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Abstract—Because of the lack of infrastructure in mobile
ad hoc networks (MANETs), their proper functioning
must rely on co-operations among mobile nodes. However,
mobile nodes tend to save their own resources and might
be reluctant to forward packets for other nodes. In this
paper, we address the charging and accounting problems
in MANETs. We develop a theoretical game model that
offer advice to a central authority about the allocation
of resources for monitoring mobile nodes. The solution
provides the optimal monitoring probability, which dis-
courages nodes from cheating because the gain would be
compensated by the penalty. The solution is then extended
to accommodate realistic assumptions such as finite pun-
ishments and imperfect monitoring. The effectiveness and
usefulness of the deployment of monitoring mobile agents
were confirmed by simulation results.

Index Terms—Mobile ad-hoc networks, cooperation,
security, game theory, inspection game.

I. INTRODUCTION

Mobile ad hoc networks (MANETs) [5] are networks
that consist of mobile nodes with limited transmission
ranges. In order to allow communication beyond this
range, nodes have to forward data on behalf of other
nodes. Since a node that forwards packets sent by others
spends its own resources, such as battery power, it needs
to have a reason to do so. One approach to encourage
node cooperation is to use a charging and accounting
scheme to pay the owner of the device an amount of
money for each forwarded data packet [12]. This can be
implemented by allowing the sender to insert a set of
coins into a packet to be sent. Every node that forwards
the packet is allowed to extract one coin for the job done.
A forwarding node can collect coins and redeem for a
reward later.

When monetary rewards are involved, dishonest nodes
may cheat to gain more than they deserve. For example, a

node may take two coins for forwarding a packet instead
of the allowed amount of one coin. A sender may re-use
coins that were already spent on a previously sent packet.
These are deemed cheating or illegal actions.

To prevent cheating, existing schemes use strong
cryptography [13] [22] [27] [7] [23] [9] [24] [16] [17]
[15] (which is time and power consuming for energy-
constrained mobile devices), and/or tamper-proof devices
[4] [14] [25] [23] [26] (which require modifications
to existing devices and increased cost to device own-
ers/buyers).

In [12] a new approach to the charging and accounting
problem in MANETs was presented. Node behaviours
are monitored by police nodes (PNs), and misbehaving
nodes are penalized for their illegal actions, possibly with
monetary punishments. The deployment, management
and maintenance of PNs impose extra costs to the
network owner or central authority, which should be
covered by the fines collected from cheating nodes. The
objective of the work presented in this paper is to advice
the central authority on how much resource to allocate
to network monitoring so that the cost incurred does not
exceed the amount of fines collected from misbehaving
nodes.

We consider this problem as an inspection game [2]
between PNs (the inspectors) that represent the central
authority and are trusted parties in the system and reg-
ular nodes (the inspectees). Our proposed mathematical
model is based on the Passenger Ticket Control (PTC)
model [1] originally proposed for the Munich Transport
and Fares Tariff association (MVV). The purpose of
the PTC model is to suggest how to find the optimum
frequency of control through which the MVV could
monitor passengers in a cost-effective manner. In this
paper, we adapt the PTC model to develop a game model



for the charging and accounting scheme proposed in
[12]. Our proposed game model is based on a Nash
equilibrium that offers a strategy for allocating PNs. We
demonstrate that this strategy will discourage nodes from
cheating since they will not benefit from such illegal acts.

The remainder of this paper is organized as follows.
In the next section, we review the Passenger Ticket
Control Model [1]. Section III summarizes the charging
and accounting scheme discussed in [12]. In Section IV,
we present a game model based on the PTC model and
the charging and accounting scheme presented in [12].
Section V provides extensions to the proposed model
using more relaxed assumptions. In Section VI, we
present simulation results to illustrate the effectiveness
and usefulness of PNs in monitoring network traffic. We
conclude the paper and discuss future work in Section
VII.

II. T HE PASSENGERTICKET CONTROL MODEL

The Passenger Ticket Control Model (PTC) is pre-
sented in [1] as an example of the application of inspec-
tion games. This is a two-player game problem in which
the control system is an inspector (first player) and the
passenger is an inspectee (second player). The purpose
of this mathematical model is to give advice to the MVV
on how to make the deployment of distributed randomly
inspectors economically attractive.

