
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 11, NOVEMBER 2013 1815

A Study of XSS Worm Propagation and Detection
Mechanisms in Online Social Networks

Mohammad Reza Faghani, Student Member, IEEE, and Uyen Trang Nguyen, Member, IEEE

Abstract—We present analytical models and simulation results
that characterize the impacts of the following factors on the
propagation of cross-site scripting (XSS) worms in online social
networks (OSNs): 1) user behaviors, namely, the probability
of visiting a friend’s profile versus a stranger’s; 2) the highly
clustered structure of communities; and 3) community sizes. Our
analyses and simulation results show that the clustered structure
of a community and users’ tendency to visit their friends more
often than strangers help slow down the propagation of XSS
worms in OSNs. We then present a study of selective monitoring
schemes that are more resource efficient than the exhaustive
checking approach used by the Facebook detection system which
monitors every possible read and write operation of every user
in the network. The studied selective monitoring schemes take
advantage of the characteristics of OSNs such as the highly clus-
tered structure and short average distance to select only a subset
of strategically placed users to monitor, thus minimizing resource
usage while maximizing the monitoring coverage. We present
simulation results to show the effectiveness of the studied selective
monitoring schemes for XSS worm detection.

Index Terms—Computer worms, cross-site scripting, malware,
online social networks, worm propagation modeling.

I. INTRODUCTION

O NLINE social networks such as Facebook, Twitter and
MySpace have attracted hundreds of millions of people

worldwide who use this service to connect and communicate
with their friends, family and colleagues geographically dis-
tributed all around the world. This service cuts two ways, how-
ever. On one hand, OSNs are an ideal place for people to gather,
communicate, socialize and share their common interests. On
the other hand, malware creators often exploit the trust relation-
ship among OSN users to propagate automated worms through
online social networks. The first OSN worm, Samy, that hit
MySpace in 2005 by exploiting a cross-site scripting (XSS) vul-
nerability in aMySpace web application infected about one mil-
lion victims within 24 hours [1].
XSS worms exploit existing vulnerabilities in web applica-

tions to propagate themselves. An XSS worm usually infects
members of an OSN in two steps. In the first step, the worm

Manuscript received October 30, 2012; revised February 18, 2013, May 14,
2013, and August 13, 2013; accepted August 19, 2013. Date of publication
September 05, 2013; date of current version October 18, 2013. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Kui Ren.
The authors are with the Department of Computer Science and Engineering,

York University, Toronto, ON, M3J 1P3, Canada.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIFS.2013.2280884

creator embeds the malicious code into his/her (usually fake)
profile or wall. In the second step, any person who subsequently
visits the infected profile will inadvertently execute the em-
bedded malicious code. An XSS flaw (such as the one exploited
by Samy) will help the worm to execute the malicious code in
the visitor’s browser while an AJAX (Asynchronous JavaScript
and XML) technology unintentionally enables the code to
embed itself into the visitor’s profile. The visitor’s profile then
becomes infected, which allows the worm to propagate further
in the OSN [1].
There has not been any in-depth research on XSS worms and

their propagation in online social networks. In fact, the topic
of malware in OSNs has only been studied recently. However,
existing works focus on prevention, detection, containment and
elimination of malware [2]–[7]. Our work in this article focuses
on characteristics of malware propagation in OSNs, which will
allow us to design more effective and resource-efficient coun-
termeasures.
In several OSNs such as Facebook, LinkedIn, Orkut, and hi5,

the relationship (friendship) between two users is mutual. Such
an OSN can be represented by an undirected graph
in which each vertex (or node) represents a user, and
an edge between two vertices indicates the existence of
a relationship (friendship) between the two respective users. In
this article, we consider only OSNs that can be represented by
undirected graphs.
OSNs have a common and distinctive property: the property

of highly clustered communities [8]. That is, an OSN is made
up of highly clustered communities with connections between
members in a community being dense while connections be-
tween different communities are sparse. A strong definition of
community requires all members of a community to be con-
nected to each other, which leads to a definition of clique. A
clique in the graph is a subgraph such that

, , and, for every two vertices in ,
there exists an edge connecting the two. A maximal clique is a
clique that does not exist exclusively within the vertex set of a
larger clique [9].
We identify three major factors that have significant effects

on the XSS worm propagation speed (infection rate) in an OSN.
They are (1) user behaviors, namely, the probability of visiting
a friend’s profile versus a stranger’s; (2) the highly clustered
structure of communities; and (3) community (clique) sizes. We
present analytical models and simulation results that charac-
terize the impacts of the above three factors on the XSS worm
propagation speed. The proposed analytical models and simula-
tion results show that the clustered structure of a community and
users’ tendency to visit their friends more often than strangers
help slow down the propagation of XSS worms in OSNs.

1556-6013 © 2013 IEEE



1816 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 11, NOVEMBER 2013

The obtained results motivated us to go one step further
by identifying and evaluating potential algorithms for more
resource-efficient detection mechanisms. Currently, it is a
common practice by administrators of OSNs such as Facebook
to performs real-time checking on every read and write post.
That amounts to 25 billion posts checked per day, which reaches
650,000 posts checked per second at its peak [4]. Given a huge
OSN such as Facebook, currently having about 900 million
users and growing, this practice is not very efficient. Instead
of this exhaustive checking method, a few methods based on
selective monitoring have been proposed; some are for OSNs
[2], [3], [5] while the others are for other types of networks
[10]. Using these selective monitoring methods, we select only
a set of important users in the network and monitor their and
their friends’ activities and posts for malware threats. These
methods differ in how the set of important users is selected. In
this article, we present a study of several selective monitoring
schemes. In particular, we evaluate and compare their effec-
tiveness in terms of malware detection in OSNs.
The remainder of the paper is organized as follows. In

Section II, we describe the system model and simulation
parameters used in the article. In Section III, we present an
analytical model that characterizes XSS worm propagation in
OSNs based on users’ probability of visiting friends versus
strangers. In Section IV, we study the impact of the clique size
on the propagation speed. We continue our study of XSS worm
propagating in Section V by presenting simulation results that
demonstrate the effect of the clustering coefficient on malware
propagation. In Section VI, we discuss and compare several
selective monitoring schemes used for malware detection.
Related work is presented in Section VII. We conclude the
paper and outline our future work in Section VIII.

