
A user-friendly Introduction to
Computability
via Turing Machines (and “Church’s
Thesis”)

One way to think of a Turing Machine, or “TM” in short, is as an abstract
model of a “computer”. Like a computer, it can faithfully carry out simple
instructions. To avoid technology-dependent limitations, it is defined so that it
has unbounded “memory” (or storage space). Thus, it never runs out of storage
during a computation.

A more accurate way to think of the class of all TMs is as a programming
formalism—or language—and, therefore, to think of any particular TM, M , as
a program written in that programming language.

We should allow our imagination to jump back and forth between the “ma-
chine model” and the “programming model”, as convenience dictates. Beyond
imagination, we will need a formal (mathematical) model of Turing Machines,
for only with such a model we can hope to develop a theory of Computability
(or Recursion Theory—as logicians prefer to call it†).

Thinking of a TM, M , as a “machine” we can describe it—informally at
first—as follows:

M consists of

(a) An infinite two-way tape.

(b) A read/write tape-head.

(c) A “black-box”, the finite control, which can be at any one of a (fixed) finite
set of internal states (or just, states). Pictorially, a TM is often represented
as in the figure below:

†Computability is that part of Logic and Theoretical Computer Science which (1) formalizes
the notion of computation and computable function, and (2) separates functions into two sets:
One is that of computable functions, the other is that of the uncomputable functions.

Intro to Computability via TMs c© by George Tourlakis



2

Finite control

Tape

Tape head

The tape is subdivided into squares, each of which can hold a single symbol
out of a finite set of admissible symbols associated with the TM—the tape-
alphabet, Γ.

The tape-head can scan only one square at a time. The TM tape corresponds
to the memory of an actual computer. In one move, the tape-head can move to
scan the next square, to the left or to the right of the present square, but it has
the option to stay on the current square.

The tape-head can read or write a symbol on the scanned square. Writing
a symbol is assumed to erase first what was on the square previously.

There is a distinguished alphabet symbol, the blank—
denoted by B—which appears everywhere except in a finite
set of tape squares. This symbol is not used as “an input
symbol”.

The machine moves, at each computation step, as follows:

Depending on

(a) The currently scanned symbol

(b) The current state

the machine will:

(i) Write a symbol or leave the symbol unchanged on the scanned square

(ii) Enter a (possibly) new state

(iii) Move the head to the left or right or it will leave it stationary.

We shall require TMs to be deterministic, i.e., that they behave as follows:
Given the current symbol/state pair, they have a uniquely defined response.

� Nondeterministic TMs do not have more computing power than the determinis-
tic model but are important devices in the area known as Complexity Theory.†

We may have time to show the equivalence of deterministic and nondeterministic
TM formalisms (see Sipser [4] for a proof outline in the meanwhile). �

†Which goes one step further than Computability: It classifies functions that we can

compute to “easy” and “hard” (to compute, that is).

Intro to Computability via TMs c© by George Tourlakis



1. Definitions 3

A TM computation begins by positioning the tape-head on the left-most
non blank symbol on the tape (that is, the first symbol of the input string),
“initializing” the machine (by putting it in a distinguished state, q0), and then
letting it go.

Our convention for stopping the machine is similar to that for PDAs (follow-
ing Davis [1]): The machine will stop (or “halt”, as we prefer to say) iff at some
instance it is not specified how to proceed, given the current symbol/state pair.
At that time (when the machine has halted), whatever is on the tape (that is,
the largest string of symbols that starts and ends with some non blank symbol),
is the result or output of the TM computation for the given input.

A question might now naturally arise in the reader’s mind: How will the
“TM operator” (a human) ever be sure that she/he has seen “the largest string
on tape that starts and ends with some non blank symbol”, when the tape is
infinite? Is she or he doomed to search the tape forever and never be sure of
the output?

This “problem” is not real. It arises here (now that I asked) due to the
informality of our discussion above, which included talk about an “infinitely long
tape medium”. Mathematically—as we will shortly see—a TM just describes a
“process” that produces a sequence of (finite!) strings, the last string of the
sequence, if it exists,† being the output “generated”.

At each step of the “computation” that produces these strings, the machine
finitely modifies the current string in order to produce the next. All the operator
has to do is read the last string, if and when the machine halts.

Essentially, the tape is the “medium” on which the machine writes these
strings. Instead of an infinite tape, one can think then of an extensible, but
finite tape. The tape is always just long enough to hold the current string!

1. Definitions

Now the formalities:

1.1 Definition. (TM—static description) A Turing Machine (TM), M , is
a 4-tuple M = (Γ, Q, q0, δ), where Γ = {s0, s1, . . . , sn} is a finite set of tape
symbols called the tape-alphabet, and s0 = B (the distinguished blank symbol).

Q = {q0, q1, . . . , qr} is a finite set of states of which q0 is distinguished: It
is the start-state.

δ is the behaviour or transition function, δ : Q× Γ → Q × Γ× {L, R, S}. In
using a TM one often chooses a subset, Σ, of Γ that never includes the blank
symbol. Σ is the alphabet used to form input strings; the input alphabet. �

� In the specification of δ above, L (respectively R, S) stands for “head moves
left” (respectively “right”, “stays put”). Also, requiring the δ relation to be
a function makes it “single-valued”. This translates to what we announced
already: Our TMs are deterministic.

†It will not exist iff the sequence has infinite length.

Intro to Computability via TMs c© by George Tourlakis



4

Finally, note that δ(qj , si) = (qm, sk, S) means that if the machine is in state
qj , and the head scans si, then the machine replaces si by sk (of course, it may
be si = sk) enters state qm (of course, it may be qm = qj) and the head does
not move.

Since δ is a function on a finite set, it is itself a finite set and therefore there
are a number of ways it can be listed. For example, as a table—where each
si-symbol labels exactly one row and each qj-state labels exactly one column
(or the other way around)—or as a state-diagram, as in the figure below that
represents δ(qi, a) = (qj , b, T ) with T ∈ {L, R, S}.

The latter is usually much more user-friendly than the former when it comes
to illustrative “programming examples”. As usual, the “node” for the start-state
q0 is pointed at by an arrow that originates nowhere.