If f denotes the normal passenger fare,b denotes the
fine, ande denotes the cost of control per passenger
(e < b), then the possible payoffs(x, y) for an inspector
and a passenger respectively are:

(x, y) = (f − e, −f ): inspectors control the
system and passengers act legally
(x, y) = (f , −f ): inspectors do not control
the system and passengers act legally
(x, y) = (b − e, −b): inspectors control the
system and passengers act illegally
(x, y) = (0, 0): inspector do not control the
system and passengers act illegally

The above payoffs are summarized in Figure 1 where
the inspector controls the system with probabilityp, and
the passenger behaves legally with probabilityq .

According to the game model [1], the expected
payments of the inspector and the passenger, denoted
by E1 andE2 respectively, are as follows:

E1 (p, q) = (f − e)pq + (b − e)p(1 − q) + f (1 − p)q
E2 (p, q) = −fpq − bp(1 − q) − f (1 − p)q

Fig. 1.

To enable the MVV to perform the desirable control
management, an optimum strategy of inspecting is de-
veloped using a Nash equilibrium concept [18]. There is
no pure strategy equilibrium because of the cyclical pref-
erences of the players (see the directions of the arrows
in Figure 1). The pair of mixed strategy equilibrium (p∗,
q∗) is comprised of the two players’ strategies, wherep∗

is the inspector’s “best response” (optimal monitoring
probability) to the passenger’s choice ofq∗ (optimal
probability of behaving legally), andq∗ is the passenger’s
“best response” to the inspector’s choice ofp∗.

The equilibrium payoff of the inspector isE ∗

1 ,
and that of the passenger isE ∗

2 . Solving the Nash
equilibrium [18] we obtain:

p∗ = f
b
, E ∗

1 = f (1 −
e
b
), (1)

q∗ = 1 −
e
b
, E ∗

2 = −f . (2)

In the case of a passenger’s illegal conduct with a
probability of (1 − q∗) > 0, his expected payoff, on the
average, remains the same; i.e., the gain from free-riding
is balanced by the imposed fine.

When the passenger choosesq∗ as his strategy, the
costs of inspectors, which check passengers (with any
p) and collect funds in the form of fines imposed
on free-riders, are ultimately compensated by the
collected fines. Indeed, ifep denotes the mean costs
of the inspectors controlling the system per passenger,
and if bp(1−q) is the profit from the collected fines, then

ep − bp(1 − q) = p(e − b(1 − q∗)) = 0.

Choosing p∗ by the MVV for optimum control
makes the passenger indifferent in choosing his strategy.
Choosing the legal behavior strategy, the passenger pays
−f , which is equal to the expected payoff−bp∗ of the



passenger that chooses to behave illegally (see Eq. (1)).

III. A C HARGING AND ACCOUNTING SCHEME FOR

MANETS

In [12], a novel and yet simple approach of combining
a cooperation mechanism and a monitoring system to
solve the charging and accounting problem in MANETs
is proposed. The incentive for cooperation is provided
by means of remuneration and it does not require to
equip each node with the temper proof/resistant devices.
A sender S that wants to transmit a message to a
destinationD estimates the number of hopsh on the path
from S to D . The message is encrypted by the public
key of a destination to provide end-to-end message
confidentiality.S then purchasesh coins and insert them
into the packet to be sent. Every intermediate node that
forwards the packet is allowed to extract one coin from
the packet as the payment for the forwarding job. Nodes
collect coins and later submit to the central authority
(CA) to redeem rewards.

To prevent cheating (e.g., a node extracting more than
one coin from the packet for a one-hop forwarding),
a number of police nodes are distributed throughout
the network randomly, which observe nodes’ behaviours
with respect to charging and accounting, document their
behaviours and report the information to the CA peri-
odically (when they have a fast connection). A PNs can
be as mobile or static agents. For their distribution the
existing urban infrastructure could be used that evenly
covers an area. For example, PN devices could be set
up on buses roofs, police cars, gas stations, traffic lights.
Also, they can be set up on crowded public buildings,
like exhibition halls, a university campus. The CA uses
the information reported by the PNs to reward cooperat-
ing nodes as well as identify cheating nodes and impose
fines. In the following, we present some examples of
how common attacks could be detected by the PNs:

• Double use of coins. A node puts the same coin in
two distinct packets. After a PN reports collected
data, the CA can discover this after it verifies
whether all coins preloaded into the packet are valid
(i.e., coins were purchased by the node and were not
yet used).