II. SYSTEM MODEL AND SIMULATION PARAMETERS

We represent an OSN using an undirected graph
in which each vertex (or node) represents a user, and
an edge between two vertices indicates the existence
of a relationship (friendship) between the two respective users.
There exist many OSNs in which the relationship (friendship)
between two users is mutual (e.g., Facebook, LinkedIn, Orkut),
and they thus can be represented by undirected graphs.
An OSN has the following three distinct characteristics [11],

[12] that make worm propagation different from that in other
types of networks (e.g., computer networks).
1) A social network typically has a low average network dis-
tance, approximately equal to , where

is the number of vertices (people), and is the average
vertex degree of the graph .

2) Node degrees of a social network graph tend to be or, at
least approximately, power-law distributed.

3) Social networks typically show a high clustering property,
or high local transitivity. That is, if person knows
and , then and are likely to know each other. Thus
, and form a friendship triangle. Let denote the
degree of a vertex . Then the number of all possible tri-
angles originated from vertex is . Let de-
note the number of friendship triangles of a vertex in an

TABLE I
OSN GRAPH USED IN OUR SIMULATION

OSN graph. Then the clustering coefficient of vertex
is defined as . The clustering

coefficient of the graph is the average of the clustering co-
efficients of all of its vertices. Clustering coefficients of
real-life OSNs range from 0.1 to 0.7 [11], [12].

There exist a few algorithms that can generate social net-
work graphs with the above characteristics [11], [13]. For the
simulations reported in this paper, we use the algorithm pro-
posed by Holme and Beom [11]. We generated four OSN graphs
of sizes , , , and

nodes. The parameters and characteristics of
the OSN graphs are listed in Table I.
We define an event or a visit in an OSN to be the action of vis-

iting (accessing) a user’s profile by some other user. We assume
that events in an OSN happen consecutively one after another.
(Two different users may click on the same profile at the same
time. Their access requests, however, will be queued at a server
consecutively, waiting to be processed. The two events are thus
considered to happen one after the other.)
The simulation software is implemented using MATLAB.

The simulation is of discrete-event type, consisting of discrete
virtual time slots. A time slot is equivalent to an event defined
above. In each time slot, a user (node) is chosen randomly
with a probability and the user will visit a friend’s
profile with a probability and a nonfriend user’s profile with
probability . Two users are friends if and only if their cor-
responding vertices in the OSN graph is connected by an edge

. Each data point in the result graphs is the average of
100 runs, each with a different random seed.
If a user’s browser has add-on protections (e.g., NoScript

add-on for Firefox browsers) to prevent XSS scripts from run-
ning automatically, that user is considered not vulnerable to XSS
worms. We will consider only vulnerable users in our analysis
and simulations.

III. USER BEHAVIORS

In the case of XSS malware, user behaviors can be char-
acterized by the tendency of visiting friends’ profiles versus
strangers’ profiles, i.e., by the visiting-friends probability .We
assume that a user’s profile is always accessible to all of his/her
friends. However, a person’s profile may not be available to all
strangers. We assume that the probability that a stranger’s pro-
file is accessible to a user is . As our proposed analytical
model and simulation results will show, visiting friends more
often than stranger helps to contain a malware within a commu-
nity, slowing down its propagation.



FAGHANI AND NGUYEN: STUDY OF XSS WORM PROPAGATION AND DETECTION MECHANISMS IN ONLINE SOCIAL NETWORKS 1817

Fig. 1. User behaviors: impacts of the visiting-friends probability.

TABLE II
VARIABLE DEFINITIONS

A. Analytical Model

Table II lists the definitions of the variables used in the fol-
lowing analysis. We compute the total number of infected pro-
files at the end of the th event, given , ,
and as initial conditions.
The probability that an uninfected user gets infected at the

end of the th event is:

(1)

Eq. (1) states that a user will become infected if he/she visits
an infected friend with a probability or an infected stranger
with a probability . If we take the sum of over
all users, the result is the average number of infected profiles in
the OSN at the end of the th event, which is denoted by

.

(2)

The number of friends of user that are infected at the end of
the th event is as follows:

(3)

The number of infected users in the whole OSN at the end of
the th event is as follows:

(4)

Numerical Results: Assuming that all users in the network
have the same visiting-friends probability and ,
we plotted graphs of function given nodes
(users), , and three different values of , 0.5 and
0.9. The graphs in Fig. 1(a) show that as people visit their friends
more often than strangers , the worm propagation
is slower. For instance, after the 4000th event, there are 2,980
infected users in the network when versus only 350
when . The reason is that the worm circulates for a while
within a group of friends (a community) before reaching out to
other parts of the network.

B. Simulation Results

To validate the proposed model, we performed simulations
using the two OSN graphs of sizes 3,000 and 10,000 nodes as
described in Section II. We assume that all users have the same
visiting-friends probability . In each time slot, an uninfected
user is chosen randomly based on a uniform distribution, who
will visit one of his/her friends with probability , or a stranger
with probability of . We recorded the number of infected
users at the end of each event given , 0.5 and 0.9 to
plot the graphs shown in Fig. 1(b) and Fig. 1(c). The simula-
tion results show that increasing the value of slows down the
propagation. The results are consistent with the proposed model
presented above.

IV. CLIQUE SIZES

In a highly clustered OSN, users form small cliques (also
called communities or groups) [14]. Members of a clique tend
to visit each other (their friends) more often than strangers
(people outside the clique). Assume a network of users that
are divided into small groups (cliques). A clique is defined
as a maximal complete subgraph of three or more nodes. Given
the tiny social network in Fig. 4, two examples of cliques are

and .



