on Type Cast (2.1)

Given a variable v of static type ST, and dynamic type DT,:

o m is compilable if c is ST,’s ancestor or descendant.
e Casting v to C’s ancestor/descendant narrows/widens expectations.
e However, being compilable does not guarantee runtime-error-free!

es OK - GalaxyS6EdgePlus is a descendant cla
meth =d in GalaxyS6EdgePlus

pe, |ga.sideSync Va4

e Type castin L3 is compilable .

ods decl

1 SmartPhone myPhone = new Samsung() ;

2 | /* ST of my one is SmartPhone; DT of myPhone is Samsung #*/

3 | GalaxyS6EdgePlus ga = (GalaxyS6EdgePlus) myPhone;

4 /% (l of SmartPhon
5

6

e Executing L3 will cause classCastException .

L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS6EdgePlus (e.g., sideSync).

61 of 97

LASSONDE

ooooooooooooooooo

Notes on Type Cast (2.2)

Given a variable v of static type ST, and dynamic type DT,:

e | (C) v|is compilable if cis ST,’s ancestor or descendant.

e Casting v to C’s ancestor/descendant narrows/widens expectations.
e However, being compilable does not guarantee runtime-error-free!

. IPhoneé6sPlus is a descendant class
od n IPhone6sPlus o

ime, |ip.threeDTouch| v */

e Type castin L3 is compilable .

ip

1 SmartPhone myPhone = new Samsung() ;

2 '+ ST of ne is SmartPhone; DI of r 10one is Samsung */

3 = (IPhone6sPlus) myPhone;

4 f SmartPhone
5

6

e Executing L3 will cause classCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST TPhone6sPlus (e.g., threeDTouch).

62 of 97

LASSONDE

ooooooooooooooooo

Notes on Type Cast (2.3)

Acast| (C) v|is compilable and runtime-error-free if C is
located along the ancestor path of DT,.

e.g., Given ’ SmartPhone myPhone = new Samsung();

o Cast myPhone to a class along the path between SmartPhone
and Samsung.

o Casting myPhone to a class with more expectations than
Samsung (e.g., GalaxyS6EdgePlus) will cause
ClassCastException.

o Casting myPhone to a class irrelevant to Samsung (e.g.,
IPhone6sPlus) will cause ClassCastException.

63 of 97

LASSONDE

ooooooooooooooooo

Compilable Cast vs. Exception-Free Cast

class A { }

class B extends A { }
class C extends B { }
class D extends A { }

B b new C();
D d (D) b;

o After L1:
o STofbisB
o DT ofbiscC
e Does L2 compile? [NO]
-+ cast type D is neither an ancestor nor a descendant of b’s ST B
e Would|D d = (D) ((a) b) |fixL2? [YES]
-+ cast type D is an ancestor of b’s cast, temporary ST A
e ClassCastException when executing this fixed L2? [YES]

-+ cast type D is not an ancestor of b’s DT C
64 of 97

Reference Type Casting: Runtime Check (1) B Notes on the instanceof Operator (1) LASSONDE
1 ’ Student jim = new NonResidentStudent ("J. Davis"); ‘
2 |if (jim instanceof ResidentStudent) { | Given a reference variable v and a class c, you write
3 ResidentStudent rs = (ResidentStudent) jim; ’ . £ ‘
4 rs.setPremiumRate (1.5); v_instanceof C
5|}

to check if the dynamic type of v, at the moment of being
e L1is /legal: NonResidentStudent is a descendant class of checked, is a descendant class of C.

