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ABSTRACT

Given the popularity of both smartphones and online social net-

working, it is only a matter of time before attackers exploit both

to launch new types of attacks. In this paper, we propose a

new cellular botnet named SoCellBot that exploits online social

networks (OSNs) to recruit bots and uses OSN messaging systems

as communication channels between bots. Our proposed botnet is

the first that uses the OSN platform as a means to control cellular

bots. The structure and characteristics of OSNs make this botnet

harder to detect, more resilient to bot failures and more cost-

effective to cellular bots. Our objective is to raise awareness of new

mobile botnets that exploit OSNs to recruit bots so that preventive

measures can be implemented to deter this kind of attack in the

future. We also analyze the behaviors of the proposed botnet via

simulation to offer a better understanding of this new type of botnet.

Index Terms— Network security, mobile botnet, cellular botnet,

malware, online social networking.

I. INTRODUCTION

In recent years, cellular phones have been revolutionized from

basic voice and text phones to IP-enabled smartphones, capable of

browsing the Internet and running various applications. One of the

most popular activities among mobile device users is online social

networking. Online social networks (OSNs) such as Facebook,

Twitter and MySpace have attracted hundreds of millions of people

worldwide. The ubiquitous nature of smartphone services and the

popularity of online social networking can be a lethal combination

that spreads malware in a quick and efficient manner to a large

number of OSN users, which will in turn infect their own computers

and local networks.

A mobile botnet is a group of compromised cellular phones that

are controlled by one or more botmasters. OSNs are a preferred

medium for botnets to carry out such an attack for the following

reasons. First, most cellular network providers offer OSN access to

their clients free of charge. This makes OSN messaging systems

a cost-effective solution for cellular bots to send and receive com-

mands and control messages. Second, messages exchanged in OSNs

are usually encrypted, making it hard for cellular network providers

to identify and block botnet messages. Third, the topology of an

OSN-based botnet is more resilient to bot failures or unavailability

(compared with commonly seen botnets using on short message

services (SMS) [20], [28]) thanks to the highly clustered structure

of the social network graph.

Given the popularity of both smartphone usage and online social

networking, it is a matter of time before attackers exploit both to

launch new types of attacks. In this paper, we present the design

of a new cellular botnet named SoCellBot that exploits social

networks to recruit bots and uses messaging systems of OSNs as

communication channels between bots. Our objective is to raise

awareness of new mobile botnets that exploit OSNs to recruit bots

so that preventive measures can be implemented to deter this kind of

attack in the future. We also analyze the behaviors of the proposed

botnet via simulation to offer a better understanding of this new

type of botnet.

Although there exist several cellular botnet designs in the liter-

ature [20], [24], [23], [28], [26], our proposed botnet is the first

that uses the OSN platform as a means to control cellular bots.

The structure and characteristics of OSNs make this botnet harder

to detect, more robust and more cost-effective to cellular bots.

The remainder of this paper is organized as follows. We discuss

related work in Section II, and describe the design of SoCelBot

botnet in Section III. The simulation model and parameters are

presented in Section IV. We analyze the simulation results in

Section V. In Section VI, we discuss analytical models related to

the proposed botnet and directions for our future work. Section VII

concludes the paper.

II. RELATED WORK

Botnets have been actively researched in recent years, especially

PC-based botnets [12], [1]. Research on cellular botnets have also

appeared recently [20], [24], [23], [28], [26]. Traynor et al. [24]

theorize the existence of cellular botnets. They conclude that the

rigid hierarchical structure of cellular networks make them more

vulnerable than other types of networks to a simple threat such

as denial-of-service attacks. They also show that a relatively small

number of infected phones can easily shut down the core network.

Singh et al. [23] study the feasibility of using Bluetooth as the

command and control (C&C) channel of a botnet. Mulliner et al.

[20] propose a SMS-HTTP command and control system in which

commands created by the botmaster are sent to bots via SMS.

The commands are then uploaded to designated websites in an

encrypted file. Each bot will download and decrypt the file, and

send out the commands to other bots via SMS. Zeng et al. [28]

design a SMS-P2P hybrid botnet which uses SMS as the C&C

channel, and the peer-to-peer network as the underlying structure.