1818 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 11, NOVEMBER 2013

Fig. 2. Impacts of the number of cliques.

Assume that each clique in a social network has members
and clique members are only connected to each other and not to
other cliques. Thus, . Each member of a clique
will visit members in the same clique (friends) with a proba-
bility and visit members outside the clique (strangers) with
probability . Let denote the current number of infected
users in clique . If a user from clique visits a profile in
the OSN, the probability that will get infected is as follows:

(5)
Thus the average number of new infections in the next visit

is as follows:

(6)

(7)

Expression (7) shows that the infection rate (propagation
speed) depends on both the community size and the vis-
iting-friends probability .
We carried out two experiments using a network of

3,000 nodes1 to study the effect of the clique size and
the visiting-friends probability on the infection rate. We
divide users into cliques where . This ensures
that each clique has at least three members. If is not divisible
by then some cliques will have one member more than the
others. For instance, if and , then 20 cliques
have 3 members each, and the other 10 cliques have 4 members
each. This allows all cliques to have approximately the same
size.
In the first experiment, we measured the number of events

required in order to infect 10%, 50% and 90% of the network
population, respectively, assuming a visiting-friends probability

1We were able to simulate only the smaller network in these experiments
because such an experiment required a very large amount of memory.

. (A higher number of events required implies a slower
propagation.) The results given in Fig. 2(a) show that as the
clique size decreases and thus the number of cliques increases,
it requires more events to infect the same number of people. In
other words, increasing the number of cliques leads to slower
propagation. For instance, when the number of cliques goes
from 200 to 600, the number of events required in order to
infect 90% of the network population increases from 7,980 to
11,780 events, or 1.5 times.
To explain the simulation results, consider the following ex-

ample with two scenarios. In the first scenario, all 3000 mem-
bers of the OSN form one clique. In the second scenario, the
OSN is divided into 100 cliques, each having 30 members. As-
sume a visiting-friends probability . That is, every user
visits only his/her friends in the same community and never
a person outside his/her community. In the first scenario, if a
user is infected by an XSS worm, all other 2,999 members
will eventually get infected since they all belong to the same
clique and interact with each other. In the second scenario, only
29 members residing in the same clique as user will get in-
fected, and the rest of the OSN will not since . We can
consider user ’s community as being quarantined from the rest
of the OSN. Therefore, the time (or number of events) needed to
infect percent of the population, where , is infinity. That
is, a large number of small cliques helps slow down the worm
propagation (or stops it in cases where ). In the above
experiment, we set the visiting-friends probability to 0.9, al-
lowing the worm to propagate from the initial infected user’s
clique to other cliques. However, the same explanation applies:
a large number of small cliques makes the propagation slower
than a few big cliques.
In the second experiment, we varied both the number of

cliques and the visiting-friends probability , and measured
the number of events required to infect 90% of the popu-
lation. We observe the following trends from the results given
in Fig. 2(b). First, given the same visiting-friends probability
, as the number of cliques increases, more events are required
to infect 90% of the population. That is, a large number of
small cliques helps slow down the propagation compared
with a smaller number of big cliques. This observation is
consistent with that from the first experiment discussed above.
Second, given the same number of cliques , increasing the vis-
iting-friends probability slows down the malware propagation



FAGHANI AND NGUYEN: STUDY OF XSS WORM PROPAGATION AND DETECTION MECHANISMS IN ONLINE SOCIAL NETWORKS 1819

speed. This is consistent with the model and simulation results
presented in Section III. Third, and most interestingly, the
impact of the visiting-friends probability is more pronounced
when the number of cliques is high. For instance, when goes
from 0.3 to 0.9, increases from 36,400 to 99,800 events, or
2.75 times, given cliques. When cliques,

increases from 40,700 to 136,000 events, or 3.4 times. This
observation again emphasizes the advantage of having a large
number of small communities in an OSN. In times of XSS
worm attacks, if each of these communities is monitored, this
will slow down the worm propagation, allowing the network
administrator more time to detect and eliminate the worm.
This concept is consistent with disease prevention and control
practices in the field of health care.

V. CLUSTERING COEFFICIENTS

In addition to the visiting-friends probability and clique size,
the highly clustered structure of an OSN, or its clustering co-
efficient, also plays an important role in the propagation speed
of a malware. To illustrate this point, we compare the propaga-
tion speed of a malware in a synthesized OSN with that in an
equivalent random graph (ERG). Given an OSN graph, we can
use an algorithm such as the one by Viger and Latapy [15] to
reconnect the vertices of the original OSN graph (i.e., to gen-
erate a different set of edges) so that the resulting ERG still has
the same number of nodes, number of edges, and maximum and
average node degrees as the original OSN. However, since the
edges are different, the ERG will have a different clustering co-
efficient, usually much lower than the clustering coefficient of
the original OSN graph.
Given the two OSN graphs with sizes and

nodes and clustering coefficients
and , respectively, as described in Section II, we cre-
ated two ERGs of the same sizes with clustering coefficients

and , respectively. We recorded the
number of infected users at the end of each event, assuming a
visiting-friends probability in all four networks. The
results in Fig. 3(b) illustrate the number of infected users as a
function of the number of events (visits). The graphs show that,
although an OSN graph and its ERG share the same probability
and other parameters (e.g., number of edges, maximum and

average node degrees), the infection rates are different in the
two networks. The propagation is slower in the original OSN
graph than in the ERG thanks to its higher clustering coeffi-
cient. For example, in the 3000-node networks, after 40,000
events, there are 1, 300 infected users in the OSN graph versus
2,100 infected users in the ERG. Given a high visiting-friends
probability, people tend to visit their friends within a commu-
nity much more often than strangers. Given a high clustering
coefficient, a malware will circulate for a while in a community
among friends before reaching out to other parts of the OSN,
slowing down the malware propagation.
The above analytical models and simulation results show that

users’ tendency to visit their friends more often than strangers
and the community structure help slow down the propagation of
XSS worms in OSNs. The issue is how we can take advantage
of these properties to make malware detection more resource-

efficient than the exhaustive checkingmethod used by Facebook
[4].
In this article, “resource efficiency” is defined as follows.