the static type of jim (I'e" Student)' SmartPhone myPhone = new GalaxyS6Edge () ;
o L2 checks if jim’s dynamic type is ResidentStudent. printli(myPhone instanceof Android);
/* true - GalaxyS6Edge is a descendant of Android */}
FALSE - jim’s dynamic type is NonResidentStudent! println(myPhone instanceof sams‘mg) ,
. . . /* true - GalaxyS6Edge is a descendant of Samsung +*/}
e L3 is legal: jim’s cast type (i.e., ResidentStudent)is a println(myPhone instanceof GalaxySGEdge)
) i H /* true - GalaxyS6Edge is a descendant of GalaxyS6Edge +/}
desqendant class of rs’s static type (i.e., orintin(mybhone instamceot IOS)
ReSLdentStudent). /* false - GalaxyS6Edge is not a descendant of I0S x/}
. . println(myPhone instanceof IPhone6sPlus) ;
¢ L3 will not be exeCUted at runtlme’ hence no . /% false - GalaxyS6Edge is not a descendant of IPhone6sPlus +/}
ClassCastException, thanks to the check in L2!
65 of 97 67 of 97

Reference Type Casting: Runtime Check (2) Jssono Notes on the instanceof Operator (2) s

ooooooooooooooooo

Given a reference variable v and a class c,
’_S’"a‘t"““e aphone = new GalaxyS6EdgePlus(); | |v instanceof C|checks if the dynamic type of v, at the
‘lf (aPhone instanceof IPhone6sPlus) { ‘ n .
105 forfeeyeon - (NN -rhone; moment of being checked, is a descendant class of C.

ooooooooooooooooo

forHeeyeon. facetime () ;

g~ wnNn =

}

SmartPhone myPhone = new Samsung() ;
one 1s SmartPhone; DT of my

/% ST of

e is Samsung */

if (myPhone instanceof Samsung) {
Samsung samsung = (Samsung) myPhone;
}
if (myPhone instanceof GalaxyS6EdgePlus) {
GalaxyS6EdgePlus galaxy = (GalaxyS6EdgePlus) myPhone;
}
if (myphone instanceof HTC) ({

e L1is /legal: GalaxyS6EdgePlus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

e L2 checks if aPhone’s dynamic type is IPhone6sPlus.

FALSE - aPhone’s dynamic type is GalaxyS6EdgePlus!

0O WooNOOPA~WN =

1 HTC htc = (HTC) myPhone;
e L3 is /legal: aPhone’s cast type (i.e., IPhone6sPlus)is a 1)
descendant class of forHeeyeon’s statfic type (i.e., 10S). e L3 evaluates to true. [safe to cast]
¢ L3 will not be executed at runtime, hence no e L6 and L9 evaluate to false. [unsafe to cast]
ClassCastException, thanks to the check in L2! This prevents L7 and L10, causing ClassCastException if
ssotor - %ecuted, from being executed.

Static Type and Polymorphism (1.1) e Static Type and Polymorphism (1.3)

SRR EaSaRNDE

0oL oF B

class SmartPhone
void dial() { ...}
} }

class I0S extends SmartPhone { class I0S extends SmartPhone {
void facetime() { ... } void facetime() { ...}

} }

class IPhone6sPlus extends IOS ({ class IPhone6sPlus extends IOS ({
void threeDTouch() { ... }

class SmartPhone {
void dial() { ...}

void threeDTouch() { ... }
} }
T 1 T 1
1 SmartPhone sp = new IPhoneé6sPlus(); v 1 IPhone6sPlus 1ipé6sp = new IPhoneésPlus(); v
2 |sp.dial(); v 2 |ipé6sp.dial(); Ve
3 | sp.facetime(); X 3 | ip6sp. facetime(); NG
4 | sp.threeDTouch(); X 4 | ip6sp.threeDTouch() ; v
Static type of spis SmartPhone Static type of ip6sp is IPhone6sPlus
= can only call methods defined in SmartPhone on sp = can call all methods defined in ITPhone6sPlus on jp6sp
69 of 97

71 0f 97

Static Type and Polymorphism (1.2) e Static Type and Polymorphism (1.4)

poe0 EaSaRNDE

1001 oF E

class SmartPhone

void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhoneé6sPlus extends IOS {

class SmartPhone {

void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhoneé6sPlus extends IOS {

void threeDTouch() { ... }
void threeDTouch() { ...} }
}

T 1

1 ‘ SmartPhone sp = new IPhoneé6sPlus(); v ‘

1 I0S ip = new IPhoneé6sPlus(); v 2 ‘ (' (IPhoneb6sPlus) sp).dial(); v ‘
2 |ip.dial(); v 3 ‘ ((IPhone6sPlus) sp).facetime(); ‘
3 |ip.facetime(); v 4 ‘ ((IPhone6sPlus) sp).threeDTouch(); v ‘
4 | ip.threeDTouch(); X L i

