
1.1. The Kleene Recursion Theorem

This brief note covers Kleene’s recursion Theorem and a few applications.

1.1.1 Theorem. (Kleene’s recursion theorem) If λz~x.f(z, ~xn) ∈ P, then for some e,

φ(n)e (~xn) = f(e, ~xn) for all ~xn

Proof. Let φ
(n+1)
a = λz~xn.f(Sn

1 (z, z), ~xn). Then

f(Sn
1 (a, a), ~xn) = φ(n+1)

a (a, ~xn)

= φ
(n)
Sn
1 (a,a)(~xn) by S-m-n thm

Take e = Sn
1 (a, a). �

1.1.2 Corollary. Let f ∈ R. Then there is an e ∈ N such that φe = φf(e).

Proof. λxy.φf(y)(x) ∈ P by the Normal Form Theorem. By 1.1.1, there is an e ∈ N such that
φe(x) = φf(e)(x), for all x.

For short, φe = φf(e). �

1.1.1. Two Applications of the Recursion Theorem

1.1.3 Definition. Recall that a complete index set is a set A = {x : φx ∈ C} for some C ⊆ P.

We call A trivial iff A = ∅ or A = N (correspondingly, C = ∅ or C = P). Otherwise it is called
non trivial. �

1.1.4 Theorem. (Rice) A complete index set is recursive iff it is trivial.

� Thus, “algorithmically” we can only “decide” trivial properties of “programs”. �

Proof. (The idea of this proof is attributed in [Rog67] to G.C. Wolpin.)

if-part. Immediate, since χ∅ = λx.1 and χN = λx.0.

only if-part. By contradiction, suppose that A = {x : φx ∈ C} is non trivial, yet A ∈ R∗. So,
let a ∈ A and b /∈ A. Define f by

f(x) =

{
b if x ∈ A
a if x /∈ A

Clearly,

x ∈ A iff f(x) /∈ A, for all x (1)

By the Corollary, there is an e such that φe = φf(e).

Thus, e ∈ A iff φe ∈ C iff φf(e) ∈ C iff f(e) ∈ A, contradicting (1). �



2

The second application is about self-referential (recursive) definitions of functions F such as the
one below

F (~xn) = f

(
. . . F

(
. . . F (. . .) . . .

)
. . . F

(
. . . F

(
. . . F (. . .) . . .

)
. . .
)
. . .

)
(1)

where nesting of occurrences of F can be anything.
We are interested in just those cases that, as we say, the right hand side of (1) —as a function

of ~xn— is partial recursive in F .

1.1.5 Definition. We say that a function is partial recursive in F iff it is in the closure of I ∪
{F} under composition, primitive recursion and (µy). Here I denoted by “I” the standard initial
functions of P.

For short, a function is partial recursive in F iff is obtained by a finite number of partial recursive
operations using as initial functions F and those in I. �

1.1.6� Remark. It follows from 1.1.5 that if F ∈ P, then a function that is partial recursive in F
is just partial recursive.

In particular, if we replace F throughout the right hand side of (1) by a partial recursive function

φ
(n)
e of the same arity n as F , then we end up with a partial recursive function. � �

In (1) F acts as a “function variable” to solve for. A solution h for F is a specific function that
makes (1) true for all ~xn if we replace all occurrences of F by h.

We show that if the right hand side of (1) is partial recursive in F , then (1) always has a partial
recursive solution for F . That is,

(∃e)
(

if we replace F in (1) by λ~xn.φ
(n)
e (~xn), then the resulting relation is true for all ~xn

)
(2)

Indeed, the function λz~xn.G(z, ~xn) given below is partial recursive by 1.1.6.

G(z, ~xn) = f

(
. . . φ(n)z

(
. . . φ(n)z (. . .) . . .

)
. . . φ(n)z

(
. . . φ(n)z

(
. . . φ(n)z (. . .) . . .

)
. . .
)
. . .

)
(3)

By the recursion theorem there is an e such that

G(e, ~xn) = φ(n)e (~xn), for all ~xn

Thus, (3) yields

φ(n)e (~xn) = G(e, ~xn) = f

(
. . . φ(n)e

(
. . . φ(n)e (. . .) . . .

)
. . . φ(n)e

(
. . . φ(n)e

(
. . . φ(n)e (. . .) . . .

)
. . .
)
. . .

)
(4)

That is, setting the “function variable F” equal to φ
(n)
e we have solved (1), and with a P-solution

at that!

1.1.7 Example. Here is a second solution to the question “λnx.An(x) ∈ R?”.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018 c© by George Tourlakis



1.1. The Kleene Recursion Theorem 3

An(x) is given by

An(x) =


x+ 2 if n = 0

2 else if x = 0

An
.−1
(
An(x .− 1)

)
otherwise

We re-write the above using F as a function variable and setting F (n, x) = An(x).
Thus, F is “given” by

F (n, x) =


x+ 2 if n = 0

2 else if x = 0

F
(
n
.− 1, F (n, x

.− 1)
)

otherwise

(5)

(5) has the form (1) and all assumptions are met. Thus, for some e, F = φ
(2)
e works. But is this φ

(2)
e

the same as An(x)? Yes, provided (5) has a unique solution! That (5) indeed does have a unique
total solution is an easy (double) induction exercise that shows An(x) = Bn(x) for all n, x if

Bn(x) =


x+ 2 if n = 0

2 else if x = 0

Bn
.−1
(
Bn(x .− 1)

)
otherwise

(5′)

Indeed we start the proof of (∀n)(∀x)An(x) = Bn(x) by induction on n:

n = 0: A0(x) = x+ 2 = B0(x).
I.H. fix n and assume for all x: An(x) = Bn(x).
I.S. for n+ 1: Prove for all x and the fixed n: An+1(x) = Bn+1(x).

Do the latter by induction on x:

x = 0: An+1(0) = 2 = Bn+1(0).
I.H. fix x and assume for the n above: An+1(x) = Bn+1(x).
I.S. for x+ 1: For the fixed n and x we provide the last proof step:

An+1(x+ 1) = An(An+1(x))
I.H. on n

= Bn(An+1(x))
I.H. on x

= Bn(Bn+1(x)) = Bn+1(x+ 1) �

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018 c© by George Tourlakis



4

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018 c© by George Tourlakis



Bibliography

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018 c© by George Tourlakis


	The Kleene Recursion Theorem
	Two Applications of the Recursion Theorem