Suppose that the OSN is capable of scanning (monitoring)
nodes in a fixed period of time . To scan one node, the system
uses scanning techniques to detect a malware, and each tech-
nique is executed by a request from the system. Therefore, in the
time interval , the monitoring system is capable of handling

requests. Suppose that the processing power needed to
handle these requests is equal to units, where a unit can be
defined as the number of machine instructions executed in time
interval .
By monitoring only a subset of strategically selected nodes,

we reduce the number of nodes to be scanned from to a frac-
tion of , say, (at the cost of potentially more infections
before the first detection). Thus, the monitoring system receives
on average scanning requests, resulting in less pro-
cessing power needed, i.e., .
Given less processing power needed to scan less nodes, the

system has the option of utilizing the available processing power
to apply more rigorous and power-demanding scanning tech-
niques, that can lead to the detection of highly sophisticated or
zero-day malware.
In this article, we explore the possibility of using the selec-

tive monitoring approach instead of the exhaustive checking
method. In particular, we present a study of potential selective
monitoring schemes. In a selective monitoring scheme, we do
not monitor every read/write post or every user in the OSN. In-
stead, we monitor only a subset of users and their friends’ activ-
ities. We can take advantage of the characteristics of OSNs as
discussed above to select this subset of users to be monitored, so
that the coverage is maximized while we can minimize resource
usage. The subset of users to be monitored is selected using dif-
ferent metrics that take into account the highly clustered struc-
ture, short average distance and node degree distribution of a
social network.

VI. A STUDY OF SELECTIVE MONITORING SCHEMES

In these schemes we first select a set of important users and
monitor these users’ and their friends’ activities and read/write
posts for malware threats. We call these important users candi-
dates to be monitored or “candidates” for short. After selecting
candidates, we apply monitoring techniques such as those used
in the Facebook system [4], PathCutter [6], or Spectator [7] in
a distributed manner to monitor only the candidates’ and their
friends’ posts.
There are two questions to be answered. How do we select

candidates to be monitored? How many candidates should we
deploy in anOSN?We address the first question in Section VI-A
by examining five metrics for selecting monitored candidates.
The answer to the second question involves a trade-off between
resource consumption and the required detection time. Themore
candidates we deploy, the faster we can detect a malware prop-
agating in the network.

A. Candidate Selection Metrics

We have identified five metrics that can be used to select
candidates to monitor, all based in the relative importance of a



1820 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 11, NOVEMBER 2013

Fig. 3. Impacts of clustering coefficients: OSN graphs versus ERGs.

TABLE III
DIFFERENT METRIC MEASURES BASED ON FIG. 4

Fig. 4. Tiny social network graph.

node in the network. The five metrics are node degree, closeness
[16], betweenness [16], PageRank [16] and cross-clique con-
nectivity. The closeness, betweenness and PageRank metrics
leverage upon the short average distance property of an OSN to
detect malware propagation. The node degree and cross-clique
connectivity metrics, on the other hand, take advantage of the
highly clustered structure of an OSN for malware detection. Fol-
lowing are the definitions of the five metrics.
1) Node Degree: This is the simplest metric among the five.

The degree of a node is the number of edges incident
on . Given the example OSN in Fig. 4, if we selected two can-
didates tomonitor, they would be nodes and . Their degrees
are higher than those of the others (see Table III):
and .
A network sanitization scheme suggested by Yan et al. [2]

selects nodes with the highest degrees, inspects messages going
in and out from these nodes, and removes embedded malicious
URL, if any.
2) Closeness: To measure the closeness of a node in a graph

, we first calculate the farness of that node. The farness
of the node is defined as the sum of the lengths of the shortest
paths from that node to the other nodes in . The closeness
is defined as the inverse of the farness. Hence, the higher the

closeness of a node is, the lower its total distance to all other
nodes. This measure represents how fast a message sent by node
will reach all other nodes, assuming node-to-node delay is the
same on all links. Let denote the length of (number of
hops on) the shortest path between and , the closeness
of node is defined as:

(8)

In the example OSN in Fig. 4, the top two candidates to be se-
lected based on the closeness metric are and . Their close-
ness values are and , higher than
those of the other nodes (see Table III).
As an attack strategy, it would be wise to infect nodes with

high closeness values first, since they are the closest to the
other nodes. This would allow a malware/virus to propagate
fast throughout the whole network. By the same reasoning,
Tang et al. [17] also select nodes with high closeness values as
starting points to distribute “disinfecting” patches in a mobile
network in order to contain an active malware.
3) Betweenness: The betweenness of a node is de-

fined as the number of shortest paths from all possible pairs in
a graph that traverse node .

(9)

where denotes the total number of shortest paths from a node
to a node , and represents the number of paths that

traverse node . The betweenness of node determines the
influence of on the information flow passing through the node.
The betweenness values of the nodes in the example OSN are
given in Table III, which shows that and are the top two
candidates to monitor. Their betweenness values are the highest
with and .