L4 is equivalent to the following two lines:

Static type of Ip is I0S IPhone6sPlus ip6sp = (IPhone6sPlus) sp;
— can only call methods defined in 10s on jp *PGsp. thresbTouch () 7
70 of 97 72 of 97

LASSONDE

ooooooooooooooooo

Static Type and Polymorphism (2)

Given a reference variable declaration

e |

[e]

Static type of reference variable v is class C

A method call is valid if mis a method defined in class C.
Despite the dynamic type of v, you are only allowed to call
methods that are defined in the static type C on v.

o If you are certain that v’s dynamic type can be expected more than
its static type, then you may use an insanceof check and a cast.

e}

[e)

Course eecs2030 = new Course("EECS2030", 500.0);
Student s = new ResidentStudent ("Jim");
s.register(eecs2030);

if (s instanceof ResidentStudent) ({

‘ ((ResidentStudent) s).setPremiumRate(1.75); ‘

System.out.println(((ResidentStudent) s).getTuition());
}

73 of 97

ooooooooooooooooo

1 ’class StudentManagementSystem { ‘
2 | Student [] ss; s[i ; ic type £ «/ int c; \
3 void addRS (Re51dentStudent rs) { sslc] = rs; c ++; }

4 void addNRS (NonResidentStudent nrs) { ss[c] = nrs; c++; }

5 void addStudent (Student s) { ss[c] = s; ct++; } }

e L3: ss[c] = rsisvalid. - RHS’s ST ResidentStudent is a
descendant class of LHS’s ST student.
e Say we have a StudentManagementSystem object sms:
o Method call | sms.addRS (o) |attempts the following assignment,
which replaces parameter rs by a copy of argument o:

rs = o;

o Whether this argument passing is valid depends on o’s static type.
¢ In the signature of a method m, if the type of a parameter is
class ¢, then we may call method m by passing objects whose

static types are C’'s descendants.
74 of 97

In the StudentManagementSystemTester:

Student sl = new Student();

Student s2 = new ResidentStudent();

Student s3 = new NonResidentStudent () ;
ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent();

StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s1); X

sms.addRS (s2) ; X

sms.addRS (s3) ; X

sms.addRS(rs);

sms.addRS (nrs) ; X

sms.addStudent (s1);

sms.addStudent (s2) ;

Ve
v
v
sms.addStudent (rs);

(

(
sms.addStudent (s3) ;

(
sms.addStudent (nrs);

75 of 97

In the StudentManagementSystemTester:

Student s = new Student ("Stella");

‘% s’ ST: Student; s’ DT: Student x/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); X

SO =

o L4 compiles with a cast: ’ sms.addRS ((ResidentStudent) s) ‘
o Valid cast-- (ResidentStudent) is a descendant of s’ ST.
e Valid call -+ s’ temporary ST (ResidentStudent) is now a
descendant class of addRrs’s parameter rs’ ST (ResidentStudent).
o But, there willbe a ClassCastException atruntime!
-+ s’ DT (student) is not a descendant of ResidentStudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.
76 of 97

ooooooooooooooooo

SO =

In the StudentManagementSystemTester:

Student s = new NonResidentStudent ("Nancy");

'+ s’ ST: Student; s’ DT: NonResidentStudent
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); X

o L4 compiles with a cast: ’ sms.addRS ((ResidentStudent) s) ‘

o Valid cast-- (ResidentStudent) is a descendant of s’ ST.
e Valid call .- s’ temporary ST (ResidentStudent) is now a

descendant class of addrs’s parameter rs’ ST (ResidentStudent).

o But, there willbe a ClassCastException atruntime!
-+ s’ DT (NonResidentStudent) not descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.
77 of 97

ooooooooooooooooo

A ON =

In the studentManagementSystemTester:

