Computability in type-2 objects with well-behaved type-1 oracles is *p***-normal**

George Tourlakis*

Department of Computer Science York University Toronto, Canada gt@cs.yorku.ca

Abstract. We show that computability in a type-2 object is *p*-normal if type-1 *partial* inputs are computed by "well-behaved oracles".

Keywords: Computability, type-2 computability, oracles, *p*-normality.

1. Introduction

In [6, 7] we introduced and studied a formalism for the computability of (type-2) functionals that allow *partial* type-1 inputs. A central feature of the formalism was the presence of a "clock", postulated by the inclusion of "computations" $\{a\}(t, x, \alpha) = z$ ($z \in \{0, 1\}$) in the standard Kleene-schemata list, so that z = 0 iff the "program" a on (partial) type-1 input α will receive an answer for the "oracle"-computation $\alpha(x)$ within t "steps".

The type-1 oracles allowed were "well-behaved" in two respects: If a query " $\{e\}(x) = ?$ " was presented to them, then they used the program e to compute the answer. If, however, we asked " $\alpha(x) =$?", in ignorance of a program for α , then the oracle would use its own "secret algorithm" to compute the result, being *deterministic* about it in the sense that its behaviour for any given query would be always the same. It was shown in [6] that the set of Moschovakis' *search-computable* single-valued functionals ([5])

^{*}This research was partially supported by NSERC grant No. 8820

is properly contained in the new theory—the reason being, partly, that search-computable functionals are consistent while the new computability can compute *inconsistent* (or, *non monotone*) functionals.¹

In this paper we extend our computable functionals by one type up, allowing also type-2 inputs, or, more conveniently, doing our computations *relative to* (or, *in*) *a fixed type-2 functional*, which we will generically call "I". Our main result (Theorem 2.2) is that the clock-axiom "helps" this higher type computability to be *p*-normal.² That is, the functional that compares the lengths of two computations—i.e., computation tree depths (see Definition 2.4)—is formally computable.

As it is customary in the literature, $\mathbb{I} = \lambda \alpha . \mathbb{I}(\alpha)$, i.e., \mathbb{I} will have just one argument, the (type-1) object α . Moreover, it will be convenient to assume that \mathbb{I} is a *total restricted* functional, where "restricted" means that it is undefined on all *non total* α , and "total" means that it is defined on *all* total α .

A computation $F(\vec{x}, \vec{\alpha})$ relative to a fixed type-2 functional \mathbb{I} —where $\vec{x} = x_1, \ldots, x_n$ is a sequence of *n* inputs from the natural numbers (we write \vec{x}_n if we must refer to *n*) while $\vec{\alpha} = \alpha_1, \ldots, \alpha_l$ is a sequence of *l* type-1 inputs³—proceeds as usual, "calling" the oracle for α_j whenever the value $\alpha_j(y)$ is needed. During the computation it may also be that the value $\mathbb{I}(\lambda y.G(y, \vec{x}, \vec{\alpha}))$ is needed, where *G* is given by a program e ($G = \{e\}$). A (type-2) oracle for \mathbb{I} will effect this sub-computation and pass an answer (informed by $\vec{x}, \vec{\alpha}$ and *e*) once it is satisfied that $(\forall y) \{e\}(y, \vec{x}, \vec{\alpha}) \downarrow$.⁴

2. $\Pi_{\mathbb{I}}$ -computability relative to a total type-2 functional \mathbb{I}

The following definition of the theory $\Pi_{\mathbb{I}}$ uses Kleene-schemata ([3]). I–X are "standard", while XI introduces a "clock" for type-1 oracle (finite) computations ([6, 7]) with the *intended semantics* given below.

For all
$$t, x, \alpha, \mathbf{X}(t, x, \alpha) = \mathbf{if} \alpha(x) \downarrow \mathbf{in} \leq t$$
 steps then 0 else 1

Technically, we add to the set of "initial functionals" a *total* functional X that satisfies:

- (i) The range of **X** is a subset of $\{0, 1\}$,
- (ii) for any x, α ,

$$\alpha(x) \downarrow \text{ iff } (\exists t \in \omega) \mathbf{X}(t, x, \alpha) = 0$$

(iii) for all t, x, α , if $\mathbf{X}(t, x, \alpha) = 0$, then also $\mathbf{X}(t+1, x, \alpha) = 0$.