For theoretical studies of Turing Machines it is advantageous to represent δ
in yet another way, as a set of quintuples (essentially Turing’s own approach;
[1] uses a similar representation, but instead of quintuples he uses quadruples).

A quintuple has the form qjsiskqmT and stands for the relation “δ(qj , si) =
(qm, sk, T )”, where T ∈ {L, R, S}.

Thus we may give an alternative “static” definition of Turing Machines.

1.2 Definition. (TM—alternative static definition, quintuples) A TM,
M , over the (tape) alphabet Γ = {s0, . . . , sn}—where s0 = B—with state-set
Q = {q0, . . . , qm}, is just a finite set of quintuples of the form qabq′T ,
where {q, q′} ⊆ Q, {a, b} ⊆ Γ and T ∈ {S, L, R}. It is required that no two
quintuples begin with the same two symbols. �

� The last restriction ensures that the relation that maps (q, a) to (q′, b, T ) is a
function. �

1.3 Definition. (IDs) Fix a TM, M , over (tape) alphabet Γ and state alpha-
bet Q . An instantaneous description (ID) of M is a string t1qat2, where q ∈ Q,
a ∈ Γ and {t1, t2} ⊆ Γ∗. �

� Intuitively, an ID is a “snapshot” of a computation at a moment in “time”. The
tape contents at the time is the string t1at2—that is, the string produced, or
computed, so far—the current state is q and the scanned symbol is a.

Compare with the case of PDA IDs. There we only needed the “unspent”
part of the tape in an ID because the (input) head never moves left. Here we
have to include the tape contents both at the left and right of the tape head. �

Intro to Computability via TMs c© by George Tourlakis



1. Definitions 5

1.4 Definition. (Yields) Given two IDs α and β of a TM, M , we say that “α
yields β”, in symbols α ⊢ β (or α ⊢M β if we want to emphasize that we are
referring to machine M) iff one of the following conditions holds (see 1.3 for the
meaning of the symbols used below):

(i) qabq′S ∈ M , α = t1qat2 and β = t1q
′bt2

(ii) qabq′R ∈ M , α = t1qact2 for some c ∈ Γ and β = t1bq
′ct2

(iii) qabq′R ∈ M , α = t1qa and β = t1bq
′B

(iv) qabq′L ∈ M , α = t1cqat2 for some c ∈ Γ and β = t1q
′cbt2

(v) qabq′L ∈ M , α = qat2 and β = q′Bbt2

�

� The intuitive idea that the machine tape is unbounded (or infinitely extensible)
is incorporated in the cases (iii) (extensible to the right—or “right-infinite”) and
(v) (extensible to the left—or “left-infinite”) of Definition 1.4.

NOTE. Sipser ([4]) does not allow left-infinite tapes. �
The following is similar to the corresponding definition for PDAs.

1.5 Definition. (Terminal or Final IDs) t1qat2 is a final or terminal ID of
a TM, M , iff M contains no quintuple that starts with the string qa. �

1.6� Remark. A terminal (or, final) ID causes M to stop (halt) its computation.
The above definition follows Turing (see also Davis [1]) and says that a TM halts
with ID t1qat2 iff δ(q, a) ↑ where, in general, we denote by the symbol “f(c) ↑”
the statement “f(x) is undefined at x = c” (correspondingly, “f(c) ↓” denotes
the statement “f(x) is defined at x = c”).

Alternative conventions require the machine to halt as soon as it enters any
one of a distinguished subset of states called halting states (see Hopcroft and
Ullman [2] for this approach as well as for a discussion of a large variety of
variants of the TM model).

Sipser even requires the presence of “accept” and “reject” states, but, as we
have discussed in class, this over-design is unnecessary for TMs since they can
write on the tape. For example, they can write the strings “yes” or “no” on
the tape to indicate acceptance or rejection. Another reason that reject/accept
states are not only useless but also annoying is that neither accept nor reject
states are of any relevance at all when we apply a TM as a “computer for
functions”. �

Finally, the concept of TM-computation:

1.7 Definition. (Computations) A computation of a TM M is a finite se-
quence of IDs α1, . . . , αk such that

Intro to Computability via TMs c© by George Tourlakis



6

(1) αk is final

(2) if k > 1, then αi ⊢ αi+1, for i = 1, . . . , k − 1

(3) α1 = q0t, the initial ID, where q0 is, of course, the start-state and t ∈ Σ+.

Recall that Σ, the input alphabet, is a subset of Γ − {B}.
For any i, αi ⊢ αi+1 is one step of the computation. �

1.8 Remark. In the next section we will fix Σ = {0, 1} and Γ = {0, 1, B},
without any loss of generality. That is, these small fixed alphabets are
going to suffice to found the theory of all computable functions.†

Here are some examples.

1.9 Example. The following is a TM over Γ = {1, B} that never halts, regard-
less of what string in {1}+ is presented as input.

�

1.10 Example. The following is a TM over Γ = {0, 1, B} that computes x + 1
if the number x is presented in binary notation.

�

In Computability one studies exclusively number theoretic functions and re-
lations.

†As a matter of fact, Minsky has shown that Γ = {1, B} is all you ever need.

Intro to Computability via TMs c© by George Tourlakis



1. Definitions 7

“Number-theoretic” means that both the inputs and the outputs are mem-
bers of the set of natural numbers, N = {0, 1, 2, 3, . . .}.†

This choice of “what to attempt computing” presents no loss of
generality, because all finite objects with which we may want to compute—
e.g., negative integers, rational numbers, strings, matrices, graphs,
etc.—can be coded by natural numbers (indeed, by “binary strings”‡

which in turn we may think of as natural number representations).
Having fixed the “game” to be a theory of number theoretic (computable)

functions and relations, the next issue is:

What is a convenient input/output convention for Turing Machines, when
these are used to “do Computability”?

The custom is to adopt the following input/output (“I/O”) con-
ventions for TMs (see [1, 3, 5]):

1.11 Definition. (I/O) A number x is presented as input in unary notation,
that is, it is represented as a string of length x + 1 over {1}.

Note the length!