In this botnet, no IP connection is involved. Bots search and

obtain commands in a P2P fashion by sending and receiving SMS

messages. This approach easily leads to detection since it imposes

significant monetary costs on the victims by sending SMS messages

to get the commands via the P2P system. Many cellular network

providers charge a fee for using SMS. Andbot [26] eliminates the

weakness of a single point of failure in HTTP-based C&C schemes



by taking advantage of URL fluxes. This makes the botnet more

resilient to different types of attacks such as DNS sinkhole and IP

black listing.

Our proposed SoCellBot botnet is the first that exploits OSNs to

recruit bots. Using OSN messaging systems as the C&C channel

makes the botnet more difficult to be detected and more robust

against bot failures or unavailability. Unlike SMS-based botnets,

our SoCellBot incurs only very small monetary costs, as discussed

next.

III. THE PROPOSED SOCELLBOT

The objective of a SoCellBot botnet is to infect as many

smartphones as possible with malware. The medium to spread

the infection is messaging systems of OSNs, which is more cost-

effective to bots than SMS messages. The design of a botnet con-

sists of three major components: propagation mechanism, command

and control channel, and botnet topology maintenance.

III-A. Propagation Mechanism

Mobile devices are recruited into a botnet by running malicious

software. This can be achieved in two ways: one is to exploit

vulnerabilities of the operating systems (OS); the three major

mobile phone operating systems, IOS, Android and Symbian, have

been shown to be vulnerable to malware attacks [11]. The other

method is to use social engineering techniques to trick users

into running the software (e.g., clicking an eye-catching web link

leading to the malicious content). A SoCellBot botnet exploits

both attacking vectors. That is, either the user will follow the

malicious web link and execute the malware, or the smartphone

OS is vulnerable to a specific attack that will run the malicious

code without any user intervention.

To initiate a botnet, an attacker can compromise a part of social

graph by infiltrating. Infiltration can be started by a number of fake

profiles that will try to get connected to real users. After the first

connections, they will try to get connected to friends of those users,

and so on. Infiltration has been shown to be effective for starting

a botnet in an OSN such as Facebook [4].

III-B. Command and Control Channel

In many countries, users have to pay for sending and receiving

SMS messages. Our proposed botnet tries to minimize the use of

SMS to avoid being detected by users or cellular network providers.

Therefore, each bot will forward the command through an online

social network messaging system (OSNMS). (The botmaster can

send out the initial commands to a small number of bots through

SMS though.) As more and more cellular network providers offer

access to OSNs free of charge, forwarding the commands using

an OSNMS overcomes the cost challenge existing in current SMS-

based botnets [14]. The commands can be disguised to look like

normal messages using an algorithm such as the one proposed by

Zeng et al. [28].

Sending a message to a random user in Facebook is generally

possible. However, some users may deactivate this feature for non-

friend users. These users will not take part in the initiation phase,

but they can be infected by their infected friends in the future.

III-C. SoCellBot Botnet Topology

The SoCellBot botnet topology is ensured to be connected thanks

to the high clustering characteristic of OSNs [8], [13], [27], which

refers to the fact that users tend to create tightly knit groups

characterized by a relatively high density of ties (friendships). As

a result, if some bots become idle or are disabled, there are still

some other ways to reach the neighbors of the disconnected bot. A

SoCellBot botnet is thus resilient to bot failures and unavailability.

IV. SIMULATION MODEL AND PARAMETERS

In this section, we review the characteristics of online social

networks, and describe the network graph model and malware

propagation model used in our simulations.

IV-A. OSN Model and Graphs

An OSN can be represented by an equivalent graph in which

each vertex (or node) represents a person, and a link between

two vertices indicates the existence of a relationship (friendship)

between the two respective persons. Our simulations were carried

out on synthesized graphs that possess all the characteristics of real-

life OSNs. The characteristics of online social networks, which are

studied in [8], [13], [27], can be summarized as follows:

1) An OSN typically has a low average network distance,

approximately equal to log(s)/ log(d), where s is the number

of vertices (people), and d is the average vertex degree of the

equivalent graph.

2) Online social networks typically show a high clustering

property, or high local transitivity. That is, if person A
knows B and C, then B and C are likely to know each

other. Thus A, B and C form a friendship triangle. Let k
denote the degree of a vertex v. Then the number of all

possible triangles originated from vertex v is k(k − 1)/2.

Let f denote the number of friendship triangles of a vertex

v in a social network graph. Then the clustering coefficient

C(v) of vertex v is defined as C(v) = 2f/(k(k − 1)).