FAGHANI AND NGUYEN: STUDY OF XSS WORM PROPAGATION AND DETECTION MECHANISMS IN ONLINE SOCIAL NETWORKS 1821

Tubi et al. [10] studied a similar metric named “group
betweenness” which measures the betweenness of a group of
nodes instead of an individual node. Nodes with high “group
betweenness” values are monitored in order to slow down
malware propagation in an e-mail network.
4) PageRank: PageRank is an algorithm that assigns a nu-

merical weighting to each entity of a collection of entities with
reciprocal references. PageRank is used by the Google Internet
search engine to rank web pages on the Internet [18]; in this
case, entities to be weighted are web pages. If a website links
to a website and links to , they are reciprocally linked
(reciprocally referenced). In this context, a PageRank value of a
website represents the likelihood that Internet users who start
on a random page and then follow random links (on that page
or from the entire web) will arrive at website .
If we apply this concept to an OSN, then entities are users

of the OSN, and reciprocal references are friendships between
users. Heideman et al. [19] use the PageRank metric to identify
key users in an OSN. In this context, a PageRank value of a user
can be used to indicate the likelihood that a malware that starts
randomly somewhere in the OSN and propagates in the network
will reach and infect . Therefore, we should monitor users with
high PageRank values in order to catch a malware in its early
stage of propagation.
PageRank values of nodes (web pages) in a network can

be computed either iteratively or algebraically [20]. These
two methods are described in Appendix A. Table III lists the
PageRank values of the nodes in the example OSN in Fig. 4,
calculated using the iterative method. Nodes and have
the highest PageRank values, and thus the highest probability
of being infected by a malware starting at a random node in the
network. Thus they should be candidates for monitoring.
5) Cross-Clique Connectivity: We propose a new metric that

measures the connectivity of a node to different communities or
cliques. The cross-clique connectivity of a node is the
number of cliques to which belongs. A node with a high
value is called a highly cross-connected node. In every day life,
a well-cross-connected person would travel among many com-
munities, and thus be a potential disease carrier from one com-
munity to another in case of a disease outbreak or epidemic.
Therefore, this person should be monitored in such a case. We
apply the same concept to monitoring users in an online social
network.
The algorithm for computing the cross-clique connectivity of

a node is given in Appendix B. The example social network in
Fig. 4 has a total of 17 cliques, which are listed in Appendix C.
In this example network, node has the highest cross-clique
connectivity, . The cross-clique connectivity values
of the other nodes are listed in Table III. If we wish to select one
more highly cross-connected node to monitor in addition to ,
any of the following nodes can be chosen: since
they have the same cross-clique connectivity value of 11.
In the above examples, nodes and are almost always

selected as the best nodes to monitor. However, in real large
networks, the set of candidates given by a metric may not be the
same as the set given by another. For instance, the node with the
highest degree in an OSN may not be the node with the highest
closeness or betweenness value in that network.

Given several metrics defined in the literature for selecting
candidates to be monitored, which one should we choose to
apply to malware detection in a social network? We performed
simulations to answer this question.

B. Simulation Settings

We carried out simulations to study the effectiveness of the
above five metrics with respect to malware detection. We used
three OSN graphs of 10,00, 20,000 and 100,000 nodes whose
parameters are listed in Table I. For each metric, we selected
the top 1, 7, 15 and 20 candidates, respectively, and set up the
system to monitor their friends’ activities and posts.
We define an event in the simulation to be the action of vis-

iting or accessing a user’s profile by some other user.We assume
that events in an OSN happen consecutively one after another.
(Two different users may click on the same profile at the same
time. Their access requests, however, will be queued at a server
consecutively, waiting to be processed. The two events are thus
considered to happen one after the other.)
The simulation software is implemented using MATLAB.

The simulation is of discrete-event type, consisting of discrete
virtual time slots. A time slot is equivalent to an event defined
above. At the start of each run, we choose a node randomly using
a uniform distribution and infect it with the malware. In each
time slot, a user (node) is chosen randomly with a probability
of and the user will visit a friend’s profile with a proba-
bility and a nonfriend user’s profile with probability

. Two users are friends if and only if their corre-
sponding vertices are adjacent in the OSN graph. User will
become infected if she visits an infected friend with a proba-
bility or an infected stranger with a probability .
The monitoring action is simulated as follows. In each time

slot, the simulation code at each candidate’s node checks the
messages read/posted by the candidate’s friends. If one of these
messages contain the malicious code (which is identified by a
unique signature), the code will detect its presence and raise an
alarm. The malware is considered detected and the simulation is
ceased. We then count the number of nodes that were infected
(i.e., read/posted the malicious code) at this point and record
that number.
Each data point in the result graphs is the average of 100 runs,

each with a different random seed.

C. Simulation Results

The numbers of infections before the first detection given by
the five metrics are shown in Fig. 5(a), 5(c) and 5(e) for the
10,000-node, 20,000-node and 100,000-node networks, respec-
tively. We also magnify those graphs for x-axis values from 7
to 20 candidates as shown in Fig. 5(b), 5(d) and 5(f).
The results in Fig. 5(a), 5(c) and 5(e) show that the five met-

rics have similar effectiveness in terms of malware detection
time. The reason is that the set of candidates computed from one
metric can overlap partially or completely with the set computed
by another metric, depending on the network topology. For in-
stance, in the 100,000-node network, 95% of the top 20 candi-
dates are the same in all five cases (metrics), leading to their sim-
ilar performance with respect to detection time. We note, how-
ever, that the closeness metric is the worst performer among the



1822 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 11, NOVEMBER 2013

Fig. 5. Performance of different selective monitoring metrics.

five, and the cross-clique connectivity metric is always among
the best performers.
Given that several metrics offer similar performance in terms

of malware detection time, the decision as to which metric we
should use to select candidates can be made using other fac-
tors, such as the complexity of computing the set of candidates
to be monitored. Table IV in Appendix D shows the complexi-
ties of the algorithms used for selecting candidates based on the
five metrics. The information suggests that the node degree and
PageRank metrics offer the best of both worlds, detection time
and computation overhead.
The graphs also show a trade-off between resource con-

sumption and detection time: the more nodes are monitored,
the earlier a malware can be detected (i.e., the less nodes are

TABLE IV
COMPLEXITY OF DIFFERENT SCHEMES

infected before the malware is detected). For example, in the
100,000 node case in Fig. 5(e), given 7 candidates to monitor,
the number of users infected before the first detection is approx-
imately 55 users. Given 20 candidates to monitor, the number
of infections before the first detection is reduced to 34 users.



