
Fundamenta Informaticae XX (2001) 1–9 1

IOS Press

Computability in type-2 objects with well-behaved type-1 oracles is
p-normal

George Tourlakis∗

Department of Computer Science

York University

Toronto, Canada

gt@cs.yorku.ca

Abstract. We show that computability in a type-2 object is p-normal if type-1 partial inputs are
computed by “well-behaved oracles”.

Keywords: Computability, type-2 computability, oracles, p-normality.

1. Introduction

In [6, 7] we introduced and studied a formalism for the computability of (type-2) functionals that allow
partial type-1 inputs. A central feature of the formalism was the presence of a “clock”, postulated by the
inclusion of “computations” {a}(t, x, α) = z (z ∈ {0, 1}) in the standard Kleene-schemata list, so that
z = 0 iff the “program” a on (partial) type-1 input α will receive an answer for the “oracle”-computation
α(x) within t “steps”.

The type-1 oracles allowed were “well-behaved” in two respects: If a query “{e}(x) = ?” was
presented to them, then they used the program e to compute the answer. If, however, we asked “α(x) =
?”, in ignorance of a program for α, then the oracle would use its own “secret algorithm” to compute the
result, being deterministic about it in the sense that its behaviour for any given query would be always the
same. It was shown in [6] that the set of Moschovakis’ search-computable single-valued functionals ([5])

∗This research was partially supported by NSERC grant No. 8820



2 Tourlakis / Computability in type-2 objects with well-behaved type-1 oracles is p-normal

is properly contained in the new theory—the reason being, partly, that search-computable functionals are
consistent while the new computability can compute inconsistent (or, non monotone) functionals.1

In this paper we extend our computable functionals by one type up, allowing also type-2 inputs, or,
more conveniently, doing our computations relative to (or, in) a fixed type-2 functional, which we will
generically call “I”. Our main result (Theorem 2.2) is that the clock-axiom “helps” this higher type
computability to be p-normal.2 That is, the functional that compares the lengths of two computations—
i.e., computation tree depths (see Definition 2.4)—is formally computable.

As it is customary in the literature, I = λα.I(α), i.e., I will have just one argument, the (type-1) object
α. Moreover, it will be convenient to assume that I is a total restricted functional, where “restricted”
means that it is undefined on all non total α, and “total” means that it is defined on all total α.

A computation F (~x, ~α) relative to a fixed type-2 functional I—where ~x = x1, . . . , xn is a sequence
of n inputs from the natural numbers (we write ~xn if we must refer to n) while ~α = α1, . . . , αl is a
sequence of l type-1 inputs3—proceeds as usual, “calling” the oracle for αj whenever the value αj(y)
is needed. During the computation it may also be that the value I(λy.G(y, ~x, ~α)) is needed, where G is
given by a program e (G = {e}). A (type-2) oracle for I will effect this sub-computation and pass an
answer (informed by ~x, ~α and e) once it is satisfied that (∀y){e}(y, ~x, ~α) ↓.4

2. ΠI-computability relative to a total type-2 functional I

The following definition of the theory ΠI uses Kleene-schemata ([3]). I–X are “standard”, while XI
introduces a “clock” for type-1 oracle (finite) computations ([6, 7]) with the intended semantics given
below.

For all t, x, α, X(t, x, α) = if α(x) ↓ in ≤ t steps then 0 else 1

Technically, we add to the set of “initial functionals” a total functional X that satisfies:

(i) The range of X is a subset of {0, 1},

(ii) for any x, α,
α(x) ↓ iff (∃t ∈ ω)X(t, x, α) = 0

(iii) for all t, x, α, if X(t, x, α) = 0, then also X(t + 1, x, α) = 0.

Condition (ii) above captures our (semantical) intention that the “hidden algorithm” that a type-1 oracle
uses to compute α(x) is oblivious to the presence or absence of type-2 oracles, and therefore t is still a
finite ordinal (if α(x) ↓) as it naturally is in the unrelativized theory. The reader will note that adding
the initial functional X is analogous to the standard practice of adding the “evaluation functional” Ev
that is given for all x, α by Ev(x, α) = α(x). However, whereas the latter is uniquely determined by the
extension of α—i.e., the set of tuples 〈x, y〉 that belong to α—the choice of X depends on the intention of
1An important example of an “intuitively computable” inconsistent functional, when partial type-1 inputs are allowed, is the H

of Theorem 2.2 below.
2The “help” manifests itself in the proof of Theorem 2.2.
3We say that F has rank (n, l).
4f(a) ↓ means that f(a) is defined, while f(a) ↑ means that f(a) is undefined. These infinitely many sub-computations done
by the type-2 oracle, one for each y ∈ ω, are required because I is defined on total inputs only. The oracle checks for input
validity.



Tourlakis / Computability in type-2 objects with well-behaved type-1 oracles is p-normal 3

the oracle for α, but this is “unknown”. Technically, there are infinitely many ways to choose X subject
to (i)–(iii) above, but we are not ready to suggest criteria that will allow one to prefer one clock X over
another for being more “natural”.