More generally, a “vector input” x1, x2, . . . , xn, often abbreviated as ~xn—or
simply ~x if the length n is unimportant, or understood—is represented as

1x1+101x2+10 . . . 01xn+1

where, as always, for a string v and a positive integer i

vi def
= vv · · · v

︸ ︷︷ ︸

i copies

If, on a given input, the TM halts, and β is its (unique) terminal ID, then the
integer-valued output is the total number of occurrences of the symbol
“1” in the string β.

If α is the initial ID of a computation, then we use the symbol

Res(α), or ResM (α) if we want to say what machine we have in mind

to indicate the integer-valued output at the end of this computation, as defined
above. �

� We emphasize two points:
(1) If α is some initial ID (q0t) of a TM M , we have no guarantee that Res(α)

is defined (because we have no guarantee that we have a computation starting
with α). E.g., no q01

x+1 leads to a computation in the machine of Example 1.9.
(2) Looking back at Definition 1.7 we see that the term “computation” is

reserved for terminating computation.
Nevertheless, we often abuse terminology and say “non terminating compu-

tation” (or, we add unnecessary emphasis, and say “terminating computation”). �
†A relation returns “yes” or “no”, or equivalently, “true” or “false”. Traditionally, we code

“yes” by 0 and “no” by 1—this is opposite to the convention of the C-language!—thus making
relations a special case of (number theoretic) functions.

‡That is, strings over {0, 1}. Such strings we may also call bit strings.

Intro to Computability via TMs c© by George Tourlakis



8

1.12 Example. The following TM computes the function.

input: x, y

output: x + y

We indulged above in a bit of “obscure programming” to avoid a 4th state:
The last “loop” is not a loop at all. Once a 1 is replaced by a B and the head
does not move, q2 has no moves (δ(q2, B) ↑) hence the machine halts.

It is easy to check that the computations (for any choices of values for x, y)
here are

q01
x+101y+1 ⊢∗ B1x0q2B1y

thus, as we set out to do

Res(q01
x+101y+1) = x + y

�

1.13 Example. The following TM computes the function.

input: x

output: x + 1

This time we do it in unary, as our “Computability conventions” dictate.

Here

q01
x+1 ⊢∗ q11

x+1

Another solution is

Intro to Computability via TMs c© by George Tourlakis



1. Definitions 9

Here
q01

x+1 ⊢∗ q0B1x+1

�

1.14� Example. A TM does not determine its number of arguments (1-vector,
2-vector, etc.), unlike “practical” programming languages where “read” state-
ments and/or procedure parameters leave no doubt as to what is the correct
number of inputs.

◮ There is no “correct” or predetermined number of inputs for
a TM.

As long as we stick to the conventions of Definition 1.11, we can
supply vectors of any length whatsoever, as input, to any given TM. ◭

For example, since the last TM above also has the computation

q01
x+101y+101x+1 ⊢∗ q0B1x+101y+101x+1

it also computes the function
input: x, y, z
output: x + y + z + 3
As another example, looking back to Example 1.9 we have, for all x that

Res(q01
x+1) ↑

that is, that TM computes the (unary, or one-argument) empty function,
denoted by ∅ just like the empty set. That is,

input: x
output: UNDEFINED
However, give two (or more) inputs, and it computes something altogether

different!
For example, it computes
input: x, y
output: x + y + 2
since

q01
x+101y+1 ⊢∗ 1x+1q001y+1

�

�

Intro to Computability via TMs c© by George Tourlakis



10

We witnessed some “neat” things above. There is one thing that (purposely)
stuck out throughout, to motivate the following definition. That was the cum-
bersome designation of functions by writing

input: bla-bla

output: bla-bla

1.15 Definition. (λ notation) There is a compact notation due to Church,
called λ notation, that denotes a function given as

input: x1, x2, . . . , xn

output: E

where “E” is an expression, or a “rule” on how to obtain a value.

We write simply “λx1x2 . . . xn.E”.

Thus “λ”–“.” is a “begin”–“end” block that delimits the arguments, and
immediately after the “.” follows the “output rule, or expression”. �

1.16� Example. Thus, the first function discussed in Example 1.14 is

λxyz.x + y + z + 3

the 2nd is

λx. ↑

NOTE. “↑” is not a value or number! All that we say by the above notation
is: “No matter what the input value x, there is no output”.

Since we gave a name to the empty function (or totally undefined function)
in 1.14, we may write

∅ = λx. ↑

Careful! Do not write

∅(x) = λx. ↑

The left hand side is (an undefined) value, the right hand side is a function.
The types of these two objects don’t match; they cannot possibly be equal!

You may write

∅(x) =↑

or, better still,

∅(x) ↑

The final function in 1.14 is

λxy.x + y + 2

�

�

Intro to Computability via TMs c© by George Tourlakis



1. Definitions 11

1.17 Definition. (Partial functions) A partial (number theoretic) function
f is one that perhaps is not defined on all values of the input(s). Thus, all
functions that our theory studies are partial.

A function is total iff it is defined for all possible values of the input(s).

In the opposite case we say we have a nontotal function.

Thus, if we put all total and all nontotal functions together, we obtain all
the partial functions.

For any two partial functions f and g of one argument, the statement

f(a) = g(b)

means that either both sides are undefined, or both are defined and have the
same (numerical) value. In symbols (borrowing from MATH1090) we write this
as

f(a) ↑ ∧g(b) ↑ ∨(∃x)(f(a) = x ∧ g(b) = x)

This understanding of “=” in the presence of partial functions is due to
Kleene. We may call it “Kleene equality”. �

� Thus “partial” is just a wishy-washy term (unlike the terms “total”/“nontotal”),
that does not in itself tell us whether a function is total or nontotal.

It just says, “Caution! This function may, for some inputs, be undefined”. �
At long last!

1.18 Definition. (Computable (partial) function) A function λ~xn.f(~xn)
is a “Turing computable partial function”—but (following the literature) we
rather say partial (Turing) computable function—iff there is a TM M
such that

For all ai (i = 1, . . . , n) in N, f(~an) = ResM (q01
a1+101a2+10 · · · 01an+1)

where the “=” is “Kleene equality” (Definition 1.17)

A partial computable function is also called partial recursive. �

� Why being so fancy? “A function λ~xn.f(~xn)”.