FAGHANI AND NGUYEN: STUDY OF XSS WORM PROPAGATION AND DETECTION MECHANISMS IN ONLINE SOCIAL NETWORKS 1823

Fig. 6. Performance of the random selection scheme.

To demonstrate the effectiveness of the selective monitoring
approach, we repeated the above experiments, but selected the
candidates to monitor randomly. The results of this set of exper-
iments are illustrated by the graph in Fig. 6(a), with the mag-
nified curves shown in Fig. 6(b). The results indicate that the
random selection approach takes longer to detect a malware than
any of the above five metrics. For instance, in the 100,000-node
network with 15 candidates to monitor, the average number
of infections before the first detection is 32.84 users for the

cross-clique connectivity metric, and 2407 users for the random
selection scheme, a staggering difference of more than 75 times.
To further illustrate the advantage of the selective moni-

toring method versus random candidate selection, we add the
curve of the closeness metric in Fig. 5(e) to Fig. 6(a), resulting
in Fig. 6(c), with the magnified curves shown in Fig. 6(d).
Figs. 6(c) and 6(d) show that even the worst performer of
the selective monitoring method—the closeness metric—still
outperforms the random candidate selection approach. For



1824 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 11, NOVEMBER 2013

instance, in the 100,000-node network with 7 candidates to
monitor, the average number of infections before first detection
is 62 users for the closeness metric, and 5010 users for the
random selection scheme, a difference of about 80 times.
To further compare the random selection approach with the

selection scheme based on the closeness metric, we increase the
number of candidates to monitor to 50, 100 and 200 nodes. The
result in Fig. 6(e) demonstrates that the selective monitoring
method outperforms the random selection scheme in all cases.
For example, given 100 candidates to monitor, the average
number of infections before the first detection is 20 users for
the closeness metric, and 356 for the random selection scheme,
a difference of approximately 18 times.
In summary, most metrics defined in the literature have sim-

ilar performance in terms of detection time. However, the close-
ness metric in general is the worst performer among the five, and
the cross-clique connectivity metric is always among the best
performers. All the five metrics outperform random selections
of monitored candidates by a large margin.

VII. RELATED WORK

Among the first works on malware propagation in online
social networks are [1], [21]. Faghani and Saidi [21] model
XSS worm propagation using the susceptible-infected (SI)
model [22] and the visiting-friends probability. Their proposed
model shows that the infection rate is inversely proportional
to the visiting-friends probability. They also present simula-
tion results of malware propagation speed as functions of the
visiting-friends probability and initial number of infections in
[1]. Our propagation model in this paper is not based on the SI
model and our simulation results are far more extensive, taking
into account the highly clustered structure of social network
and clique sizes.
Faghani et al. [23] use simulation to show that users’ prob-

ability of executing a malware can speed up the propagation
speed of Trojan worms exponentially.
Several other researchers also study malware propagation in

OSNs via simulations [2], [3], [10]. However, they did not use
graphs with the characteristics of OSNs (i.e., high clustering
coefficient, and low average shortest path distance) [3], [10],
or limited their simulations to only a single network [2].
Nguyen et al. [24] study the PageRank metric for the purpose

of containing misinformation in an OSN.
Yan et al. [2] describe three approaches for node monitoring

in order to detect malware in OSNs using (1) node degree
metric, (2) user activities and (3) network partition into small
islands. In the first approach, nodes with the highest degrees
are chosen to be monitored, as discussed in Section VI-A1.
In the second approach, the most active nodes are selected
for monitoring. Examples of the most active nodes are major
broadcasting companies such as CNN and BBC, which post
news updates frequently throughout the day via OSNs such
as Facebook and Twitter. In the third approach, an OSN is
partitioned into small islands, and every message exchanged
between islands is inspected for potential viruses/malware.
The goal is to contain a computer worm within a region of the
network and stop it from propagating further. This approach,
however, is applicable only to active worms that propagate

themselves through a victim’s friend list. Passive worms such
as XSS worms, on the other hand, stay dormant in an infected
profile, waiting for a user to click on that profile, visit it and
become infected. Therefore, containing XSS worms is not
pertinent as they do not actively propagate themselves. A more
relevant method is to detect their presence via monitoring and
then eliminate them. Unlike our work in this paper, Yan et
al.’s paper does not provide quantitative results to illustrate the
effectiveness of their suggested selective monitoring schemes
(except for the third approach for which the authors gave an
example that required 78% of all edges (friendships) to be
inspected in order to contain the propagation within 10% of the
population).
Xu et al. [3] propose a correlation-based scheme to mitigate

the effects of active worm propagation in OSNs. They assign
“decoy friends” to a subset of users, and the “decoy friends”
will monitor network activities. The main disadvantage of this
scheme is the difficulty of getting users’ consent to add “decoy
friends” to their friend networks as this may infringe upon their
privacy. Xu et al.’s scheme defends against active worms in
OSNs such Koobface and is not designed for detection of pas-
sive worms such as XSS worms.
Cao et al. presented PathCutter [6], an XSS detection tool

that can detect traditional XSS, DOM-based XSS and content
sniffing XSS vulnerabilities. They achieve their goal by two in-
tegral mechanisms: view separation and request authentication.
They divide the web application into different views, then Path-
Cutter isolates different views on the browser side. The solution
also provides a per-URL session token and referrer-based view
validation to protect against other XSS-related types of attacks.
PathCutter can be implemented using server code modification
or as an standalone proxy server. The main disadvantage of the
PathCutter solution is the rendering latency introduced by Path-
Cutter at the client side. For example, in a post with 45 com-
ments, the system will respond with 30% higher latency com-
pared with the case where PathCutter is not implemented.
Livshits et al. [7] designed a detection and containment

method called Spectator [7]. Spectator uses a tainting and tag-
ging approach to detect the spread of JavaScript worms which
is implemented as a proxy. Whenever a new tag is inserted into
the Spectator system, a node is added to a tracking graph called
“propagation graph”. When the diameter of the propagation
graph exceeds a user-defined threshold , the system raises an
alarm. Choosing an appropriate threshold value is not a simple
task: a low threshold will cause many false positive alarms in
the system, while a high threshold will detect a malware only
after a large number of users have been infected.
Sun et al. [27] proposed a client-side solution to detect XSS

worms using a Firefox plug-in. As part of their approach, they
use string comparison to detect the worm propagation which is
vulnerable to polymorphic attacks.