The clustering coefficient of a graph is the average of the

clustering coefficients of all of its vertices. In a real OSN,

the average clustering coefficient is about 0.1 to 0.7.

3) Node degrees of a social network graph tend to be, or at

least approximately, power-law distributed. The node degree

of a power-law topology is a right-skewed distribution with

a power-law Complementary Cumulative Density Function

(CCDF) of F (k) ∝ k−α, which is linear on a logarithmic

scale. The power law distribution states that the probability

for a node v to have a degree k is P (k) ∝ k−α, where α is

the power-law exponent [21].

There exist a few algorithms that can generate social network

graphs with the above characteristics [8], [7], [13]. For the simu-

lations reported in this paper, we used the algorithm proposed by

Holme and Beom [13], because it can be fine tuned to generate a

social network graph with the required clustering coefficient and

power law distribution of node degrees. We used the algorithm

by Holme and Beom to generate three OSNs of sizes 5,000 nodes,

10,000 nodes and 15,000 nodes. The parameters and characteristics

of these three OSN graphs are listed in Table I. In all the three

graphs, the node degrees are power-law distributed with α = 3.

We also created three equivalent random graphs (ERG), each

corresponding to one of the above three OSN graphs. These random

graphs are generated using the above three OSN graphs and the

algorithm proposed by Viger and Latapy [17]. Each of these random

graph has the same node degree distribution as the equivalent

OSN graph. However, the other parameters may be different. For

instance, an ERG usually has a lower clustering coefficient and



Parameter Value Value Value

Number of vertices (people) 5,000 10,000 15,000

Number of edges 14991 29991 44991

Average clustering coefficient 0.142 0.157 0.123

Average shortest path length 4.73 5.8 5.12

Network diameter 10 14 10

Maximum node degree 204 182 366

Average node degree d 5.99 5.99 5.99

log(s)/ log(d) 4.76 5.2 5.37

Table I. Three OSN graphs used in our simulations

Parameter Value Value Value

Number of vertices (people) 5,000 10,000 15,000

Number of edges 14991 29991 29991

Average clustering coefficient 0.006 0.003 0.002

Average shortest path length 4.16 4.39 4.5

Network diameter 8 8 8

Maximum node degree 204 182 366

Average node degree d 5.99 5.99 5.99

log(s)/ log(d) 4.76 5.2 5.37

Table II. Equivalent random graphs generated from the above OSN

graphs

network diameter than the original OSN graph. The parameters of

these three equivalent random graphs are listed in Table II. In all

the three equivalent random graphs, the node degrees are power-law

distributed with α = 3.

We now explain the reason for studying equivalent random

graphs in addition to the original OSN graphs. An attacker may

be able to obtain the graph of an OSN using a tool such as R [15]

or Pajek [2]. He/she may then create ERGs using an algorithm such

as the one by Viger and Latapy [17]. As our simulation results will

show, an ERG helps a malware to propagate faster than the original

OSN graph, but requires more messages to infect the same number

of victims. Our goal is to determine whether ERGs help or hinders

the malware propagation in order to predict attack strategies.

IV-B. Malware Propagation Model

In the first step of each experiment, a node (user) in the social

network graph is chosen randomly as a seed for infiltration. When

the user executes the command (e.g., clicks on a web link),

the user’s smartphone sends out a message to his/her friends

(adjacent vertices in the social network graph), directing them to

the malicious content. Upon receiving the message, each friend will

execute the malware with a probability p. (Some people may be

more cautious and do not follow the web link.)

Each command to execute the malware has unique sequence

number (SN) and a time-to-live (TTL) field. After receiving a

message carrying a command, a node checks the SN to see if it has

seen the message before. If the message is new, it decreases the

TTL by one, and forwards the message to its one-hop neighbors

(adjacent vertices) in the OSN graph. If the message is a duplicate,

the node simply discards it. Sequence numbers help to minimize

the number of duplicate messages, and thus the total number of

messages, sent by the bots in order to avoid detection. The TTL

limits the lifetime of a message, again to minimize the number

of messages sent by the bots. A good estimate for the TTL is the

diameter of the OSN graph, which was also used in our simulations.

V. SIMULATION RESULTS

The simulation was done in MATLAB based on discrete-event

simulation. Each data point in the graphs is averaged over 100

runs, each of which started with a different node (user) selected

randomly.