Condition (ii) above captures our (semantical) intention that the "hidden algorithm" that a type-1 oracle uses to compute $\alpha(x)$ is oblivious to the presence or absence of type-2 oracles, and therefore t is still a finite ordinal (if $\alpha(x) \downarrow$) as it naturally is in the unrelativized theory. The reader will note that adding the initial functional **X** is analogous to the standard practice of adding the "evaluation functional" **Ev** that is given for all x, α by $\mathbf{Ev}(x, \alpha) = \alpha(x)$. However, whereas the latter is uniquely determined by the *extension* of α —i.e., the set of tuples $\langle x, y \rangle$ that belong to α —the choice of **X** depends on the *intention* of

¹An important example of an "intuitively computable" inconsistent functional, when partial type-1 inputs are allowed, is the H of Theorem 2.2 below.

²The "help" manifests itself in the proof of Theorem 2.2.

³We say that F has rank (n, l).

 $^{{}^{4}}f(a) \downarrow$ means that f(a) is defined, while $f(a) \uparrow$ means that f(a) is undefined. These infinitely many sub-computations done by the type-2 oracle, one for each $y \in \omega$, are required because I is defined on total inputs only. The oracle checks for input validity.

the oracle for α , but this is "unknown". Technically, there are infinitely many ways to choose **X** subject to (i)–(iii) above, but we are not ready to suggest criteria that will allow one to prefer one clock **X** over another for being more "natural".

The "standard" clause XII is added to I–XI of [6, 7] and introduces the type-2 oracle which "computes" the fixed functional \mathbb{I} . For technical convenience we have followed the "custom" of restricting attention to a *total restricted* \mathbb{I} .

Definition 2.1. Let $k = \text{length}(\vec{x})$ and $l = \text{length}(\vec{\alpha})$. The set $\Pi_{\mathbb{I}}$ of *computations relative to* \mathbb{I} is the *smallest* set of tuples $(e, \vec{x}, \vec{\alpha}, y)$ satisfying I–XI below:⁵

I.	$(\langle 0, k, l, i \rangle, \vec{x}, \vec{\alpha}, x_i) \in \Pi_{\mathbb{I}}$	for	$1 \le i \le k$
II.	$(\langle 1,k,l,i\rangle,\vec{x},\vec{\alpha},x_i+1)\in\Pi_{\mathbb{I}}$	for	$1 \leq i \leq k$
III.	$(\langle 2,k,l,c\rangle,\vec{x},\vec{\alpha},c)\in\Pi_{\mathbb{I}}$	for	$c\in \omega$
IV.	$(\langle 3, k, l \rangle, \vec{x}, \vec{\alpha}, \langle \vec{x} \rangle) \in \Pi_{\mathbb{I}}$		
V.	$(\langle 4,k+4,l\rangle,z,y,u,v,\vec{x},\vec{\alpha},z)\in\Pi_{\mathbb{I}}$	if	u = v
	$(\langle 4,k+4,l\rangle,z,y,u,v,\vec{x},\vec{\alpha},y)\in\Pi_{\mathbb{I}}$	if	$u \neq v$
	For any vector \vec{c} of distinct numbers		
VI.	$(\langle 5, k+r+1, l, r, \vec{c} \rangle, y, \vec{z}, \vec{x}, \vec{\alpha}, z_i) \in \Pi_{\mathbb{I}}$	for	$y = c_i, i = 1, \ldots, r$
	where $length(\vec{c}) = length(\vec{z}) = r$		
VII.	$(\langle 6,k,l,i,j angle, \vec{x}, \vec{lpha},y)\in \Pi_{\mathbb{I}}$	if	$\alpha_j(x_i) = y$
VIII	$(\langle 7, k+m+1, l, m \rangle, f, \vec{e}_m, \vec{x}, \vec{\alpha}, y) \in \Pi_{\mathbb{I}}$	if	$(f, \vec{z}_m, \vec{x}, \vec{\alpha}, y) \in \Pi_{\mathbb{I}}$
	and $(e_i, \vec{x}, \vec{\alpha}, z_i) \in \Pi_{\mathbb{I}}$	for	$i = 1, \ldots, m$
IX.	$(\langle 8,k,l,m,e,\vec{y}_m\rangle,\vec{x},\vec{\alpha},z)\in\Pi_{\mathbb{I}}$	if	$(e,\vec{y}_m,\vec{x},\vec{\alpha},z)\in\Pi_{\mathbb{I}}$
X.	$(\langle 9, k+1, l \rangle, e, \vec{x}, \vec{\alpha}, y) \in \Pi_{\mathbb{I}}$	if	$(e,\vec{x},\vec{\alpha},y)\in\Pi_{\mathbb{I}}$
	The "clock" axiom		
XI.	$(\langle 10, k+1, l, i, j \rangle, y, \vec{x}, \vec{\alpha}, z) \in \Pi_{\mathbb{I}}$	if	$\mathbf{X}(y, x_i, \alpha_j) = z$
	The I axiom		
XII.	$(\langle 11, k, l, e \rangle, \vec{x}, \vec{\alpha}, y) \in \Pi_{\mathbb{I}}$	if	$(\forall z)(\exists w)(e,z,\vec{x},\vec{\alpha},w)\in\Pi_{\mathbb{I}}$
		and	$\mathbb{I}(\lambda z.\{e\}(z,\vec{x},\vec{\alpha})) = y$