• Illegal action. An intermediate node takes more
than one coin from the packet. A PN can notice
this when checking whether the set of incoming
coins is identical to the outgoing set (except for
one coin that was taken by the node and the next
node identifier).

• Double coin submission. An intermediate node
takes one coin (as is expected) and just copies
another one of the remaining coins in the packet,
and then submits both. The node will be considered
as a cheater if a PN has observed that the copied
coin was taken by another node.

The collected fines will be used to pay for the cost
of deploying and managing PNs. The theoretical game
model proposed in this paper aims at providing the CA
with a strategy for allocating PNs that will discourage
nodes from cheating since they will not benefit from such
actions.

The charging and accounting scheme in [12] is based
on the following assumptions:

1) Nodes are rational. That is, nodes will only cheat
or act illegally if the average gain of cheating is
more than the average loss caused by punishments.

2) The penalty for misbehaving nodes is infinite (e.g.,
cheating nodes are expelled from the network),
whereas the gain from cheating is said to be finite.
Considering this assumption and the assumption
that nodes are rational, it follows that there is no
reason for rational nodes to behave dishonestly
since the average loss is greater than the average
gain derived from cheating. Therefore, nodes will
not cheat if they run any risk of being caught,
i.e., there is a small probability that any illegal
action will be detected. In this paper, we show
that the correctness of the proposed scheme is not
affected when the infinite punishment is replaced
by more realistic punishments. We provide an
optimal strategy to the CA, thereby leading to the
nodes’ indifference about whether or not to act
illegally.

3) The information reported by the PNs to the CA is
accurate and error-free. This is not realistic in a
real network. We relax this assumption and extend
the game model to adapt the relaxation in Section
V.

IV. T HE PROPOSEDGAME MODEL FORNODE

CONTROL

Like the PTC problem, we consider the monitoring
problem of the charging and accounting scheme de-
scribed in Section III to be a two-player inspection game
in which a PN (representing the CA) plays the role of an
inspector and a regular node is an inspectee. The PN (the
first player) monitors node behaviours in the network
whereas the regular node (the second player) may or
may not cheat.



Monitoring of nodes in our system has a character
similar to the inspection of passengers in the PTC prob-
lem. During monitoring at a certain location, a police
node may observe a number of nodes which are in its
reception range, similar to a number of passengers in a
public transportation vehicle that are being inspected.

A solution to the problem we consider is a game
solution using a Nash equilibrium, as in the PTC prob-
lem. Let f denote the average expenditure of a node
when it acts legally; g, the nodes average gain from
illegal actions;b denotes the penalty for a misbehaving
node; ande, the cost of monitoring per node (including
a deployment cost)1 (e < b). Then the game can be
presented in the normal form as shown in Figure 2,
where (p, 1− p) is the mixed strategy of the first player
(the probability assigned to monitoring/no monitoring),
and (q , 1− q) is the mixed strategy of the second player
(the probability assigned to legal/illegal behaviours).

According to the game model, the expected payments
E1 andE2 of the PN and the regular node, respectively,
are as follows:

E1 (p, q) = (f − e)pq + (b − e − g)p(1 − q) +
f (1 − p)q − g(1 − p)(1 − q)
E2 (p, q) = −fpq +(g − b)p(1− q)− f (1− p)q + g(1−
p)(1 − q)

Fig. 2.

Like the PTC problem, the game has no pure strategy
equilibrium because of the cyclical preferences of the
players. Let(p∗, q∗) be the mixed strategy equilibrium
of the two players, as defined in Section II. Then the
resulting mixed strategy Nash equilibrium is:

p∗ = f +g
b

, (3)
q∗ = 1 −

e
b
. (4)

1Additional costs/gains are not taken into account, since they do
not affect players directly.