VIII. CONCLUSION

We present analytical models and simulation results that char-
acterize the propagation of XSS worms in OSNs. We show that
the propagation speed of an XSS worm in an OSN depends
on three major factors. First, if users visit their friends more
often than strangers, this will help slow down the propagation.



FAGHANI AND NGUYEN: STUDY OF XSS WORM PROPAGATION AND DETECTION MECHANISMS IN ONLINE SOCIAL NETWORKS 1825

Second, a large number of cliques also contributes to decreasing
the speed of propagation. Third, the highly clustered structure
of an OSN helps contain an XSS worm within a community for
some time before it reaches other communities, slowing down
the propagation.
The above results show that it is feasible to detect a malware

in its early stage of propagation by monitoring only a subset
of users of an OSN and taking advantage of the characteristics
of OSNs. We present a study of five metrics used to select
candidates for monitoring: node degree, closeness, between-
ness, PageRank and cross-clique connectivity. Our simulation
results show that the metrics perform similarly in terms of
detection time, with the cross-clique connectivity being among
the top performers. There are metrics that offer a good trade-off
between detection time and computation overhead such as node
degree and PageRank. All five metrics outperform random
placements of monitored candidates by a large margin.
In our future work, we will extend the analyses and simula-

tions to OSNs represented by directed graphs such as Twitter.
We will also extend the analysis of the clique size to cover
cross-clique scenarios. In addition to the network topology and
strategic positions of monitored nodes in the network, user ac-
tivities also play an important role in the propagation of mal-
ware. In the future, we will study the impacts of user activities
in malware propagation using real-world data.

APPENDIX

A. PageRank Algorithms

1) The Iterative Method: In the first round at , an initial
probability distribution is assumed for every node as

, where is the total number of nodes in the graph. In the
th iteration, the PageRank value of each node is computed

using the following equation:

(10)

where is the th vertex, is the set of nodes adjacent to
, is the number of edges incident on node , and is the

damping factor where . The algorithm will converge
to a certain value for each vertex which is the corresponding
PageRank value of that vertex [18].
2) The Algebraic Method: Given vector defined as

follow:

...

we have

(11)

Matrix equals to , where matrix denotes the
adjacency matrix of the graph and is the diagonal matrix
with the number of edges incident on a node in the diagonal.
Matrix is a column vector of length that contains only

number one. The algorithm stops when, for a small value of ,
.

B. Algorithm for Finding Highly Cross-Connected Nodes

Given a graph representing an OSN, each vertex
represents a user and an edge represent the existence of a rela-
tionship (friendship) between the two respective users. We first
find small cliques within an OSN. Finding cliques in a graph
is a NP-complete problem [25]. Thus a few heuristics [26] have
been proposed to solve the problem. After obtaining the cliques,
we search for a set of well-cross-connected members, those who
belong to several cliques. We apply a heuristic such as the one
by Tsukiyama et al. [26] to find the cliques of . The results
is a set of cliques , where and

. A vertex may be present in several cliques if the
corresponding user belong to several communities. We assign a
counter to each user . We then examine the cliques one
by one. If a user belongs to a clique, we increment the counter
by one. After all the cliques have been examined, counter

contains the number of cliques to which user belongs to. We
then sort the counters in the descending order. The algorithm for
finding list of well-cross-connected members is summarized
by Algorithm 1.

Algorithm 1 Finding well-cross-connected nodes

1: Input: a set of cliques ; a set of
counters

2: Output: Ordered set of well-cross-connected nodes stored
in ;

3: for do

4: for each user in do

5:

6: end for

7: end for

8: sort in nonincreasing order

9: return

C. List of Cliques

Following are the 17 cliques in the example social
network graph in Fig. 4: , ,

, , , ,
, , , ,
, , , ,
, , and .

D. Complexity of the Algorithms

The complexity of the algorithms for computing the five met-
rics discussed in Section VI is given in Table IV, where ,
, , and denote the number of vertices, number of edges,

maximum degree of the graph, number of maximal independent
sets of the graph and the number of top highest in closeness cen-
trality respectively.



1826 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 11, NOVEMBER 2013

TABLE V
RUNNING TIME OF THE ALGORITHMS IN SECONDS

We ran experiments to measure the actual running time of
each algorithm using the four OSNs whose characteristics are
listed in Table I. We used a 64-bit computer with an Intel(R)
Core i7-2700K 3.5 GHz processor running Windows 7 and
16 gigabytes of RAM. Table V summarizes the results. Each
number in the table is the average from 10 runs using different
random seeds.
It is obvious that the larger the graph, the longer the running

time. These results show that the node degree and PageRank
metrics offer a good trade-off between computation overheads
and detection time (see also Fig. 5). Note, however, that in a real
OSN the algorithms are not executed in real-time, but only pe-
riodically after several changes have been made to the network
(e.g., users join/leave the OSN, new friendships (edges) added
to the graph).

ACKNOWLEDGMENT

The authors would like to thank Prof. A. Matrawy and
Prof. C.-H. Lung from Carleton University (Ottawa, Canada)
and Prof. H. Saidi from Isfahan University of Technology
(Iran). They would also like to thank the reviewers for their
thorough reviews and helpful suggestions.

REFERENCES
[1] M. R. Faghani and H. Saidi, “Social networks XSS worms,” in Proc.

Comput. Sci. Eng. Int. Conf., Vancouver, BC, Canada, 2009, pp.
1137–1141.

[2] G. Yan et al., “Malware propagation in online social networks:
Nature, dynamics, and defense implications,” in Proc. 6th ACM
Inform., Comput. Comm. Security Symp., Hong Kong, China, 2011,
pp. 196–206.