Well, I cannot say “A function f(~xn)”, because this object is not a function,
it is rather a number (which I do not happen to know, because you forgot to
give me the values of the ~xn).

The alternatives

“A function f of arguments ~xn”

or

“A function f with

input: ~xn

output: f(~xn)”

are rather ugly. �

Intro to Computability via TMs c© by George Tourlakis



12

1.19 Definition. (P and R) The set of all partial computable (partial recur-
sive) functions is denoted by the (calligraphic) letter P .

The set of all total computable (total recursive) functions is denoted by the
(calligraphic) letter R.

Indeed, people say just recursive (or computable) function, and they mean
total (computable). [We have to get used to this! ] �

1.20 Theorem. R ⊂ P .

Proof. That R ⊆ P is a direct consequence of definition 1.19. That the subset
relation is proper follows from examples 1.9 and 1.14: The function ∅ is in P ,
but it is not in R. �

2. Fixing the alphabet

The theory gets a boost in this section! We will show (but not in its full gory
detail) that we can restrict our tape alphabet to just

Γ0 = {0, 1, B} (1)

and still be able to compute (with TMs so restricted) all the functions of P
(that in the previous section were defined in terms of TMs with unrestricted
alphabets Γ = {B, 0, 1, plus possibly other symbols}).

So let M be a TM that has alphabet

Γ = {s0, s1, s2, . . . , sk} (2)

where s0 = 0, s1 = 1, s2 = B and k > 2.

Let l > 0 be such that

2l−1 ≤ k < 2l

(Pause. Is such an l always available?)

Thus, any i, 0 ≤ i ≤ k can be written in binary, using exactly l digits
(using leading 0’s if necessary).

We “code” each si by the number i in binary of fixed length l

Intro to Computability via TMs c© by George Tourlakis



2. Fixing the alphabet 13

Symbol Length-l binary code

s0 = 0 0l

s1 = 1 0l−11

s2 = B 0l−210

s3 0l−211

s4 0l−3100

...
...

sk k in binary

possibly with leading 0s

We are going to build a TM N over the restricted alphabet Γ0 (see (1) above)
such that for any ~xn (this “for any” includes “for any n > 0”)

ResM (q01
x1+101x2+10 · · · 01xn+1) = ResN (q01

x1+101x2+10 · · · 01xn+1)

The idea is simple:

N operates as follows:

Sim1. Translate the input of N

1x1+101x2+10 · · · 01xn+1 (3)

to its “binary code”

(0l−11)x1+10l(0l−11)x2+10l · · · 0l(0l−11)xn+1 (4)

Sim2. Now (that is, immediately after the translation) make N faithfully sim-
ulate M by treating (appropriate) blocks of binary digits as a single
symbol, si, of M .

By “appropriate” we mean that N will not lose track of proper block
boundaries. This is simple to do: A complete simulation-move of N
(left or right) that simulates one move of M is by l squares.† Moreover,
N starts simulating on the leftmost symbol of the leftmost block (in
state A0; see below).

Sim3. If (and only if) the simulation halts, N erases all the blocks, except the
0l−11 blocks (that represent “original” 1’s).

The translation (Sim1) is done by the following TM-fragment. This halts
at state A0, where the direct simulation (Sim2) begins. The E-states moves
code a single “1”, while the Z-states do the same for “0”. This fragment erases

†Of course, one N-move is just by one N-square—a square that can hold one of 0, 1, B.

Intro to Computability via TMs c© by George Tourlakis



14

input (3) one symbol at a time and replaces it (to the right of the original) by
“coded input”, (4).

We turn now to Sim2. If {q0, q1, . . . , qs} are the states of M , we have re-
placed them in N by the states {A0, A1, . . . , As}, Ai replacing qi. This renaming
is for a more serious reason than just to avoid (state-)name clashes (names such
as “q0” have already been used to effect the input translation).

To see this, suppose that in the course of an M -computation

qisjsrqmS (5)

is applicable. That is, M is at state qi and scans symbol sj .

Now, N will be at state Ai, but unlike M which can see sj at a glance†,
it cannot readily tell that it is looking at sj since the latter is—for N—the
number j coded as a binary string of length l (possibly with leading 0’s).

N has first to recognize that it sees sj , before it can simulate instruction (5)
according to the “macro” (6) below (N “speaks” below)

Ai : “Aha, I saw (code for) sj . Let me write (code for) sr in its place,

and then go to state Am and stay in the same ‘super-square’

that I just rewrote, that is, go to its leftmost symbol.”

(6)

Thus, Ai is not just qi renamed. qi is ready to act, while Ai has to first initiate
a recognition process to figure out what symbol is being scanned. It has to
implement the “Aha”. The following TM fragment shows how N does it:

†sj occupies the current single square as far as M is concerned.

Intro to Computability via TMs c© by George Tourlakis



2. Fixing the alphabet 15

Note "S"
at this level

Here N says "Aha, I saw 0"

Here N says "Aha, I saw 1"

Here N says "Aha, I saw B"
Here N says "Aha, I saw

Here N says "Aha, I saw

Note the persisting superscript i throughout the tree of moves above. It helps
N to “remember” that Ai initiated this recognition sub-computation. Also, at
every level the bit string subscripts “remember” what “bit string” has been seen
so far. At level l the machine N has seen all the l “bits” and the recognition is
complete.

To conclude the action of the macro (6), N now goes back left and writes
as it goes (right to left) the binary representation (with leading 0s) of r—this
is the code for sr. This is done by a TM-fragment like the one below, where we
have written

b1b2 . . . bl, with bi ∈ {0, 1}

as the binary representation of j, that is, the code of sj , and

c1c2 . . . cl, with ci ∈ {0, 1}

for the binary representation of r, that is, the code of sr

Intro to Computability via TMs c© by George Tourlakis



16

Note
(no subscript)

Note "S"

We did not bother to give names to the “internal” states above. Note how
“flow control” was surrendered to Am at the end of this write-cycle, just as
macro (6) required.

If instead of “S” we had “R” in (6), then N would have to go l squares to
the right (after it finished writing sr as above). Similarly, if we had an “L”,
then N would have to go l squares to the left (after it finished writing sr as
above).