We conducted two sets of experiments. In the first set, we

measured the total number of infected smartphones T over time. A

virtual time unit is defined as the time the malicious command takes

to traverse one hop in the OSN to reach all the neighbors of the

current sender of the command, which is a newly infected node.

We assume that all newly infected nodes forward the command

within one virtual time unit. As a result, time can be represented

by the number of hops in the OSN graph, where a hop is equivalent

to a virtual time unit. In addition to the total number of infected

smartphones T over time, we also measured the number of newly

infected smartphones N at every virtual time unit t. That is,

T (t+1) = T (t)+N(t+1). Metric N shows us the point in time

when the propagation achieves its peak performance, i.e., infecting

the most number of new phones.

In the second set of experiments, we recorded the total number

of messages (carrying the malicious command) M sent by all the

infected phones via the OSN over time. Again, time is represented

by the number of hops in the OSN graph as explained above.

Metric M reflects the amount of network bandwidth and resources

consumed by the botnet. Attackers would want to keep M as

low as possible to avoid alerting the network administrator to the

attack. According to the malware propagation model described

in Section IV-B, a node will reject (discard) duplicate messages

received from its neighbors. We thus also recorded the total number

of non-duplicate messages accepted by nodes in the OSN over

time. Following are the results we obtained from these two sets

of experiments.

V-A. The First Set: Number of Infected Smartphones

This set of experiments consists of three scenarios.

V-A1. Scenario 1

The graphs in Fig. 1 show the total number of infected smartphones

and the number of new infected smartphones over time using the

three OSNs defined in Table I for two different values of p, the

probability that a user will execute the malicious command. We

considered a constant value of p = 1 (i.e., a user always executes

the malicious command), and a normal distribution of p with mean

µ = 0.5 and variance σ2 = 0.022.

In all three OSNs, as p increases from the mean value 0.5 to

1, more users will execute the malicious command, making the

malware propagate faster (i.e., requires less hops to infect the same

number of victims), as we would expect. For instance, in the 5000-

node OSN, it takes four hops when p = 1 and six hops when

p = 0.5 to infect a total of 2,000 phones.

We also observe that when p = 1, metric N , the number of

newly infected phones, reaches the maximum values when t = 5
(Fig. 1(a) and Fig. 1(c)) or t = 6 (Fig. 1(b)). The result is consistent

with a phenomenon called six degree of separation, which refers

to the idea that on average any two persons on earth could be

connected through at most five acquaintances [16]. (According to

study of 5.2 billion relationships on Twitter by the social media

monitoring firm Sysomos, the most common friendship distance is

five steps, and the average distance is 4.67 steps [5].)
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Fig. 3. The second set of experiments

V-A2. Scenario 2

To further study the effect of the command executing probability

p on metric N , we ran experiments on the three OSNs defined

in TableI using p values of 0.25, 0.5, 0.75 and 1. The goal is

to determine the point in time where the malware reaches the

maximum number of potential victims. The results, shown in

Fig.2(a), shows that as p increases, the malware propagates faster

(i.e., requires less hops to infect the same number of new victims).

However, as p gets larger, above 0.5, its impact on metric N
becomes negligible. The malware can reach most of the uninfected

users in the OSN within five or six hops of the first victim. Our

results once again are consistent with the six degree of separation

phenomenon in OSNs.

V-A3. Scenario 3

In this experiment, we compare the 10000-node OSN graph (see

TableI) with its equivalent random graph (see TableII). The result in

Fig2(b) shows that metric N , the number of newly infected nodes,

reaches the maximum value when t = 6 (at the 6th hop) in the

original OSN graph, and when t = 4 (at the 4th hop) in the ERG.

At time t = 4, the total number of infected smartphones in the OSN

graph is 1501 versus 4497 in the random graph. This indicates that

the malware propagates faster in the random graph. The reason is

that the ERG has a lower clustering coefficient than the original

OSN graph, 0.003 vs. 0.157. A higher clustering coefficient implies

that a message will circulate for a while in a community among

friends before reaching to other parts of the OSN, slowing down

the malware propagation.

The above result implies that an attacker may prefer to construct

an equivalent random graph from an OSN graph, and use it to

propagate the malicious command instead of the original OSN

graph in order to speed up the malware propagation. (However,

the botnets in the random graph generated much more messages

than those in the original OSN graph as will be discussed next,

which may raise a red flag in the network.)