The obtained optimal control probabilityp∗ makes
the node indifferent about his two possible action
choices, based on the same explanation given in the
PTC model in Section II. In fact, equation (3) holds
when probabilityp∗ is chosen for monitoring. Indeed a
node which behaves legally pays−f , on the one hand,
and pays−bp∗ + g when it behaves illegally, on the
other.

As previously mentioned in the PTC model, the expen-
diture outlay for control is compensated by the penalty
collected when a node choosesq∗. In fact, the difference
between the expenditure for monitoring per node (ep)
and the gain from the penalty (bp(1−q)) is zero for any
p only if the node choosesq∗.

The equilibrium expected payoffsE∗

1 and E∗

2 of the
PN and the regular node respectively, given the mixed
strategy pair (p∗, q∗), are:

E ∗

1 (p∗, q∗) = f (1 −
e
b
) − eg

b
,

E ∗

2 (p∗, q∗) = −f .

The expected payoff of the regular node given its
mixed strategy(1 − q∗) > 0 remains the same. Thus
we can draw the same conclusion as in the case of the
PTC model: the payoff of a legally behaving node is
the same as that of a node that behaves illegally and
whose illegally achieved gain is negated by the imposed
penalty.

V. SOLUTION EXTENSIONS

The charging and accounting scheme [12] for which
the above game model is developed assumes infinite
penalty and error-free monitoring results (see Section
III). These assumptions are not applicable in real net-
works. Therefore we relax the assumptions and extend
the game model to adapt the relaxation.

A. Optimal Penalty

The desired deterrence effect in the system could
be achieved by the trade-off between frequency of
monitoring and severity of punishment, when the CA
may change both the probability of controlp and the
punishmentb periodically. As is usual in economics and
legal literature, in order to determine a punishment as
severe as possible, under the assumption that individuals
are risk neutral (e.g., [20], [6]), we choose the optimal
punishment as the maximal one, i.e the punishment
should be as high as possible. An alternative is to



increase the punishment in order to save on monitoring
costs [6].

B. Imperfect Monitoring

In real ad-hoc networks, a PN may observe, collect,
or report inaccurate information to the CA (e.g., due
to interference, receiving errors, etc). As a result of
possible errors, an honest node could be mistakenly
penalized − let us assume that this happens with
probability ǫC − and an offender could be mistakenly
exonerated− let us assume that this happens with
probability ǫA. Moreover, it could become attractive for
nodes to act illegally if the gain derived from cheating
minus the fine is greater than the loss caused by a false
accusation [20], i.e.,:

g − p(1 − ǫA)b > −pǫCb ⇔

g > (1 − ǫA − ǫC)pb ⇔ (5)
p < g

(1−ǫA−ǫC)b

Thus, the monitoring probabilityp, must satisfy the
following inequality2 to discourage nodes from cheating:

p ≥
g

(1−ǫA−ǫC)b (6)

The deterrence decreases due to both false exoneration
and false accusation (see the right-hand side of (5))
and could be improved by increasing the frequency
of monitoring [20]. Besides increasing deterrence,
the additional cost of monitoring would decrease the
probability of penalizing the node falsely, thereby
decreasing the node’s disinclination to cooperate, which
may then be advantageous to the CA [19].

The objective of the following analysis is to estimate
a node’s behaviour when both errors and the social
welfare are taken into account. Since both false
exoneration and false accusation decrease the deterrent
factor, the social welfare is also decreased [20]. Once
again, a node will cheat if and only ifg ≥ pb. The
social welfare is represented by3 [6], [19]:

∫
∞

pb (g − m)z(g)dg − r(p),

where m denotes the expected harm to the society4;
z(g) is a density function of gains; andr(p) denotes a

2It is assumed that(1 − ǫA) > ǫC [19].
3This is the conventional social welfare function that is used in

legal and economics literature [6], [19].
4“expected” because it is not always possible to estimate theexact

value of harm [19]

function that shows the amount of resources required to
achieve probabilityp (r′ > 0, r′′ ≥ 0). The first-order
condition to find the optimal detection probability is:

(m − pb)(Z ′(pb)) = r′(p), (7)

where Z ′() is the cumulative distribution function
of z(). From (7) it follows that:

m > pb, (8)

which means that the expected punishment (see
the right-hand side of inequality (8)) is less than the
value of the harm (left-hand side of inequality (8))
which is incurred by the society due to the node’s
cheating. In other words, some ”under-deterrence” is
optimal ([6], [19]). After substituting (6) forp into (8),
we get:

m > g
1−ǫA−ǫC

. (9)

From (9) we can see that the right-hand side is
increased in(1− ǫA − ǫC). If g is increased to the point
of m ≤ g , then it will be beneficial for a node to behave
illegally [20]. Thus, as long as (9) is satisfied, a node
will have no incentive to cheat. Also, the percentage
of erroneous monitoring is, at most, identical to the
percentage of interference/errors.

VI. EXPERIMENTAL RESULTS

It may be argued that the monitoring capabilities of
PNs are not the same those of human inspectors in
a transportation system, and mobile nodes and human
passengers have different characteristics. Therefore, we
carried out simulations to ascertain the capability of
PNs in monitoring network traffic. Our objective is to
verify that the deployed PNs are capable of observing
the majority of network traffic. Note that the observation
rate does not have to be 100% because the primary
purpose of the proposed monitoring scheme is not to
punish cheaters, but to encourage cooperation and deter
cheating.

A. Simulation Environment and Parameters

We used the GloMoSim Network Simulator [8], de-
veloped at the University of California at Los Angeles
(UCLA), for our simulations. It provides a graphical
environment for scalable simulation and prototyping of
wireless network systems and protocols.



Routing protocol DSR
MAC protocol CSMA/CA with RTS/CTS/DATA/ACK
Terrain size 1200 m x 800 m
Number of nodes 30
Simulation time 900 seconds per experiment
Propagation model Two-ray [21]
Transmission range 272 m
Channel capacity 2 Mbps
Mobility model Random way-point [10]
Data traffic CBR
Payload size 512 bytes
Confidence interval 95%

TABLE I
SIMULATION PARAMETERSSETTINGS.

We simulated a mobile ad-hoc network that consists
of 30 regular mobile nodes randomly distributed in an
area of size 1200 m X 800 m. Nodes use the DSR
routing protocol [11] and IEEE 802.11 medium access
control protocol to transmit and forward packets. The
transmission range of mobile nodes is 272 m. Node
mobility follows the random way-point model. Intervals
between transmissions of successive packets are based
on a CBR traffic generator and chosen randomly from
0.005 s, 0.01 s and 0.015 s. The size of each packet,
excluding the header, is 512 bytes.

In our simulations, the PNs have the same technical
characteristics as regular mobile nodes, and are dis-
tributed evenly in the network. We also assume that all
nodes in the network, regular and police nodes, have an
unlimited queue size in order to avoid packet losses due
to congestion so that we can obtain accurate observation
rates of PNs. (There were still packet losses caused by
channel errors and collisions, but these loss rates were
small.)

Each data point in the graphs is the average of
10 runs (experiments). In each of those experiments,
the PNs were relocated, but still distributed evenly in
the network. The duration of each experiment is 900
seconds in simulated time. The graphs were plotted with
a confidence interval of 95%. The common simulation
parameters are summarized in Table I.

B. Performance Metric and Simulation Scenarios

In each experiment, we first measured the total number
of packetsT transmitted in the network.T included
both the original packets transmitted by the sources,
as well as the copies forwarded by intermediate nodes.
Every regular nodei maintained a counterti, which
was incremented every time the node transmits a packet.
At the end of an experiment, we took the sum of the

countersti of all regular nodes. We also measured the
total number of packetsR observed (overheard) by the
PNs. Every PNj maintained a counterrj , which was
incremented every time the node observed (overheard) a
packet transmitted by a regular node, the packet was not
damaged, and it was not recorded by another PN. That is,
if a packet was observed by several PNs simultaneously
then only one observation was included in the result.
At the end of an experiment, we took the sum of the
countersrj of all PNs.

The performance metric is the averagepacket obser-
vation ratePOR = R/T .