Student s = new ResidentStudent ("Rachael");

/* s’ ST: Student; s’ DT: ResidentStudent +/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS(s); x

o L4 compiles with a cast: | sms.addRs ((ResidentStudent) s) |

o Valid cast:- (ResidentStudent) is a descendant of s’ ST.
e Valid call -+ s’ temporary ST (ResidentStudent) is now a

descendant class of addRs’s parameter rs’ ST (ResidentStudent).

o And, there willbe no ClassCastException atruntime!
-+ s’ DT (ResidentStudent) is descendant of residentStudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to frue, meaning it is

safe to cast.
78 of 97

In the StudentManagementSystemTester:

NonRe51dentStudent nrs = new NonRe51dentStudent(

- Stiudent s DT Ty
ResidentStudent; DT: Nor

StudentManagementSystem sSms = new StudentManagementSystem()
sms.addRS (nrs); x

SO =

Will L4 with a cast compile?

sms.addRS ((ResidentStudent) nrs)

NO - (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).

79 of 97

Polymorphism: Return Values (1)

class StudentManagementSystem {
Student[] ss; int c;
void addStudent (Student s) { ss[c] = s; ct++; }
Student getStudent (int i) {
Student s = null;
if(i <0 || 1 >= ¢) {
throw new IllegalArgumentException("Invalid index.");
}
else {
s = ss[il;
}
return s;

}od

©CoOoO~NOOLA WN =

—_
N = o

-
w

L4: student is static type of get Student’s return value.
L10: ss [
Questlon: What can be the dynamic type of s after L10?

Answer: All descendant classes of Student.
80 of 97

1’s ST (student) is descendant of s’ ST (student).

52w

Polymorphism: Return Values (2)

SSONDE
1 Course eecs2030 = new Course ("EECS2030", 500);
2 | ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate(1.5); rs.register(eecs2030);
4 | NonResidentStudent nrs = new NonResidentStudent ("Nancy");
5 | nrs.setDiscountRate(0.5); nrs.register(eecs2030);
6 StudentManagementSystem sms = new StudentManagementSystem();
7 | sms.addStudent (rs); sms.addStudent (nrs);
8 | Student s = sms.getStudent(0) P/ dy of s5? */
_
static return type: Student
9 | print (s instanceof Student && s instanceof ResidentStudent);/+truex+)
10 | print (s instanceof NonResidentStudent); /* false */
11 ‘prlnt(s.getTuition()); /+ ~sion in ResidentStudent c 750 %,
12 | ResidentStudent rs2 = sms. getStudent(O); X
13 | s = sms.getStudent (1) e ic type of s? %/
_
static return type: Student
14 | print (s instanceof Student && s instanceof NonResidentStudent);/+trijie+/
15 | print (s instanceof Re51dentstudent) /% false x/
16 ‘prlnt(s.getTuition());/+ ion in NonResidentStudent ca /|
17 ’anRe51dentStudent nrs2 = sms.getStudent (1); x ‘

81 0f 97

Polymorphism: Return Values (3) e

At runtime, attribute is a polymorphic array:
e Siatic type of each item is as declared: Student

e Dynamic type of each item is a descendant of Student:
ResidentStudent, NonResidentStudent

StudentManagementSystem 0 1 2 3 4 5 6 7 99
(ss ness ‘ \ ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null | null ‘

sms c
sms . getStudent (0)

(_’ ResidentStudent (—“ NonResidentStudent
“Rachael”

rs nrs
1 numberOfCourses 0o 1 8 9

registeredCourses registeredCourses

premiumRate

sms.getStudent (1)

numberOfCourses 0

“EECS2030"

eecs2030

82 of 97

Why Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagement System that
contains a list of resident and non-resident students?

class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent (Student s) {
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; 1 < numberOfStudents; 1 ++) {
students|[i].register(c
}
}