V-B. The Second Set: Number of Messages

In this set of experiments, we also used the network graphs

and malware propagation model described in SectionIV. The result

graphs in Fig.3 show the total number of messages M sent by all

the infected phones via the OSN over time and the total number of

non-duplicate messages accepted by nodes in the OSN over time

for each of the OSN graphs (defined in Table I) and their equivalent

random graphs (defined in Table II).

We can see that the value M obtained from an ERG is signifi-



cantly higher than that from the original OSN graph. For example,

in the 5000-node networks, when t = 4, the ERG gives M = 8021
messages, while the value M given by the OSN is 4234 messages.

We observe a similar trend on the larger networks. The results

demonstrate that the bots in an ERG send out much more messages

than those in the original OSN. This could alert the network

administrator to the presence of the botnet. Although a random

graph helps a malicious command propagate faster as discussed in

the previous section, it also incurs the risk of making the botnet

more vulnerable to detection. Therefore, equivalent random graphs

are not a good choice for SoCellBot attacks.

VI. DISCUSSION AND FUTURE WORK

For our future work, we will propose an analytical model char-

acterizing the propagation of the malware spread by a SoCellBot

botnet. In this section, we discuss existing models of malware

propagation and direction for our SoCellBot analytical model.

There exists research in the field of epidemiology that models

the behavior of contagious diseases in society [19], [3], [22]. These

models have been applied to modeling of malware propagation in

computer networks [29], [10], [6], [18] and OSNs [19], [10].

Let P (k) be the probability that a node in the network graph

has degree k. The average degree of the network is thus E[k] =
ΣkkP (k). Suppose that the fraction of infected users having degree

k is ik(t). Let λ be the infection rate, which is the probability

of getting infected by an infectious neighbor in a time unit. The

infection rate for nodes with degree k is given by the following

differential equation [19]:

dik(t)

dt
= λk[1 − ik(t)]Θ(t), (1)

where

Θ(t) =

∑
n

nP (n)in(t)
∑

n
nP (n)

=

∑
n

nP (n)in(t)

E[k]
(2)

The factor Θ(t) is the probability that an edge is connected to

an infectious user (smartphone). Variable n takes values in the

range [dmin, dmax], where dmin and dmax are the minimum and

maximum node degree in the OSN graph, respectively.

The above model does not consider the high clustering charac-

teristic of OSNs, which helps to slow down the propagation of a

malware in an OSN[9]. To characterize the impact of the clustering

coefficient C on the propagation speed of a malware, Wu et al.[25]

add a factor f(C) to Eq. (1) and (2), as follows:

dik(t)

dt
= λk[1 − ik(t)]f(C)Θ(t) (3)

Our simulation results presented above suggest that the prob-

ability p of executing the malware plays an important role in

the malware propagation (Fig.1 and 2(a)). We thus suggest a

factor called g(p) that characterizes the effect of probability p on

the malware propagation. The suggested analytical model for our

smartphone malware is as follows:

dik(t)

dt
= λk[1 − ik(t)]f(C)g(P )Θ(t) (4)

The factors f(C) and g(p) will accurately model the effects of

the clustering coefficient and user behaviors, respectively, on the

propagation of the smartphone malware. Solutions to f(C) and

g(p) are left as future work.

VII. CONCLUSION

As smartphones are getting more powerful and capable of

Internet connectivity, they become potential targets of malware

attacks. In this paper, we present the design of a new mobile botnet

that utilizes OSNs to transmit commands and control messages. Our

simulation results indicate that OSNs are more suitable for mobile

botnet communications than the traditional SMS in terms traffic

load, propagation speed, reachability, robustness, detectability and

monetary cost. Most cellular network providers offer free OSN

access to their subscribers. The highly clustered structure of OSNs

make the botnet immune from random node failures. Messages

sent in OSNs are mostly encrypted, making it difficult for cellular

network providers to block these botnet messages. Based on the

simulation results, we also observe that equivalent random graphs

allow a malware to propagate faster than the original OSN graphs.

However, the botnet in an ERG floods the network with a much

higher volume of messages than in the original OSN graph, which

may alert the OSN administrator to the attack. To the best of our

knowledge, our cellular botnet design is the first that exploits OSNs

to transmit commands and control messages, and considers the

characteristics of real social networks (i.e., low average network

distance, high clustering, and power-law distributed node degrees).
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