1.1. The Kleene Recursion Theorem

This brief note covers Kleene’s recursion Theorem and a few applications.

1.1.1 Theorem. (Kleene’s recursion theorem) If \z2Z.f(z,Z,) € P, then for some e,
¢ (Z,) = f(e, @) for all Z,
Proof. Let ¢{"™) = AzZp,. f(ST (%, 2),Zp). Then
(51 (a,a), @) = ¢ (a, &)
= ¢(S?(a$a) (%) by S-m-n thm

Take e = ST (a, a). O

1.1.2 Corollary. Let f € R. Then there is an e € N such that ¢ = ¢(c)-

Proof. \xy.¢s,(x) € P by the Normal Form Theorem. By 1.1.1, there is an e € N such that
be(x) = Ppey(x), for all z.

For short, ¢e = ¢(e)- :

1.1.1. Two Applications of the Recursion Theorem

1.1.3 Definition. Recall that a complete index set is a set A = {x : ¢, € C} for some C C P.
We call A trivial if A =0 or A =N (correspondingly, C = ) or C = P). Otherwise it is called

non trivial. 0

1.1.4 Theorem. (Rice) A complete index set is recursive iff it is trivial.

Thus, “algorithmically” we can only “decide” trivial properties of “programs”. @

Proof. (The idea of this proof is attributed in | ] to G.C. Wolpin.)

if-part. Immediate, since yp = Az.1 and xny = Az.0.
only if-part. By contradiction, suppose that A = {z : ¢, € C} is non trivial, yet A € R.. So,

let a € A and b ¢ A. Define f by
b ifzeA
-

a ifxg¢gA

Clearly,
xe Aiff f(x) ¢ A, for all x (1)

By the Corollary, there is an e such that ¢. = ¢y (c)-

Thus, e € Aiff ¢, € Ciff ¢y € Ciff f(e) € A, contradicting (1). O



The second application is about self-referential (recursive) definitions of functions F' such as the
one below

where nesting of occurrences of F' can be anything.
We are interested in just those cases that, as we say, the right hand side of (1) —as a function
of #,— is partial recursive in F'.

1.1.5 Definition. We say that a function is partial recursive in F' iff it is in the closure of I U
{F} under composition, primitive recursion and (uy). Here I denoted by “I” the standard initial
functions of P.

For short, a function is partial recursive in F iff is obtained by a finite number of partial recursive
operations using as initial functions F and those in I. O

1.1.6 Remark. It follows from 1.1.5 that if F' € P, then a function that is partial recursive in F’
is just partial recursive.

In particular, if we replace F' throughout the right hand side of (1) by a partial recursive function

é") of the same arity n as F', then we end up with a partial recursive function. O

In (1) F acts as a “function variable” to solve for. A solution h for F' is a specific function that
makes (1) true for all Z,, if we replace all occurrences of F' by h.

We show that if the right hand side of (1) is partial recursive in F', then (1) always has a partial
recursive solution for F. That is,

(Fe) (if we replace F in (1) by AZ,.¢("(Z,), then the resulting relation is true for all 5:'n> (2)

Indeed, the function \zZ,.G(z,Z,) given below is partial recursive by 1.1.6.

G(z,fn):f(...¢g")(...¢gn>(...)...)...¢gn>(...¢g")(...¢gn>(...)...)...)...) (3)
By the recursion theorem there is an e such that
Gle, Zn) = ¢\ (Z,), for all &,
Thus, (3) yields

¢>g”>(fn):G(eﬁn):f(...¢g">(...¢g">(...)...)...¢>g”>(...¢g">(...¢g”>(...)...)...)...)
(4)

That is, setting the “function variable F” equal to ¢§") we have solved (1), and with a P-solution
at that!

1.1.7 Example. Here is a second solution to the question “Anz.A,(z) € R?”.
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A, (x) is given by
T +2 ifn=0
An(z) =<2 elseif x =0
A, -1 (Ay(z = 1)) otherwise

We re-write the above using F' as a function variable and setting F'(n,z) = A, (z).
Thus, F'is “given” by

T+ 2 ifn=0
F(n,z) =<2 elseif x =0 (5)
F(n=1,F(n,z = 1)) otherwise

(5) has the form (1) and all assumptions are met. Thus, for some e, F' = ¢§2) works. But is this ¢)£12>
the same as A, (x)? Yes, provided (5) has a unique solution! That (5) indeed does have a unique
total solution is an easy (double) induction exercise that shows A, (x) = B, (x) for all n, z if

T+ 2 ifn=0
B(x) =<2 elseif x =0 (5")
B, - (By(z = 1)) otherwise

Indeed we start the proof of (¥n)(Vx)A,(z) = B,(z) by induction on n:
n=0: Ag(r) =z + 2 = By(x).
LH. fix n and assume for all z: A, (z) = B, (z).
I.S. for n + 1: Prove for all x and the fixed n: A, 1(z) = Bpy1(2).
Do the latter by induction on z:
x =0: An+1(0) =2= Bn+1(0)

LH. fix  and assume for the n above: A,,11(z) = By41(x).
1.S. for = 4+ 1: For the fixed n and = we provide the last proof step:

Appr(z+1) = Ay (Apyr (2) 72" " Bu(Anga (2) 2" By(Buia (7)) = Bua(w +1) O
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