[3] W. Xu et al., “Toward worm detection in online social networks,” in
Proc. 26th Annu. Comput. Security Applicat. Conf., Austin, TX, USA,
2010, pp. 11–20.

[4] T. Stein et al., “Facebook immune system,” inProc. 4th Social Network
Syst. Workshop, Salzburg, Austria, 2011, pp. 8:1–8:8.

[5] N. P. Nguyen et al., “A novel method for worm containment on dy-
namic social networks,” in Proc. Military Comm. Conf., San Jose, CA,
USA, 2010, pp. 2180–2185.

[6] Y. Cao et al., “PathCutter: Severing the self-propagation path of XSS
JavaScript worms in social web networks,” in Proc. 19th Network Dis-
tributed Syst. Security Symp., San Diego, CA, USA, 2012.

[7] B. Livshits and W. Cui, “Spectator: Detection and containment of
JavaScript worms,” in Proc. USENIX Annu. Tech. Conf., Boston, MA,
USA, 2008, pp. 335–348.

[8] X. Wu and Z. Liu, “How community structure influences epidemic
spread in social networks,” Physica A, Statist. Mech. Applicat., vol.
387, no. 2–3, pp. 623–630, 2008.

[9] S. Boccaletti et al., “Complex networks: Structure and dynamics,”
Phys. Rep., vol. 424, no. 4–5, pp. 175–308, 2006.

[10] M. Tubi et al., “Deployment of DNIDS in social networks,” in Proc. In-
tell. Security Informatics, New Brunswick, NJ, USA, 2007, pp. 59–65.

[11] P. Holme and J. Beom, “Growing scale-free networks with tunable
clustering,” Phys. Rev. E, vol. 65, no. 2, p. 026107, 2001.

[12] A. Yong-Yeol et al., “Analysis of topological characteristics of huge
online social networking services,” in Proc. 16th World Wide Web Int.
Conf., Banff, AB, Canada, 2007, pp. 835–844.

[13] J. Davidsen et al., “Emergence of a small world from local interactions:
Modeling acquaintance networks,” Phys. Rev. Lett., vol. 88, no. 12, p.
128701, 2002.

[14] A. Mislove et al., “Measurement and analysis of online social net-
works,” in Proc. 7th ACM USENIX Internet Measurement Conf., San
Diego, CA, USA, 2007, pp. 29–42.

[15] F. Viger and F. Latapy, “Efficient and simple generation of random
simple connected graphs with prescribed degree sequence,” in Proc.
11th Computing Combinatorics Int. Conf., Kunming, China, 2005, pp.
440–449.

[16] M. J. Newman, “Measurement and metrics,” inNetworks: An Introduc-
tion. London, U.K.: Oxford Univ. Press, 2010, ch. 7, pp. 168–198,
sec. II.

[17] J. Tang et al., “Exploiting temporal complex network metrics in mobile
malware containment,” in Proc. World of Wireless Int. Symp., Lucca,
Italy, 2011, pp. 1–9.

[18] L. Page et al., The PageRank Citation Ranking: Bringing Order to the
Web Stanford Univ., Stanford, CA, USA, 1998, Tech. Rep..

[19] J. Heidemann et al., “Identifying key users in online social networks:
A PageRank based approach,” in Proc. 31st Inform. Syst. Int. Conf., St.
Louis, MO, USA, 2010, p. 79.

[20] A. Arasu et al., “PageRank computation and the structure of the Web:
Experiments and algorithms,” in Proc. 11th World Wide Web Int. Conf.,
Honolulu, HI, USA, 2002.

[21] M. R. Faghani and H. Saidi, “Malware propagation in online social net-
works,” in Proc. 4th Malicious Unwanted Programs Int. Conf., Mon-
treal, QC, Canada, 2009, pp. 8–14.

[22] W. Kermack and McKendrick, “A contribution to the mathematical
theory of epidemics,” Proc. Royal Soc. London Series A, no. 115, pp.
700–721, 1927.

[23] M. R. Faghani et al., “A study of trojan propagation in online social
networks,” in Proc. 5th IEEE IFIP New Technology Security Int. Conf.,
Istanbul, Turkey, 2012, pp. 1–5.

[24] N. P. Nguyen et al., “Containment of misinformation spread in online
social networks,” in Proc. 3rd Ann. ACMWeb Sci. Conf., Evanston, IL,
USA, 2012, pp. 213–222.

[25] P. M. Pardalos and J. Xue, “The maximum clique problem,” J. Global
Optimization, vol. 4, pp. 301–328, 1994.

[26] S. Tsukiyama et al., “A new algorithm for generating all the maximal
independent sets,” SIAM J. Computing, vol. 6, pp. 505–517, 1977.

[27] F. Sun et al., “Client-side detection of XSS worms by monitoring pay-
load propagation,” inProc. 14th Eur. Research Comput. Security Conf.,
Saint-Malo, France, 2009, pp. 539–554.

Mohammad Reza Faghani (S’05) received the
B.Sc. degree in communication engineering and
the M.Sc. degree in communication network en-
gineering from Isfahan University of Technology,
Isfahan, Iran, in 2006 and 2009, respectively. He is
currently working toward the Ph.D. degree at York
University. His research interests include computer
network security, malware analysis, and online
social networks.

Uyen Trang Nguyen (M’04) received the Bachelor
of Computer Science and Master of Computer Sci-
ence degrees in 1993 and 1997, respectively, from
Concordia University, Montreal, Canada. She com-
pleted the Ph.D. degree at the University of Toronto,
Canada, in 2003. From 1995 to 1997, she was a soft-
ware engineer at Nortel Networks,Montreal, Canada.
She joined the Department of Computer Science and
Engineering at York University, Toronto, Canada, in
2002, and is currently an Associate Professor. Her re-
search interests are in the areas of mobile computing,

wireless networking, multimedia applications, and information security.