We conducted three sets of simulations by varying the
following parameters:

1) the number of PNs, which are 4, 6, 8, 10 and 12
nodes (equivalent to 13% to 40% of the network
population).

2) node mobility speed, which ranges from 0 m/s to
20 m/s (equivalent to 0 m/h to 72 km/h).

3) the average sending rate of the sources, which
varies from 2.06 packets/s to 10.3 packets/s.

Following are the results of the three sets of simula-
tions.

C. Simulation Results and Discussions

1) Varying the number of PNs:In the first experiment,
we varied the number of PNs in the range of 4, 6, 8,
10 and 12, equivalent to 13% to 40% of the network
population. The mobility speed of mobile nodes ranged
from 0 m/s to 1 m/s, and the average transmission rate
of the sources was 2.06 packet/s.

Fig. 3 shows the results of this set of experiments.
As the number of PNs increases, the POR also increases
accordingly, from about 80% to 98%. When the number
of PNs is 20% of the network population, the POR is
92%. That is, with a reasonable amount of resources (6
PNs), the CA can observe a majority of network traffic to
enforce the rules. The CA can achieve an optimal moni-
toring probability (p∗) by taking into account parameters
f , b andg in Eq. (3).

2) Varying node mobility speed:In the second exper-
iment, node mobility speed increased from 0 m/s to 20
m/s, equivalent to 0 m/h to 72 km/h. There were 6 PNs
monitoring the network and the average transmission rate
of the sources was 2.06 packet/s.

The result in Fig. 4 shows that the average POR
varied between 88% and 92%. If we take into account
the confidence intervals, we can see that node mobility
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speeds do not have much impact on the POR of the
PNs. As the mobility speed increases, the POR goes up
slightly, because as nodes move, more of them will get
close to the PNs (since the PNs are distributed evenly in
the network), increasing the observation rate. However,
if the mobility speed is too high, the connection between
a regular node and a PN may be broken before the PN
has a chance to overhear a packet sent by the regular
node. That explains the lower POR when the mobility
speed is 20 m/s.

3) Varying the average sending rate of the sources:In
the third experiment, we varied the average sending rate
taken over all sources in the range of 2.06 packet/s, 4.12
packet/s, 6.18 packet/s, 8.21 packet/s and 10.30 packet/s.
The number of PNs in the system was 6 (20% of the
population) and the mobility speed was from 0 m/s to
1 m/s. The results in Fig. 5 indicate that the POR of
the PNs is not impacted much by the network traffic
load, varying between 92% and 94%. That shows the
effectiveness of the PNs in monitoring network traffic.
To further confirm this fact, we also measured the total
number of packetsR observed (overheard) by the PNs.
The graph in Fig. 6 shows that the total number of
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packetsR observed by the PNs increases linearly as
the network traffic load increases. The result asserts the
effectiveness of network monitoring by the PNs.

Finally, it is worth noting that the average POR of the
PNs depend on the packet delivery ratios of the flows,
which in turn depend on the routing algorithm [3]. In
our future work, we will investigate the performance of
the PNs with different routing algorithms (e.g., DSR vs.
AODV [3]).

VII. C ONCLUSION AND FUTURE WORK

We present a theoretical game model that offers
advice to the central authority about the allocation of
resources for node monitoring in a charging and ac-
counting scheme [12]. The solution provides the optimal
monitoring probability, which discourages nodes from
cheating because the gain would be compensated by
the penalty. The solution is then extended to accom-
modate realistic assumptions such as finite punishments
and imperfect monitoring. We confirm the effectiveness



and usefulness of the proposed monitoring scheme via
simulation results.

In our future work, we will investigate methods to op-
timally distribute police nodes in a network. In addition,
non-monetary punishment schemes will be studied, as
well as a combination of both kinds of penalties. We will
implement the full algorithm of the proposed charging
and accounting scheme and evaluate its performance
under various network conditions and different routing
algorithms. We will also measure the network perfor-
mance in terms of packet delivery ratio, throughput, and
end-to-end delay in the presence of the charging and
accounting algorithm to evaluate the overheads of the
algorithm when being deployed in a real network.
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