Needless to point out that if N needs to simulate M in a situation where a
“new B” appears (from the point of view of M) because M run out of tape (at
the left or at the right), then N must write instead a code for (M ’s) B,† that
is a bit string “0l−210”.

The part Sim3 of the simulation is trivial, and left to the reader’s imagina-
tion.

We can summarize:

2.1 Theorem. Every function in P (and hence in R) can be computed by a
TM over the alphabet Γ = {0, 1, B}. Of course, Σ the input alphabet is {0, 1},
and the I/O convention remains the same one that we introduced in
Definition 1.11.

3. Standard enumeration of TMs

3.1� Remark. From now on our TMs are out of the fixed alphabets Σ = {0, 1}
and Γ = {0, 1, B}. Thus a TM is just a set of quintuples (these quintuples
implicitly tell us what the states are!) that

(a) Are consistent , i.e., no two distinct quintuples of a TM have the same
prefix “qisj”,

(b) There is at least one quintuple that begins with “q0a” for some a (in Γ).

�
†For N , of course, its own B is a B is a B. But here we are talking about N simulating

M . In so doing, N denotes M ’s symbols—including M ’s B—by length-l bit strings.

Intro to Computability via TMs c© by George Tourlakis



3. Standard enumeration of TMs 17

We can convert the set of quintuples into a string, by using a new symbol,
say “#”, as “glue”. Moreover we can generate the infinite variety of states with
just two symbols, “q” and “1” as

State Code

q0 q1q

q1 q11q

q2 q111q

q3 q1111q

...
...

qi q1i+1q

...
...

Thus, we fix the alphabet A

A = {0, 1, B, #, q, S, L, R} (1)

and code every TM, M , (that is, a set of quintuples satisfying (a)–(b) of 3.1)

M = {. . . , qisjsmqrR, . . .}

as a string 〈M〉†

〈M〉 = # . . .#q1i+1qsjsmq1r+1qR# . . .# (2)

That is, the string starts and ends with “#”, and between two successive #-
symbols we code a quintuple

qisjsmqrT, T ∈ {S, L, R}

by the string over A ((1) above)

q1i+1qsjsmq1r+1qT, {sj , sm} ⊆ Γ, T ∈ {S, L, R} (3)

� In plain English, to go from

M = {. . . , qisjsmqrR, . . .} (4)

to
〈M〉

do the following replacements:

†This code is not unique because we can permute the quintuples of M without changing
M : M is a set.

Intro to Computability via TMs c© by George Tourlakis



18

1. Replace every “{”, “}” and “,” in (4) above by “#”

2. Replace every state qi by the string q1i+1q

3. (Leave all other symbols unchanged.)

�
Not only we can code an M by the above simple construction, but we can

test by a simple algorithm whether a string over A is a code for some TM, and
if so of which TM.

Indeed, given a string w over A, we test as follows:

(I) Test for correct format of w, that is:

(a) w starts and ends with #

(b) Between successive #-symbols there is a string z of form (3) above

(II) Ensure that there are no two distinct strings z and z′ anywhere in w
(as substrings), as described in (b) above, that have the same prefix
“q1i+1qsj” (for some i, j)

(III) Ensure that there is at least one occurrence of a substring z of w, as
described in (b) above, that has “q1qsj” as a prefix (sj ∈ Γ)

(IV) If all the above tests succeed, then we have a TM. It is trivial to read its
quintuples (separated by #’s), in consultation with the table of p.17.

We can now generate a standard algorithmic listing of all TM
codes, and, hence, of all the TMs!

Intro to Computability via TMs c© by George Tourlakis



3. Standard enumeration of TMs 19

Enum1. Fix an order on the elements of A. We fix the order

0 < 1 < B < # < q < S < L < R

Enum2. We build two lists simultaneously. “List 1” contains all strings over
A; “List 2” contains only those strings that code TMs.

The strings in “List 1” are generated by increasing string length.
Within each string length, the strings are produced in in-
creasing lexicographic order, according to the symbol order
we adopted in Enum1, above.

For each string, w, (of “List 1”) that we generate we do:

if w codes a TM,† then also place w in the next available position in
“List 2”

� We note that this listing of codes lists every TM many times, since a TM can
be coded by as many codes as there are permutations of its quintuples.

We also note that the term “algorithmic” has the informal, or
intuitive, meaning. For now. �

We summarize:

3.2 Theorem. (The TM standard-listing) There is an algorithmic (or “con-
structive”) listing of all Turing Machines.

We denote this listing as M0, M1, M2, M3, . . ., that is, we enumerate using
“0” as the first index.

3.3 Definition. (Rogers’ φ-notation) The symbol “φ
(n)
e ” will denote in the

balance if this paper the number theoretic function of n arguments computed
by the e-th TM, Me, of our “standard-listing” (Theorem 3.2). If n = 1, then

we will write φe rather than φ
(1)
e .

This notation was introduced by Rogers.

� The reader will recall the discussion of Example 1.14, where we saw that a TM
cannot specify its number of inputs.

Thus, a given Me will compute a function of as many arguments
as we are willing to supply with the initial ID. �

Definition 3.3, along with Theorem 3.2 have a trivial (but useful) corollary:

3.4 Corollary. A number theoretic function f , of n arguments, is in P (i.e.,
is partial recursive) iff, for some e ∈ N,

f(~xn) = φ(n)
e (~xn), for all ~xn

which we can say much more simply as

f = φ(n)
e

†We can test for this algorithmically!

Intro to Computability via TMs c© by George Tourlakis



20

4. Church’s Thesis

The aim of Computability is to formalize (for example, via Turing Machines)
the informal notions of “algorithm” and “computable function” (or “computable
relation”).

We have defined TMs rigorously, but in discussing their behaviour, in par-
ticular in presenting the standard-alphabet model, in discussing its simulating
power, and in presenting our TM-enumeration result we have suppressed a lot
of (implementational) details, and therefore we were somewhat informal.

What gives?

Well, in our defense, TM is a very user-unfriendly assembly-like program-
ming formalism. Indeed it is more unfriendly than assembly language, for it only
processes (essentially) one digit at a time, whereas, at least, assembly language
has the ability to add or multiply entire numbers.

