ADTs, Arrays, and Linked-Lists

EECS2030: Advanced
Object Oriented Programming

YORK ' Fall 2017

CHEN-WEI WANG

Abstract Data Types (ADTSs) :Ajégsésoms

ooooooooooooooooo

¢ Given a problem, you are required to filter out irrelevant details.
e The result is an abstract data type (ADT) , whose interface

consists of a list of (unimplemented) operations.
ADT

Interface |_ request
Data add() :>
Structure remove() result
find()

* Supplier’s Obligations:

o Implement all operations

o Choose the “right” data structure (DS)
¢ Client’s Benefits:

o Correct output

o Efficient performance

¢ The internal details of an implemented ADT should be hidden.

20f27

Standard ADTs jégsésoms

ooooooooooooooooo

Standard ADTs are reusable components that have been
adopted in solving many real-world problems.

e.g., Stacks, Queues, Lists, Tables, Trees, Graphs

You will be required to:

o Implement standard ADTs
o Design algorithms that make use of standard ADTs

For each standard ADT, you are required to know:

o The list of supported operations (i.e., interface)

o Time (and sometimes space) complexity of each operation
In this lecture, we learn about two basic data structures:

o arrays
o linked lists

3of27

Basic Data Structure: Arrays s

ooooooooooooooooo

e An array is a sequence of indexed elements.
e Size of an array is fixed at the time of its construction.
e Supported operations on an array:
o Accessing: e.g., int max = al[0];
Time Complexity: O(1)
o Updating: e.g.,ali] = ali + 11;
Time Complexity: O(1)
o Inserting/Removing:

[constant operation]

[constant operation]

insertAt (String[] a, int n, String e, int i)
String[] result = new String[n + 1];

for(int j = 0; j < 1i; j ++){ result[i] = alil; }
result[i] = e;
for(int j = i + 1; j < n; j ++){ result(j] = alj - 11; }

return result;

Time Complexity: O(n) [linear operation]

4 of 27

LASSONDE

ooooooooooooooooo

Basic Data Structure: Singly-Linked Lists

e We know that arrays perform:

o well in indexing

o badly in inserting and deleting

We now introduce an alternative data structure to arrays.

A linked list is a series of connected nodes that collectively
form a linear sequence.

Each node in a singly-linked list has:

o A reference to an element of the sequence
o A reference to the next node in the list
Contrast this relative positioning with the absolute indexing of arrays.

element next

The last element in a singly-linked list is different from others.

How so? Its reference to the next node is simply null.
5 of 27

Singly-Linked List: How to Keep Track? Jssoner

ooooooooooooooooo

¢ Due to its “chained” structure, we can use a singly-linked list to
dynamically store as many elements as we desire.
o By creating a new node and setting the relevant references.
o e.g., inserting an element to the beginning/middle/end of a list
o e.g., deleting an element from the list requires a similar procedure
e Contrary to the case of arrays , we simply cannot keep track of
all nodes in a lined list directly by indexing the next references.
¢ Instead, we only store a reference to the head (i.e., first node),
and find other parts of the list indirectly.

o o i 2
A

ol

head tail

¢ Exercise: Given the head reference of a singly-linked list:
o Count the number of nodes currently in the list ~ [Running Time?]

o Find the reference to its tail (i.e., last element) [Running Time?]
6 of 27

LASSONDE

ooooooooooooooooo

Singly-Linked List: Java Implementation

public class Node ({
private String element;
private Node next;
public Node (String e, Node n) { element = e; next = n; }
public String getElement () { return element; }
public void setElement (String e) { element = e; }
public Node getNext () { return next; }
public void setNext (Node n) { next = n; }

public class SinglyLinkedList {
private Node head = null;
public void addFirst(String e) { ... }
public void removeLast() { ... }
public void addAt(int i, String e) { ... }
}

7 of 27

LASSONDE

ooooooooooooooooo

Singly-Linked List: A Running Example

Node<String> Node<String> Node<String>
(element “alan” | element “mark» | element “Tom”

next next next null

head

Approach 1

Node tom = new Node ("Tom", null);
Node mark new Node("Mark", tom);
Node alan new Node("Alan", mark);

Approach 2

Node alan new Node ("Alan", null);
Node mark new Node ("Mark", null);
Node tom = new Node("Tom", null);
alan.setNext (mark) ;
mark.setNext (tom) ;