Intuitively, the y component in $(\langle 10, k+1, l, i, j \rangle, y, \vec{x}, \vec{\alpha}, z)$ is the "number of steps" registered in the clock—at some point in time—for the oracle's computation of $\alpha_j(x_i)$. If z = 0 then the computation actually terminated in y steps. If z = 1 then the oracle is still computing.

The oracle for I "checks" that $\lambda z.\{e\}(z, \vec{x}, \vec{\alpha})$ is total (the if-part in clause XII) and, if so, it computes the answer y which depends on \vec{x} and $\vec{\alpha}$.

 $[\]overline{{}^{5}(\ldots)}$ denotes (set-theoretic) ordered tuples, while $\langle \cdots \rangle$ denotes the usual coding: For the empty sequence Λ we set $\langle \Lambda \rangle = 1$. Moreover, $\langle x_0, \ldots x_{n-1} \rangle = \prod_{i=0}^{n-1} p_i^{x_i+1}$, where p_i is the *i*-th prime $(p_0 = 2)$.

We have included clause VI for technical convenience, so that "table look-up" involved in a definition such as

$$f(y, \vec{z}) = \begin{cases} z_1 & \text{if } y = c_1 \text{ else} \\ \vdots & \vdots \\ z_r & \text{if } y = c_r \text{ else} \\ \uparrow \end{cases}$$
(1)

is as "easy" to compute as it is *intuitively expected* to be. If (1) were to be simulated by clause V and composition (clause VIII), then the computation depth⁶ for an input value c_i (read into the variable y) would depend not on any intrinsic properties of the input (e.g. input size), but instead on the position of the test " $y = c_i$ " in the table (due to the nesting of the **if-then-else** clause V).

 $\{e\}_{\mathbb{I}}^{\Pi}(\vec{x},\vec{\alpha}) = y$ means $(e,\vec{x},\vec{\alpha},y) \in \Pi_{\mathbb{I}}$. It is trivial to verify that the set of computation tuples $\Pi_{\mathbb{I}}$ is single-valued in the rightmost argument, therefore the functionals $\lambda \vec{x} \vec{\alpha} \cdot \{e\}_{\mathbb{I}}^{\Pi}(\vec{x},\vec{\alpha})$ are single-valued. We drop the superscript Π from $\{e\}_{\mathbb{I}}^{\Pi}$ from now on, however the subscript \mathbb{I} will be explicit. Thus $\{a\}_{\mathbb{I}}$ is computed according to the clauses I–XII, while $\{a\}$ is computed according to clauses I–XI.

Definition 2.2. The set of *partial* $\Pi_{\mathbb{I}}$ -computable functionals, $\{\{e\}_{\mathbb{I}} : e \in \omega\}$, is denoted by $\mathcal{P}_{\mathbb{I}}^{\Pi}$. Thus, $F \in \mathcal{P}_{\mathbb{I}}^{\Pi}$ iff $F = \{e\}_{\mathbb{I}}$ for some $e \in \omega$. The set of $\Pi_{\mathbb{I}}$ -computable functionals, $\mathcal{R}_{\mathbb{I}}^{\Pi}$, is the set of *total* functionals in $\mathcal{P}_{\mathbb{I}}^{\Pi}$. By dropping clause XII we go back to the *unrelativized* sets \mathcal{P}^{Π} and \mathcal{R}^{Π} of [6, 7]. The terms "computable" and "recursive" are synonymous.