83 of 97

Polymorphism and Dynamic Binding: fﬁgm
A Collection of Various Kinds of Students

class StudentManagementSystemTester |
static void main(String[] args) {
ResidentStudent jim = new ResidentStudent ("J. Davis");
NonResidentStudent jeremy =
new NonResidentStudent ("J. Davis");
StudentManagementSystem sms =
new StudentManagementSystem() ;

| sms.addStudent(jim); /+

‘ sms.addStudent (jeremy); p
Course eecs2030 = new Course("EECS2030", 500.0);
sms.registerAll (eecs2030) ;

for(int i = 0; i1 < sms.numberOfStudents; 1 ++) |

/ * o

‘ System.out.println(sms.students[1i]. getTuition());

84 of 97

Static Type vs. Dynamic Type:
When to consider which?

e Whether or not Java code compiles depends only on the
static types of relevant variables.

-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

e The behaviour of Java code being executed at runtime (e.g.,

which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

85 of 97

LASSONDE

ooooooooooooooooo

Summary: Type Checking Rules

I CODE | ConDITION TO BE TYPE CORRECT |

X =y Is y’'s ST a descendant of x's ST?
Is method m defined in x’s ST?

x.m(y) Is y’'s ST a descendant of m’s parameter’s ST?
Is method m defined in x’s ST?
z = x.m(y) Is y’'s ST a descendant of m’s parameter’s ST?

Is ST of m’s return value a descendant of z’s ST?
(C) vy Is ¢ an ancestor or a descendant of y's ST?
Is ¢ an ancestor or a descendant of y's ST?

= (C
* ©y Is ¢ a descendant of x's ST?
Is ¢ an ancestor or a descendant of y's ST?
x.m((C) y) Is method m defined in x’s ST?

Is ¢ a descendant of m’s parameter's ST?

Evenif| () vy |compiles OK, there will be a runtime

ClassCastException if C is not an ancestor of yv's DT!
86 of 97

LASSONDE

ooooooooooooooooo

Overriding and Dynamic Binding (1)

Object is the common parent/super class of every class.

o Every class inherits the default version of equals
o Say a reference variable v has dynamic type D:

e Case 1 D overrides equals
= v.equals (...) invokes the overridden version in D
e Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
= v.equals (...) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
= v.equals (...) invokes default version inherited from Object.

o Same principle applies to the t oSt ring method, and all
overridden methods in general.

87 of 97

LASSONDE

ooooooooooooooooo

Overriding and Dynamic Binding (2.1)

. boolean equals (Object obj) {
Object return this == obj;
} class A {
I W— /*equals not overriddenx/
i }
H class B extends A {
A ;o
class C extends B {
A /*equals not overriddenx*/
}
B 1 |Object cI = new C();
2 |Object c2 = new C();
— 3 |println(cl.equals(c2));
— L3 calls which version of
C equals? [Object]

88 of 97

Overriding and Dynamic Binding (2.2) LASSONDE
boolean equals (Object obj) {
Object return this == obj; Cl/aSSTA ?{(\ i
} } / ol /

H class B extends A {
/+equals not overriddenx*/

}

A class C extends B {

boolean equals (Object Obj) {

A /+ overridden version x/

}

S S)

B
1 |Object cl = new C();
— 2 |Object c2 = new C();
3 |printin(cl.equals(c2));
boolean equals (Object obj) { L3 calls which version of
C /* overridden version */

) equals? [C]
89 of 97

Overriding and Dynamic Binding (2.3) LASSONDE
boolean equals (Object obj) {
Object return this == obj; CIésf A 1‘{\ e
) /e 10t overr =N *,

| class B extends A {
boolean eq'uals(Object Obj) {

/* overridder
A }
}
A class C extends B {

~71e not
/*‘—“U,La;,) not overridden *

version

/

- b)

boolean equals (Object obj) {

B /* overridden version */
} 1 |Object cl = new C();
— 3 2 |Object c2 = new C();
3 |printin(cl.equals(c2));
c L3 calls which version of

equals? [B]

90 of 97

Index (1)

Why Inheritance: A Motivating Example
No Inheritance: ResidentStudent Class
No Inheritance: NonResidentClass