The above sounds like a good “excuse” behind our informality, but what
does this do to our goal: to have a theory of computable functions?

It turns out that no harm is done to the theory, (by our informal approach),
because of “Church’s Thesis”.

In the mid thirties many different formalisms, proposed by Turing, Post,
Kleene, Markov, Church and others, attempted to capture the concept of com-
putable (partial) number theoretic function.

� It turned out that all these, seemingly different approaches to the problem, ended
up with the same set P of functions!

Moreover, at the present state of our understanding the concept of “algo-
rithm” or “algorithmic process”, there is no way known of how to define
“intuitively computable” functions outside of P .

P appears to be the largest—i.e., most inclusive—set of “intuitively com-
putable” functions known. �

This “empirical” evidence led Church to formulate his now famous belief,
known as “Church’s Thesis”, that

� Church’s Thesis: The intuitive (informal) notions of “algorithm” and “com-
putable” (partial) function are totally captured by the formal concepts of TM,
and member of P respectively.

That is,

(1) any algorithmic procedure, that is described intuitively, can be imple-
mented on some appropriate TM, and

(2) any algorithmic (number theoretic) function is in P . By “algorithmic
function” (also called “intuitively computable”) we mean one for which we have
informally described an algorithm that computes it. �

Church’s Thesis is not a theorem. It can never be, as it “connects” precise
concepts (TM, P) with imprecise ones (“algorithm”, “computable function”).

Intro to Computability via TMs c© by George Tourlakis



4. Church’s Thesis 21

It is simply a belief that has overwhelming empirical backing, and should
be only read as an encouragement to present algorithms in “pseudo-
code”—that is, informally. Thus, Church’s Thesis (indirectly) suggests
that we concentrate in the essence of things, in the high-level design of algo-
rithms, and leave “coding” to TM-programmers.†

Since we are interested in the essence of things in this note, and also promised
to make it user-friendly, we will heavily rely on Church’s Thesis here (in short
“CT”) to “validate” our “high-level programs”.

In the literature, Rogers ([3], a very advanced book) heavily relies on CT.
On the other hand, [1, 5] never use CT, and give all the necessary constructions
(implementations) in their full gory details—that is the price to pay, if you avoid
CT.

We conclude this section with a useful tool, Kleene’s “indexing”, or “para-
metrization”, or “S-m-n” theorem.

4.1 Theorem. (Parametrization theorem) There is a function λex.h(e, x)
in R, such that, for any n > 0,

φ(n+1)
e (x, ~yn) = φ

(n)
h(e,x)(~yn), for all e, x, ~yn (1)

Proof. We need an algorithm for h:
input: e, x
processing:

1. Starting at state q0, generate the number x on tape, as “1x+10”, immedi-
ately to the left of whatever input already appeared on tape. Halt at the
leftmost square of “1x+10”.

(Comment. This, in effect, adds x to the input-list, at the left, properly
delimited from the rest of the input by the symbol “0”.)

2. Go down the standard list of TMs until you find Me.

3. Add the instructions of Me to those for item 1 above, appropriately re-
naming states, so that Me can continue processing (starting with its own
start state) from exactly where the TM-fragment of item 1 halted. “q0”
for the thus combined machine is, of course, that of item 1.

4. Find the combined machine of item 3 in the standard list. Say it occurs,
for the first time, as Mi

output: output i, from item 4 above, and halt.

The above algorithm computes a total function (it always halts). By CT,
this function, that we have decided to call h, is TM-computable.

Since it is total, it is in R.

†If ever in doubt about the legitimacy of a piece of “high-level pseudo-code”, then you
ought to try to implement it in detail, as a TM, or, at least, as a “real” C-program!

Intro to Computability via TMs c© by George Tourlakis



22

By definition (3.3),

Mi computes φ
(n)
i (~yn) (2)

for all ~yn.

� What is the output? �
Well, by the way i was constructed (item 4 above), Mi—on input ~yn—first

adds the number x on tape, and then “calls” Me with input what is on tape,
that is, with input

1x+101y1+10 · · · 1yn+1

But Me on that input answers (if/when it halts)

φ(n+1)
e (x, ~yn) (3)

Thus, Mi answers with the result (3) above, and hence, by (2), we have (1) if
we remember that i = h(e, x). �

5. “Problems”

Halting Problem

First off, a revelation: “Recursion theorists” (as those who work in Computabil-
ity call themselves) use the terminology Predicate synonymously with the ter-
minology Relation. Either means a set of n-tuples. We often write

R(~an)

as “short” for

〈a1, . . . , an〉 ∈ R

Relations with n = 2 are called binary, and rather than, say,

< (a, b)

we write, in “infix”,

a < b (1)

As with functions, one needs to distinguish the relation (name), say, “<”, from
a statement (that may be true or false) that a and b are related, e.g., as in (1)
above.

Yet, by abuse of notation and terminology people most often say “relation
a < b” rather than “relation <”.

We will allow ourselves the same type of “freedom” in jargon.

Let us revisit the definition of “decidable language” (known to us from our
text, Sipser).

Intro to Computability via TMs c© by George Tourlakis



5. “Problems” Halting Problem 23

5.1 Definition. (Recursive or Decidable relations) “A relation Q(~xn) is
recursive, or decidable” means that the function

cQ = λ~xn.

{

0 if Q(~xn)

1 otherwise

is in R.
The collection (set) of all recursive relations we denote by R∗.
By the way, the function λ~xn.cQ(~xn) we call the characteristic function of

the relation Q (“c” for “characteristic”). �

� Thus, “a relation Q(~xn) is recursive” means that some TM computes cQ.
But that means that some TM behaves as follows:
On input ~xn, it halts and outputs 0 iff ~xn satisfies Q (i.e., iff Q(~xn)), it halts

and outputs 1 iff ~xn does not satisfy Q (i.e., iff ¬Q(~xn)).
If we translate “0” to “yes”, and “1” to “no”, this TM “decides” membership

in Q.
Sipser has (almost) exactly the same definition, except that his yes/no is not

by printout, but by colour-coded “flashing-lights” (accept/reject states).† �

5.2 Definition. (Problems) A “Problem” is a formula of the type “~xn ∈ Q”
or, equivalently, “Q(~xn)”.

Thus, a “problem” is a membership question. �

5.3 Definition. (Unsolvable Problems) A problem “~xn ∈ Q” is called any
of the following:

Undecidable
Recursively unsolvable
or just
Unsolvable
iff Q /∈ R∗—in words, iff Q is not a recursive relation (synonymously, pred-

icate, set). �

Here is the most famous unsolvable problem:

φx(x) ↓ (1)

A different formulation uses the set

H = {x : φx(x) ↓}‡ (2)

that is, the set of all numbers x, such that machine Mx on input x has a (halt-
ing!) computation.