The next two definitions define *immediate subcomputations*, i.s., and computation(-tree) *depths*. Since computations $(e, \vec{x}, \vec{\alpha}, y)$ are single-valued in y they can be unambiguously denoted by their "truncated" counterparts $(e, \vec{x}, \vec{\alpha})$.

Definition 2.3. (a) I–VI have no i.s.

(b) $(\langle 10, k+1, l, i, j \rangle, y, \vec{x}, \vec{\alpha}, 0)$ has no i.s. (c) $(\langle 6, k, l, i, j \rangle, \vec{x}, \vec{\alpha})$ has $(\langle 10, k+1, l, i, j \rangle, 0, \vec{x}, \vec{\alpha})$ as its only i.s.⁷ (d) $(\langle 10, k+1, l, i, j \rangle, y, \vec{x}, \vec{\alpha}, 1)$ has $(\langle 10, k+1, l, i, j \rangle, y+1, \vec{x}, \vec{\alpha})$ as its only i.s. (e) The only i.s. of $(\langle 7, k+m+1, l, m \rangle, f, \vec{e}_m, \vec{x}, \vec{\alpha})$ are $(e_i, \vec{x}, \vec{\alpha})$ for $i = 1, \ldots, m$, and $(f, \{e_1\}(\vec{x}, \vec{\alpha}), \ldots, \{e_m\}(\vec{x}, \vec{\alpha}), \vec{x}, \vec{\alpha})$. (f) $(\langle 8, k, l, m, e, \vec{y}_m \rangle, \vec{x}, \vec{\alpha})$ has $(e, \vec{y}_m, \vec{x}, \vec{\alpha})$ as its only i.s. (g) The only i.s. of $(\langle 9, k+1, l \rangle, e, \vec{x}, \vec{\alpha})$ is $(e, \vec{x}, \vec{\alpha})$. (h) $(\langle 11, k, l, e \rangle, \vec{x}, \vec{\alpha})$ has $(e, y, \vec{x}, \vec{\alpha})$, for all $y \in \omega$, as its i.s.

The subcomputation relation is the transitive closure of i.s.

Definition 2.4. If $u = (e, \vec{x}, \vec{\alpha})$ is a computation, then its *depth*, ||u||, is an ordinal defined as follows: If u falls under clauses I–VI, or if $u = (\langle 10, k+1, l, i, j \rangle, y, \vec{x}, \vec{\alpha}, 0) \in \Pi_{\mathbb{I}}$, then ||u|| = 0.

Otherwise, if $\{u_i : i \in n\}$, where $n \subseteq \omega$,⁸ is the full set of i.s. of u, then $||u|| = \sup^+ \{u_i : i \in n\}$.⁹ Thus, if $n \in \omega$, then $||u|| = 1 + \max\{||u_0||, \dots, ||u_{n-1}||\}$.

⁶See Definition 2.4.

⁷I.e., just "initialize" the clock.

⁸In this notation we think of n as an ordinal less than or equal to ω , i.e., if $0 \neq n \neq \omega$, then $n = \{0, 1, \dots, n-1\}$.

⁹For any set of ordinals $\{\kappa : \ldots\}$, we let $\sup^{+}\{\kappa : \ldots\}$ mean the *least upper bound* of $\{\kappa + 1 : \ldots\}$, following standard set-theoretic notation.

Note. The *semantics* that makes the definition of depths meaningful is that type-1 oracles are deterministic. Thus, the time it takes to compute $\alpha(y)$ is fully determined by α and y. We may wish to extend the above definition to include tuples u that are well-formed to be "computations" (i.e., in $\Pi_{\mathbb{I}}$) but fail to be so because they are "divergent". For such u we may set $||u|| = \aleph_1$.¹⁰ As usual, one defines

Definition 2.5. A relation R of rank (k, l) is *recursive in* \mathbb{I} iff its characteristic function, given by $\chi(\vec{x}, \vec{\alpha}) = \text{if } R(\vec{x}, \vec{\alpha}) \text{ then } 0 \text{ else } 1$, is in $\mathcal{R}_{\mathbb{I}}^{\Pi}$. It is *semi-recursive in* \mathbb{I} iff $R(\vec{x}, \vec{\alpha}) = \text{dom}(\{e\}_{\mathbb{I}})$ for some $e \in \omega$.