8of 27

ooooooooooooooooo

¢ Assume we are in the context of class SinglyLinkedList.

int getSize() {
int size = 0;
Node current = head;
while (current != null) {

* exit when current == null */
current = current. getNext()
size ++;

}

return size;

O OWoONOURAWN =

—_

}

¢ When does the while loop (Line 4) terminate? current is null
¢ Only the /ast node has a null next reference.

e RT of getsize O(n) [linear operation]
e Contrast: RT of a.lengthis O(1) [constant]

9of 27

ooooooooooooooooo

}

return size;

Node<String> Node<String> Node<String>

(element “Alan” element “Mark” element “Tom”
next next next null

head

1 |int getSize() {

2 int size = 0;

3 Node current = head;

4 while (current != null) { /# exit when current == null +*

5 current = current.getNext();

6 size ++;

7

8

9

}

current || current != null | Beginning of lteration | size

Alan true 1 1
Mark true 2 2
true 3 3
nu l 1 false — -

10 of 27

Singly-Linked List: Finding the Tail (1) LASSONDE

ooooooooooooooooo

e Assume we are in the context of class SinglyLinkedList.

Node getTail() {
Node current = head;
Node tail = null;
while (current !'= null) {
exit when current == null
tail = current;
current = current.getNext();
}

return tail;

}

COWoONOOURAWN =

—_

e When does the while loop (Line 4) terminate? current is null
¢ Only the /ast node has a null next reference.

e RT of getTailis O(n) [linear operation]
e Contrast: RTof a[a.length - 1]is O(1) [constant]

110f27

Singly-Linked List: Finding the Tail (2) LASSONDE

ooooooooooooooooo

O©OoONOOHA~WN =

Node<String> Node<String> Node<String>

element “Alan” element “Mark” element “Tom”
next next next null

head

Node getTail() {
Node current = head;
Node tail = null;

while (current != null) { /# exit when current == null =*/
tail = current;
current = current.getNext ();

}
return tail;

current || current != null | Beginning of lteration | tail
Alan true 1 Alan
Mark true 2 Mark
true 3 Tom
null false - -
12 of 27

Slngly'Llnked List: Can We Do Better? fASSONDE

ooooooooooooooooo

e ltis frequently needed to
o access the fail of list [e.g., a new customer joins service queue]
o query about its size [e.g., is the service queue full?]
e How can we improve the running time of these two operations?
¢ We may trade space for fime.
e In addition to head , we also declare:

o Avariable tail that points to the end of the list
o Avariable size that keeps tracks of the number of nodes in list
o Running time of these operations are both O(1) !

Nonetheless, we cannot declare variables to store references to
nodes in-between the head and tail. Why?
o At the time of declarations, we simply do not know how many

nodes there will be at runtime.
13 of 27

ooooooooooooooooo

head
MSP| e > ATL| ® »BOS| &+ (}
newest head
LAX| e——»IMSP| &+ ATL| &+ BOS| &+ (J
newest head
LAX| &——IMSP| e——»ATL| e——»BOS| &——» ()

14 of 27

ooooooooooooooooo

Assume we are in the context of class SinglyLinkedList.

void addFirst (String e) {
head = new Node (e, head);
if (size == 0) {
tail = head;
}
size ++;
}

No oah~hwN =

Remember that RT of accessing head or tail is O(1)

RT of addrirstis O(1)

[constant operation]

Contrast: RT of inserting into an array is O(n) [linear]

150f 27

LASSONDE

ooooooooooooooooo

Your Homework

e Complete the Java implementations and running time analysis
for removeFirst (), addLast (E e).

e Question: The removerLast () method may not be completed
in the same way as is addLast (String e). Why?

16 of 27

ooooooooooooooooo

¢ Assume we are in the context of class SinglyLinkedList.