†OK, Sipser deals with strings, we deal with numbers. But the two approaches are equiv-
alent, via coding. We already talked about that.

‡Both [3, 5] use K instead of H, but this notation is by no means standard. Thus, I felt
free to use “H” here for Halting.

Intro to Computability via TMs c© by George Tourlakis



24

H we shall call the “halting set”, and (1) we shall the “halting problem”.

Clearly, (1) is equivalent to

x ∈ H

5.4 Theorem. The halting problem is unsolvable.

Proof. We show, by contradiction, that H /∈ R∗.

Thus we start by assuming the opposite.

Let H ∈ R∗ (3)

that is,

cH ∈ R (4)

Define the function d which at each x behaves differently from φx(x) (with
respect to the property of being defined):

d(x) =

{

↓ if φx(x) ↑

↑ if φx(x) ↓
(5)

Well, we need a tiny bit of extra work: We have not defined d’s output in
the top case yet, for “↓” means “defined”, and that could be anything: 0, or 5,
or 42, or x2, etc.

So, our final version for d is (this version also uses (4), replacing the original
conditions in the definition-by-cases by “calls” to a TM that computes cH):

d(x) =

{

42 if cH(x) = 1

↑ if cH(x) = 0
(6)

We want to show that—under assumption (4)—d ∈ P .

It suffices to give an informal algorithm—we do so in pseudo-C-like code
below—and then invoke CT:

proc d(x)

{
if cH(x) = 1 then return(42)

while (1) /* A deliberate “infinite loop” for the “else” case */

{
}

}

Well, the above computes d. By CT, there is a TM that does so too, let it
be Me. Thus,

d = φe (7)

Let us figure out the response of d to input e:

Intro to Computability via TMs c© by George Tourlakis



6. More on unsolvability. Reducibility. Semi-decidable relations 25

It is easier to work with (5) than (6) below:

φe(e) ↓ ≡
By (7)

d(e) ↓ ≡
By (5)

φe(e) ↑ †

A glorious (!) contradiction. Thus, (4) (and hence (3)) is false. We are done.

�

6. More on unsolvability.

Reducibility.

Semi-decidable relations

Here we will explore a couple more undecidable problems by a “reducibility”
technique. We already know that the halting problem is unsolvable (i.e., H is
not recursive).

Suppose we are studying a new problem

x ∈ A (1)

If we can show that (1) is “at least as hard as” “x ∈ H”, knowing that the latter
is unsolvable should make (1) unsolvable too.

More precisely, the reducibility argument (showing that a problem is “at
least as hard as” “x ∈ H”) is this:

� Suppose I can show that existence of a TM, M , that solves (1) can assist me to
write a program—using M as a subroutine (subprogram)—to decide x ∈ H .

I can conclude then that such an M does not exist—and therefore A /∈ R∗

((1) says that “x ∈ A” is unsolvable)—since otherwise CT would give me a TM
to solve x ∈ H . �

Let us also define for the benefit of this section semi-recursive or semi-
decidable sets (relations, predicates):

6.1 Definition. (Semi-recursive sets) A relation Q(~xn) is semi-decidable or
semi-recursive iff there is a TM, M , which on input ~xn has a (halting!) compu-
tation iff ~xn ∈ Q.

A less civilized, but more mathematically precise way to say the above is:
A relation Q(~xn) is semi-decidable or semi-recursive iff there is an f ∈ P

such that

Q(~xn) ≡ f(~xn) ↓ (2)

Sipser [4] calls these relations recognizable. Some others call them recur-
sively enumerable. �

†You remember that I said that d is chosen to behave oppositely than φx with respect to
being defined? Here is where this helped!

Intro to Computability via TMs c© by George Tourlakis



26

6.2� Remark. Yet another way to say (2) is:
A relation Q(~xn) is semi-decidable or semi-recursive iff there is an e ∈ N

such that

Q(~xn) ≡ φ(n)
e (~xn) ↓ (3)

Recall Corollary 3.4! �

More unsolvability.

6.3 Theorem. The problem x ∈ A, where

A = {x : φx is a constant function}

is unsolvable.

Proof. As we know, this statement asks us to prove that A /∈ R∗. The steps are
standard, so we might as well enumerate them,

(i) We assume the opposite:

A ∈ R∗ (4)

(ii)

The task: Using (4) solve: “a ∈ H”, for the arbitrary a ∈ N

(iii) (This step is “Art”†—all the rest is “Science”.) Define a function f by

f(a, x) =

{

0 · φa(a) if x = 0

0 otherwise

(iv) (Argue that f of the previous step is intuitively computable.) Well, here
is a convincing pseudo-program:

proc f(a, x)

{

if x = 0 then

{

call φa(a) /* That is, find TM Ma, and then call it with input a */

if Ma halts as called, then return(0) /* Otherwise “loop forever” */

}

else return(0)

}

†Specifically, the part of knowing what is a good choice for f . This only experience (= a
lot of practice) can help us do with ease. So what’s new!

Intro to Computability via TMs c© by George Tourlakis



6. More on unsolvability. Reducibility. Semi-decidable relations 27

(v) By CT, step (iv) gave us a partial (Turing-)computable function λax.f(a, x).
By Corollary 3.4,

f(a, x) = φ(2)
e (a, x), for some fixed e and all a, x†

(vi) By the parametrization theorem (4.1), there is a total‡ recursive h such
that

f(a, x) = φ(2)
e (a, x) = φh(a)(x)

Hey! What happened to “e”? Why not “h(e, a)”?