The following are immediately obtained in the standard manner:

Theorem 2.1. (Kleene's 2nd Recursion Theorem)

If F of rank (k+1, l) is in $\mathcal{P}^{\Pi}_{\mathbb{I}}$, then there is an $e \in \omega$ such that

 $\{e\}_{\mathbb{I}}(\vec{x},\vec{\alpha}) = F(e,\vec{x},\vec{\alpha}) \text{ for all } \vec{x},\vec{\alpha}.^{11}$

Corollary 2.1. $\mathcal{P}^{\Pi}_{\mathbb{T}}$ is closed under unbounded search, (μy) .

Corollary 2.2. $\mathcal{P}^{\Pi}_{\mathbb{T}}$ is closed under primitive recursion.

Corollary 2.3. The relations semi-recursive in I are closed under \land , $(\forall y)$, and $(\forall y)_{\leq z}$.

Note. Closure under $(\forall y)$ is due to the equivalence " $(\forall y) \{e\}(y, \vec{x}, \vec{\alpha}) \downarrow \text{ iff } \mathbb{I}(\lambda y. \{e\}(y, \vec{x}, \vec{\alpha})) \downarrow$ ". None of the other results in the corollaries above need the presence of \mathbb{I} .

Definition 2.6. A partial functional F of rank (0,1) is *weakly partial recursive in* \mathbb{I} iff there is an (ordinary) primitive recursive function f of rank (3,0) such that for all $e \in \omega$ and all \vec{x} ($k = \text{length}(\vec{x})$) and $\vec{\alpha}$ ($l = \text{length}(\vec{\alpha})$), {f(k, l, e)}($\vec{x}, \vec{\alpha}$) = $F(\lambda y.\{e\}_{\mathbb{I}}(y, \vec{x}, \vec{\alpha}))$.

A partial functional of rank (0, 1) contains in its left field all partial functions $\omega \to \omega$. Its domain, of course, could be much smaller. A *total restricted* functional F satisfying Definition 2.6 must also satisfy $F(\lambda y.\{e\}_{\mathbb{I}}(y, \vec{x}, \vec{\alpha})) \downarrow \text{iff } \lambda y.\{e\}_{\mathbb{I}}(y, \vec{x}, \vec{\alpha})$ is total. Such a functional will be called just *weakly recursive*, dropping the qualification "partial" (hoping that confusion will not ensue).

In Definition 2.6 one normally asks for an additional condition, on subcomputations of the $\{e\}_{\mathbb{I}}$, but we will not need this here. It is immediate from Definition 2.2 that \mathbb{I} is weakly recursive (in \mathbb{I}) since $\mathbb{I}(\lambda y.\{e\}_{\mathbb{I}}(y, \vec{x}, \vec{\alpha})) = \{\langle 11, k, l, e \rangle\}(\vec{x}, \vec{\alpha})$, for all "parameters" $\vec{x}, \vec{\alpha}$, and $\lambda kle.\langle 11, k, l, e \rangle$ is primitive recursive.

Definition 2.7. (Quantification over ω)

We define a *total restricted* functional E_{ω} by

$$E_{\omega}(\alpha) = \begin{cases} 0 & \text{if } (\forall n \in \omega)\alpha(n) \downarrow \land (\exists n \in \omega)\alpha(n) = 0\\ 1 & \text{if } (\forall n \in \omega)(\exists m \in \omega)(\alpha(n) = m \land m > 0) \end{cases}$$

¹⁰The rule-set used in the recursive definition of $\Pi_{\mathbb{I}}$ is \aleph_1 -based, i.e., all formation rules have premises with strictly fewer than \aleph_1 elements. Thus, every computation $u \in \Pi_{\mathbb{I}}$ satisfies $||u|| < \aleph_1$ ("all depths are finite or enumerable ordinals"). Hence, \aleph_1 is appropriate notation to denote "infinity"—in other words non-membership in $\Pi_{\mathbb{I}}$ (or divergence of computation).

¹¹Throughout this paper "=" denotes Kleene's "weak equality", that is, $f(\sigma) = g(\tau)$ iff $f(\sigma) \uparrow \land g(\tau) \uparrow \lor (\exists x)(f(\sigma) = x \land g(\tau) = x)$.