No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)
No Inheritance:

A Collection of Various Kinds of Students
Inheritance Architecture

Inheritance: The Student Parent/Super Class
Inheritance:
'Ehogg;iesidentstudent Child/Sub Class

Index (2) :AssoNDE

Inheritance:
The NonResident Student Child/Sub Class

Inheritance Architecture Revisited
Visualizing Parent/Child Objects (1)
Visualizing Parent/Child Objects (2)

Using Inheritance for Code Reuse
Inheritance Architecture Revisited

Testing the Two Student Sub-Classes
Multi-Level Inheritance Architecture

Root of the Java Class Hierarchy

Behaviour of the Inherited equals Method (1)
Behaviour of the Inherited equals Method (2)
Behaviour of the Inherited equals Method (3)
Behaviour of the Inherited equals Method (4)

92 of 97

Index (3) Lassonoe

Behaviour of the Inherited equals Method (5)
Behaviour of Inherited toString Method (1)
Behaviour of Inherited toSstring Method (2)
Behaviour of Inherited tostring Method (3)

Use of the protected Modifier
Visibility of Attr./Meth.: Across All Methods

Within the Resident Package and Sub-Classes (protected)
Visibility of Attr./Meth.

Inheritance Architecture Revisited
Multi-Level Inheritance Hierarchy:

Smart Phones

Polymorphism: Intuition (1)
Polymorphism: Intuition (2)
Polymorphism: Intuition (3)
ex’pgmic Binding: Intuition (1)

Index (4) :AssoNDE

Dynamic Binding: Intuition (2)
Inheritance Forms a Type Hierarchy
Inheritance Accumulates Code for Reuse
Reference Variable: Static Type
Substitutions via Assignments

Rules of Substitution

Reference Variable: Dynamic Type
Visualizing Static Type vs. Dynamic Type
Reference Variable:

Changing Dynamic Type (1)

Reference Variable:

Changing Dynamic Type (2)
Polymorphism and Dynamic Binding (1)
Poli)gnorphism and Dynamic Binding (2.1)

e

Index (5) Lassonoe

Polymorphism and Dynamic Binding (2.2)
Polymorphism and Dynamic Binding (3.1)
Polymorphism and Dynamic Binding (3.2)
Polymorphism and Dynamic Binding (3.3)
Reference Type Casting: Motivation (1)
Reference Type Casting: Motivation (2)
Type Cast: Named or Anonymous

Notes on Type Cast (1)

Reference Type Casting: Danger (1)
Reference Type Casting: Danger (2)
Notes on Type Cast (2.1)

Notes on Type Cast (2.2)

Notes on Type Cast (2.3)

Compilable Cast vs. Exception-Free Cast

e

Index (6) Sssonee

Reference Type Casting: Runtime Check (1)
Reference Type Casting: Runtime Check (2)
Notes on the instanceof Operator (1)
Notes on the instanceof Operator (2)
Static Type and Polymorphism (1.1)

Static Type and Polymorphism (1.2)

Static Type and Polymorphism (1.3)

Static Type and Polymorphism (1.4)

Static Type and Polymorphism (2)
Polymorphism: Method Call Arguments (1)
Polymorphism: Method Call Arguments (2.1)
Polymorphism: Method Call Arguments (2.2)
Polymorphism: Method Call Arguments (2.3)
Fg’g)oli)g;norphism: Method Call Arguments (2.4)

Index (7) Lassonpe
Polymorphism: Method Call Arguments (2.5)

Polymorphism: Return Values (1)

Polymorphism: Return Values (2)

Polymorphism: Return Values (3)
Why Inheritance:

A Collection of Various Kinds of Students
Polymorphism and Dynamic Binding:

A Collection of Various Kinds of Students
Static Type vs. Dynamic Type:

When to consider which?

Summary: Type Checking Rules
Overriding and Dynamic Binding (1)
Overriding and Dynamic Binding (2.1)
Overriding and Dynamic Binding (2.2)
Overriding and Dynamic Binding (2.3)

97 of 97