(vii) By (4), and CT, since h ∈ R, I can solve (by a TM) the problem

h(a) ∈ A (5)

Indeed, given a, we first compute h(a). Next, we call a TM (that (4)
guarantees to exist) that solves “x ∈ A”. For input “x” we provide the
number h(a) that we have just computed.

(viii) Does (5) solve something it should not? Well, if h(a) ∈ A, then φh(a) is a
constant function. That necessitates that φa(a) ↓ (See item (iii)!) If now
h(a) /∈ A, this means that φh(a) is NOT a constant. This necessitates that
φa(a) ↑ (See item (iii) again!) Thus, (5) is equivalent to

a ∈ H

Hey! We have just solved the halting problem! This being impossible, we
reject (4).

�

6.4� Remark. The great degree of pedantry above was meant to do three things:
(1) Describe all steps of a reduction argument in detail in this first encounter

of such arguments.
(2) Emphasize the routine nature of all steps, except the (iii)rd. This involves

some fruitful speculation every time, to come up with an f that works.
(3) A reducibility argument really just does this in the end:
We find a recursive h such that

a ∈ H iff h(a) ∈ A

This “reduces” the problem at the left to the the problem at the right: If I
can solve the latter, then I can solve the former. We say that “x ∈ A is more
unsolvable than x ∈ H”. We often write this as

H ≤ A

†Why “fixed”?
‡Shouting, just for emphasis.

Intro to Computability via TMs c© by George Tourlakis



28

This “reducibility” can be defined for any two sets A and B. One can define

A ≤ B iff, for some h ∈ R, x ∈ A ≡ h(x) ∈ B

(4) One last thing: In (iii) of the proof we wrote “0 · φa(a)” and gave
the semantics (compare with the pseudo-C implementation) that, essentially,
“0· ↑=↑”. The same is true if any input of a total function is undefined: the
result is undefined (e.g., also “0+ ↑=↑”). This is the usual “call-by-value” se-
mantics we use in the theory. That is, all the inputs are evaluated before used.
Thus, if one (or more) is undefined, we are stuck. �

6.5 Theorem. The set E = {〈x, y〉 : φx = φy} is not recursive.
We say that “the equivalence (of programs) problem, namely, ‘〈x, y〉 ∈ E’,

is unsolvable”.

Proof. Suppose that
〈x, y〉 ∈ E is solvable (1)

Then a TM M solves it.
Using M we will now solve

a ∈ H (2)

To this end define f as in Theorem 6.3, and obtain the same recursive function
h, as it was done there.

Consider also the constant function

g = λx.0

As all constant functions are computable (really?), let g = φr for some fixed r.
Since we can solve (1), we feed the pair h(a) and r to machine M . Thus we

can solve
〈h(a), r〉 ∈ E

But this is equivalent to (2)—impossible!—since φh(a) = φr is fancy for “For
any x, f(a, x) always returns 0”. But this is so iff “φa(a) ↓”. �

More examples.

6.6 Example. Prove that A = {x | ran(φx) = {1, 13}} is not recursive.

Proof. As always, by contradiction (reduction argument).
Suppose that I have a TM, M , that solves the problem “x ∈ A”.

We show that we can then solve “a ∈ H” for arbitrary a ∈ N.

Define (this “f” is unrelated to the one used before. I am just
running out of letters!)

f(a, x) =







1 if x = 0 ∧ φa(a) ↓

13 if x = 1 ∧ φa(a) ↓

↑ in all other cases

(1)

Intro to Computability via TMs c© by George Tourlakis



6. More on unsolvability. Reducibility. Semi-decidable relations 29

f is intuitively computable: Indeed, given the input a, x, if x has value other
than 0 or 1, then get into an infinite loop. Otherwise,

(1) go and get machine Ma.
(2) Once found (by Theorem 3.2), run it on input a (i.e., start computing

φa(a)). If this ever halts, then output 1 and halt if x = 0; otherwise output 13
and halt.

By CT, f ∈ P , thus, for some fixed i ∈ N

f(a, x) = φ
(2)
i (a, x), for all a, x (2)

By the index theorem (4.1), there is a recursive function k such that

f(a, x) = φk(a)(x), for all a, x (3)

Pause. What happened to i?

We now feed this k(a) to the supposed to exist TM M , that solves “x ∈ A”.

If the answer is “yes” (i.e., k(a) ∈ A), then this means that ran(φk(a)) =
{1, 13}. Because of (3) and (1), φa(a) ↓—that is, a ∈ H—in this case. If the
answer is “no” (i.e., k(a) /∈ A) this means that ran(φk(a)) 6= {1, 13}. Looking
at (1) we see that the only alternative is ran(φk(a)) = ∅. Because of (3) and (1),
φa(a) ↑—that is, a /∈ H—in this case. So, we have solved “a ∈ H” ! A
contradiction. �

6.7 Example. Prove that the problem “x ∈ B”, where B = {x | 0 ∈ ran(φx)},
is unsolvable.

By contradiction, let
x ∈ B

be solvable by some TM M .

We then solve “a ∈ H” using M as a subroutine:

Define (this “f” is unrelated to the ones used before. I am just
running out of letters!)

f(a, x) = if x = 0 then 0 · φa(a) else 1

This is clearly algorithmic. By CT, let j be such that f(a, x) = φ
(2)
j (a, x)

for all a, x.
By Theorem 4.1, there is a recursive t such that f(a, x) = φt(a)(x) for all

a, x.
Clearly,

ran(φt(a)) =

{

{0, 1} if φa(a) ↓

{1} if φa(a) ↑

Thus, feeding t(a) to the TM that solves “x ∈ B”, we get “yes” if φa(a) ↓ and
“no” otherwise. We have then solved “a ∈ H”. A contradiction. �

Intro to Computability via TMs c© by George Tourlakis



30

Intro to Computability via TMs c© by George Tourlakis



Bibliography

[1] M. Davis. Computability and Unsolvability. McGraw-Hill, New York, 1958.

[2] J. E. Hopcroft and Ullman J. D. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

[3] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

[4] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Co.,
Boston, 1997.

[5] G. Tourlakis. Computability. Reston Publishing Company, Inc., Reston,
Virginia, 1984.

Intro to Computability via TMs c© by George Tourlakis