Theorem 2.2. (*p*-normality)

Assume that E_{ω} is weakly recursive in \mathbb{I} . Then, there is a functional H in $P_{\mathbb{I}}^{\Pi}$ satisfying

(a)
$$||x|| < \aleph_1 \lor ||y|| < \aleph_1$$
 implies $H(x, y, \vec{\alpha}) \downarrow$,

- (b) $||x|| < \aleph_1 \land ||x|| \le ||y||$ implies $H(x, y, \vec{\alpha}) = 0$,
- (c) ||x|| > ||y|| implies $H(x, y, \vec{\alpha}) = 1$.

Here the type-1 part of both truncated computations $x = \langle s, \sigma \rangle$ and $y = \langle t, \tau \rangle$ is $\vec{\alpha}$ with $l = \text{length}(\vec{\alpha})$, $(\sigma, \tau \text{ are the respective type-0 input sequences}).$

Proof:

The proof is standard. See for example [2] for a detailed account in the context where type-1 inputs are total, or [1, 4] for a proof-sketch that involves only the "interesting cases" (these latter two works also only deal with total type-1 inputs).

We too only confine ourselves to a few interesting cases, one of which involves computations that evaluate a (partial) type-1 input ($\alpha(x_i)$). The latter are troublesome in the standard Kleene-schemata setting, *if* α is allowed to be non-total, for they make *H* non-monotone (see introductory remarks in [6]), causing the proof to break down. Here, in the presence of the "clock axiom", non-monotonicity is not a problem.¹²

We define $\lambda xy\vec{\alpha}.H(x,y,\vec{\alpha})$ by cases. The recursive definition of H is based on the observation (see Definition 2.4):

if
$$||x|| < \aleph_1$$
, then $||x|| \le ||y||$ iff
 $(\forall x') \left(x' \text{ is i.s. of } x \to (\exists y')(y' \text{ is i.s. of } y \land ||x'|| \le ||y'||)\right)$

and therefore

$$\begin{aligned} \|x\| > \|y\| \text{ iff} \\ (\exists x') \Big(x' \text{ is i.s. of } x \land (\forall y')(y' \text{ is i.s. of } y \to \|x'\| > \|y'\|) \Big) \end{aligned}$$

Here are some interesting cases (we omit all the tedious but straightforward formalities):

(i) Let $x = \langle \langle 7, k + m + 1, l, m \rangle, a, \vec{b}_m, \vec{x}_k \rangle$ and $y = \langle \langle 7, k' + m' + 1, l, m' \rangle, c, \vec{d}_{m'}, \vec{y}_{k'} \rangle$ where we have omitted the $\vec{\alpha}$ -part for typographical convenience. The i.s. of x are $\langle b_i, \vec{x}_k \rangle, i = 1, \ldots, m$ and $\langle a, \{b_1\}(\vec{x}_k), \ldots, \{b_m\}(\vec{x}_k) \rangle$ (of course, one, or all of the $\{b_i\}(\vec{x}_k)$ might be undefined). Correspondingly, the i.s. of y are $\langle d_i, \vec{y}_{k'} \rangle$, $i = 1, \ldots, m'$ and $\langle c, \{d_1\}(\vec{y}_{k'}), \ldots, \{d_{m'}\}(\vec{y}_{k'}) \rangle$. For the sake of notational convenience let us name all the above i.s., in the order they were written, by the symbols u_i (for $i = 1, \ldots, m$), u_0, v_i (for $i = 1, \ldots, m'$), v_0 . Then, $H(x, y, \vec{\alpha})$ is computed by the following flow chart.

¹²It means however, as in [2], that we must use the 2nd recursion theorem (2.1) in our proof rather than the 1st recursion theorem (used in [1, 4]).

(ii) Let $x = \langle \langle 7, k + m + 1, l, m \rangle, a, \vec{b}_m, \vec{x}_k \rangle$ and $y = \langle \langle 11, k', l, c \rangle, \vec{y}_{k'} \rangle$. We denote the i.s. of x as in (i) above. Let $v_t = \langle c, t, \vec{y}_{k'} \rangle$, for all $t \in \omega$, be the i.s. of y. $H(x, y, \vec{\alpha})$ is given by the flowchart below.

where $(\exists t)H(u_i, v_t, \vec{\alpha}) = 0$, for $i = 0, \dots, m$, is implemented as $E_{\omega}(\lambda t.H(u_i, v_t, \vec{\alpha})) = 0$. (iii) Let $x = \langle \langle 6, k, l, i, j \rangle, \vec{x}_k \rangle$ and $y = \langle \langle 6, k', l, i', j' \rangle, \vec{y}_{k'} \rangle$.