Node getNodeAt
if (i < 0 ||

(int 1)

1
2

3

4 }

5 else {

6 int index = 0;
7 Node current =
8 while (index < 1)
9 index ++;

13 current = current.getNext () ;

14 }

15 return current;

17 |}

{

i >= size)
throw IllegalArgumentException("Invalid Index");

head;
{

{

17 of 27

ooooooooooooooooo

Node<String>
element “Alan”
next

head

Node<String>
element

next

Node<String>
“Mark” element “Tom”

next null

Node getNodeAt (int 1) {
else {
int index = 0;
Node current = head;
while (index < 1) { * ex
index ++;
current = current.getNext();
}
10 return current;
1" }
12 }

O©oOoO~NOOA~WN =

if (1 <0 || 1 >= size) { /# prin

Let's now consider | 1ist . getNodeAt (2) |

current || index | index < 2 | Beginning of Iteration

Alan 0
Mark 1
Tom 2

18 of 27

true 1
true 2
false -

ooooooooooooooooo

What is the worst case of the index i for getNodeAt (i) ?
Worst case: 1ist.getNodeAt (list.size - 1)
RT of getNodeat is O(n) [linear operation]

Contrast: RT of accessing an array elementis O(1) [constant]

19 of 27

Assume we are in the context of class SinglyLinkedList.

1 |void addAt (int i, String e) {
2 if (i < 0 || 1 >= size) {
3 throw IllegalArgumentException("Invalid Index.");
4 }
5 else {
6 if (i == 0) {
7 addFirst (e);
8 }
9 else {
10 Node nodeBefore = getNodeAt (i — 1);
11 newNode = new Node (e, nodeBefore.getNext());
12 nodeBefore. setNext (newNode) ;
13 size ++;
14 }
15 }
16 |}
20 of 27

Singly-Linked List: Inserting to the Middle (2

A call to addat (i, e) may end up executing:

o Line 3 (throw exception) [O(1)]
o Line 7 (addFirst) [O0(1)]
o Lines 10 (getNodeAt) [O(n)]
o Lines 11 — 13 (setting references) [O(1)]

What is the worst case of the index i for addat (i, e)?
Worst case: 1ist.addAt (list.getSize() - 1, e)
RT of addat is O(n) [linear operation]

e Contrast: RT of inserting into an array is O(n) [linear]

On the other hand, for arrays, when given the index to an
element, the RT of inserting an element is always O(n) !

21 of 27

ooooooooooooooooo

e Assume we are in the context of class SinglyLinkedList.

1 |void removeLast () {

2 if (size == 0) {

3 System.err.println("Empty List.");
4 }

5 else if (size == 1) {

6 removeFirst () ;

7 }

8 else |

9 Node secondLastNode = getNodeAt (size - 2);
10 secondLastNode.setNext (null) ;

11 tail = secondLastNode;

12 size ——;

13 }

14 |}

Running time? O(n)

22 of 27

LASSONDE

ooooooooooooooooo

Singly-Linked List: Exercises

Consider the following two linked-list operations, where a
reference node is given as an input parameter:

L4 ’void insertAfter (Node n, String e)‘
o Steps?
e Create a new node nn.

e Set nn’s next to n’s next.
e Setn’s next to nn.

o Running time? [O1)]

o ’VOid insertBefore (Node n, String e)
o Steps?
e [terate from the head, until current .next == n.
e Create a new node nn.
e Setnn’s nextto current’s next (which is n).
e Set current’s next to nn.

o Running time? [On)]
23 of 27

\y,

o

Your Homework

g
8

e Complete the Java implementation and running time analysis
for removeAt (int 1i).

24 of 27

EaSaRNDE

Arrays vs. Singly-Linked Lists

DATA STRUCTURE ARRAY | SINGLY-LINKED LIST
OPERATION
get size
get first/last element o(1)
get element at index i
remove last element o(1)
add/remove first element, add last element
; ’ ; O(1)
—1)el (o](-
add/remove it element glven. reference to (i —1)"" element
not given O(n)

Index (2)

EaSaRNDE

Your Homework

Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:

Your Homework

Accessing the Middle (1)
Accessing the Middle (2)
Accessing the Middle (3)
Inserting to the Middle (1)
Inserting to the Middle (2)
Removing from the End

Exercises

Arrays vs. Singly-Linked Lists

]
Index (1) LAssoNDE
Abstract Data Types (ADTs)

Standard ADTs

Basic Data Structure: Arrays
Basic Data Structure: Singly-Linked Lists

Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
Singly-Linked List:
%Iy-Linked List:

Sin
26 of

How to Keep Track?
Java Implementation

A Running Example
Counting # of Nodes (1)
Counting # of Nodes (2)
Finding the Tail (1)
Finding the Tail (2)

Can We Do Better?
Inserting to the Front (1)
Inserting to the Front (2)