Here we have just two i.s., $u = \langle \langle 10, k+1, l, i, j \rangle, 0, \vec{x}_k \rangle$ and $v = \langle \langle 10, k'+1, l, i', j' \rangle, 0, \vec{y}_{k'} \rangle$ respectively. Set $H(x, y, \vec{\alpha}) = H(u, v, \vec{\alpha})$.

(iv) Let $x = \langle \langle 10, k+1, l, i, j \rangle, t, \vec{x}_k \rangle$ and $y = \langle \langle 10, k'+1, l, i', j' \rangle, r, \vec{y}_{k'} \rangle$.

Set $u = \langle \langle 10, k+1, l, i, j \rangle, t+1, \vec{x}_k \rangle$ and $v = \langle \langle 10, k'+1, l, i', j' \rangle, r+1, \vec{y}_{k'} \rangle$. These are the *potential* i.s. of x, y respectively. Then,

$$H(x, y, \vec{\alpha}) = \begin{cases} H(u, v, \vec{\alpha}) & \text{if } \mathbf{X}(t, x_i, \alpha_j) \cdot \mathbf{X}(r, y_{k'}, \alpha_{j'}) = 1\\ 0 & \text{if } \mathbf{X}(t, x_i, \alpha_j) = 0\\ 1 & \text{otherwise} \end{cases}$$

At the end of all this we have a recursive definition " $H(x, y, \vec{\alpha}) = \cdots H(u, v, \vec{\alpha}) \cdots$ ". By 2.1, there is an $e \in \omega$ such that $\{e\}(x, y, \vec{\alpha}) = \cdots \{e\}(u, v, \vec{\alpha}) \cdots$, for all $x, y, \vec{\alpha}$, and therefore $H = \{e\}$.

The proof that the inductive definition of H gives us what we want proceeds by a straightforward induction on the ordinal $\min(||x||, ||y||)$, simultaneously for (b)-(c) of the theorem, while (a) follows directly from (b) and (c). (See, for example, [1, 2, 4].)

Now one gets the Selection Theorem via the standard proof (see any of [1, 2, 4]).

Corollary 2.4. If E_{ω} is weakly recursive in \mathbb{I} , then there is for each k, l a $\Pi_{\mathbb{I}}$ -computable partial functional $Sel^{(k,l)}$ of rank (k+1, l), such that

- (1) $(\exists y) \{a\}(y, \vec{x}, \vec{\alpha}) \downarrow \leftrightarrow Sel^{(k,l)}(a, \vec{x}, \vec{\alpha}) \downarrow$, and
- (2) $(\exists y) \{a\}(y, \vec{x}, \vec{\alpha}) \downarrow \rightarrow \{a\}(Sel^{(k,l)}(a, \vec{x}, \vec{\alpha}), \vec{x}, \vec{\alpha}) \downarrow.$

From the above, standard techniques yield that the $\Pi_{\mathbb{I}}$ -semi-recursive relations are closed under \lor , $(\exists y)$ and $(\exists y)_{\leq z}$ and that a functional is in $P_{\mathbb{I}}^{\Pi}$ iff its graph is. The latter yields in the obvious way closure of $P_{\mathbb{I}}^{\Pi}$ under definition by positive semi-recursive cases. Namely, if each f_i is in $P_{\mathbb{I}}^{\Pi}$ and each S_i is semi-recursive in \mathbb{I} , then if f given by the following equivalence is a function, it is in $P_{\mathbb{I}}^{\Pi}$: $y = f(\vec{x}, \vec{\alpha}) \equiv$ $y = f_1(\vec{x}, \vec{\alpha}) \land S_1(\vec{x}, \vec{\alpha}) \lor \cdots \lor y = f_k(\vec{x}, \vec{\alpha}) \land S_k(\vec{x}, \vec{\alpha})$. It now follows that $R(\vec{x}, \vec{\alpha})$ is recursive in \mathbb{I} iff both $R(\vec{x}, \vec{\alpha})$ and $\neg R(\vec{x}, \vec{\alpha})$ are semi-recursive in \mathbb{I} (for the *if*, define the characteristic function of Rby the two positive semi-recursive cases R and $\neg R$).

Note. It is clear that $\Pi \subseteq \Pi_{\mathbb{I}}$, or $(e, \vec{x}, \vec{\alpha}, y) \in \Pi \to (e, \vec{x}, \vec{\alpha}, y) \in \Pi_{\mathbb{I}}$. In other words, for all $e \in \omega$, $\{e\} \subseteq \{e\}_{\mathbb{I}}$. Thus, if $\{e\}$ is total, then $\{e\} = \{e\}_{\mathbb{I}}$. This yields $\mathcal{R}^{\Pi} \subseteq \mathcal{R}^{\Pi}_{\mathbb{I}}$. We can get a bit more, indeed, we have

Corollary 2.5. If E_{ω} is weakly recursive in \mathbb{I} , then $\mathcal{P}^{\Pi} \subseteq \mathcal{P}^{\Pi}_{\mathbb{I}}$.

Proof:

Let $f \in \mathcal{P}^{\Pi}$. Then $\lambda y \vec{x} \vec{\alpha} \cdot y = f(\vec{x}, \vec{\alpha})$ is semi-recursive in the unrelativized sense.¹³ By the "weak" normal form theorem of [6]¹⁴ in the unrelativized theory, there is a recursive L such that, for some e, $y = f(\vec{x}, \vec{\alpha}) \equiv (\exists z) L(\langle e, y, \vec{x} \rangle, z, \vec{\alpha}) = 0.$

By the preceding note, the predicate quantified by $(\exists z)$ is in $\mathcal{R}^{\Pi}_{\mathbb{I}}$, thus the left hand side of \equiv is semi-recursive in \mathbb{I} . Therefore, $f \in \mathcal{P}^{\Pi}_{\mathbb{I}}$.

3. Acknowledgements

I wish to thank the referee whose suggestions improved the clarity of the paper, in particular in connection with the introduction of **X** in Section 2. The referee also pointed out that the presence of the "clock", **X**, makes it possible to simulate computations relative to a partial function α by computations relative to some total function β . One introduces the latter by first letting

$$\theta(t, x) = \text{if } \mathbf{X}(t, x, \alpha) = 0 \text{ then } \alpha(x) + 1 \text{ else } 0$$

from which α and **X** can be recovered (i.e., computed) as

$$\alpha(x) = \theta((\mu t)[\theta(t, x) > 0], x) - 1 \tag{1}$$

and

$$\mathbf{X}(t, x, \alpha) = \mathbf{if} \ \theta(t, x) = 0 \ \mathbf{then} \ 1 \ \mathbf{else} \ 0 \tag{2}$$

and finally setting $\beta = \lambda x \cdot \theta((x)_0, (x)_1)$.

¹³"Unrelativized" or "absolute" means that the clause for \mathbb{I} is removed from Definition 2.1.

¹⁴The referee has produced a counterexample to the "strong" normal form theorem of [7].

References

- [1] Fenstad, J. E.: General Recursion Theory; An Axiomatic Approach, Springer-Verlag, New York, 1980.
- [2] Hinman, P. G.: Recursion-Theoretic Hierarchies, Springer-Verlag, New York, 1978.
- [3] Kleene, S. C.: Recursive functionals and quantifiers of finite type, *Transactions of the Amer. Math. Soc.*, **91**, 1959, 1–52, **108**, 1963, 106–142.
- [4] Moldestad, J.: *Computations in Higher Types*, Springer-Verlag, New York, 1977, (Lecture Notes in Mathematics series).
- [5] Moschovakis, Y. N.: Abstract first order computability, *Transactions of the Amer. Math. Soc.*, **138**, 1969, 427–464; 465–504.
- [6] Tourlakis, G.: Some reflections on the foundations of ordinary recursion theory and a new proposal, *Zeitschrift f. math. Logik u. Grund. d. Math.*, **32**, 1986, 503–515.
- [7] Tourlakis, G.: Recursion in partial type-1 objects with well-behaved oracles, *Mathematical Logic Quarterly*, 42, 1996, 449–460.