The “standard” clause XII is added to I–XI of [6, 7] and introduces the type-2 oracle which “com-
putes” the fixed functional I. For technical convenience we have followed the “custom” of restricting
attention to a total restricted I.

Definition 2.1. Let k = length(~x) and l = length(~α). The set ΠI of computations relative to I is the
smallest set of tuples (e, ~x, ~α, y) satisfying I–XI below:5

I. (〈0, k, l, i〉, ~x, ~α, xi) ∈ ΠI for 1 ≤ i ≤ k

II. (〈1, k, l, i〉, ~x, ~α, xi + 1) ∈ ΠI for 1 ≤ i ≤ k

III. (〈2, k, l, c〉, ~x, ~α, c) ∈ ΠI for c ∈ ω

IV. (〈3, k, l〉, ~x, ~α, 〈~x〉) ∈ ΠI

V. (〈4, k + 4, l〉, z, y, u, v, ~x, ~α, z) ∈ ΠI if u = v

(〈4, k + 4, l〉, z, y, u, v, ~x, ~α, y) ∈ ΠI if u 6= v

For any vector ~c of distinct numbers

VI. (〈5, k + r + 1, l, r,~c〉, y, ~z, ~x, ~α, zi) ∈ ΠI for y = ci, i = 1, . . . , r

where length(~c) = length(~z) = r

VII. (〈6, k, l, i, j〉, ~x, ~α, y) ∈ ΠI if αj(xi) = y

VIII.(〈7, k + m + 1, l,m〉, f, ~em, ~x, ~α, y) ∈ ΠI if (f, ~zm, ~x, ~α, y) ∈ ΠI

and (ei, ~x, ~α, zi) ∈ ΠI for i = 1, . . . ,m

IX. (〈8, k, l,m, e, ~ym〉, ~x, ~α, z) ∈ ΠI if (e, ~ym, ~x, ~α, z) ∈ ΠI

X. (〈9, k + 1, l〉, e, ~x, ~α, y) ∈ ΠI if (e, ~x, ~α, y) ∈ ΠI

The “clock” axiom

XI. (〈10, k + 1, l, i, j〉, y, ~x, ~α, z) ∈ ΠI if X(y, xi, αj) = z

The I axiom

XII. (〈11, k, l, e〉, ~x, ~α, y) ∈ ΠI if (∀z)(∃w)(e, z, ~x, ~α,w) ∈ ΠI

and I(λz.{e}(z, ~x, ~α)) = y

Intuitively, the y component in (〈10, k + 1, l, i, j〉, y, ~x, ~α, z) is the “number of steps” registered in the
clock—at some point in time—for the oracle’s computation of αj(xi). If z = 0 then the computation
actually terminated in y steps. If z = 1 then the oracle is still computing.

The oracle for I “checks” that λz.{e}(z, ~x, ~α) is total (the if-part in clause XII) and, if so, it computes
the answer y which depends on ~x and ~α.

5(. . .) denotes (set-theoretic) ordered tuples, while 〈· · · 〉 denotes the usual coding: For the empty sequence Λ we set 〈Λ〉 = 1.
Moreover, 〈x0, . . . xn−1〉 =

∏

n−1

i=0
p

xi+1

i
, where pi is the i-th prime (p0 = 2).



4 Tourlakis / Computability in type-2 objects with well-behaved type-1 oracles is p-normal

We have included clause VI for technical convenience, so that “table look-up” involved in a definition
such as

f(y, ~z) =























z1 if y = c1 else
...

...

zr if y = cr else

↑

(1)

is as “easy” to compute as it is intuitively expected to be. If (1) were to be simulated by clause V and
composition (clause VIII), then the computation depth6 for an input value ci (read into the variable y)
would depend not on any intrinsic properties of the input (e.g. input size), but instead on the position of
the test “y = ci” in the table (due to the nesting of the if-then-else clause V).

{e}Π
I
(~x, ~α) = y means (e, ~x, ~α, y) ∈ ΠI. It is trivial to verify that the set of computation tuples ΠI

is single-valued in the rightmost argument, therefore the functionals λ~x~α.{e}Π
I
(~x, ~α) are single-valued.

We drop the superscript Π from {e}Π
I

from now on, however the subscript I will be explicit. Thus {a}I

is computed according to the clauses I–XII, while {a} is computed according to clauses I–XI.

Definition 2.2. The set of partial ΠI-computable functionals,
{

{e}I : e ∈ ω
}

, is denoted by PΠ
I

. Thus,
F ∈ PΠ

I
iff F = {e}I for some e ∈ ω. The set of ΠI-computable functionals, RΠ

I
, is the set of total

functionals in PΠ
I

. By dropping clause XII we go back to the unrelativized sets PΠ and RΠ of [6, 7].
The terms “computable” and “recursive” are synonymous.

The next two definitions define immediate subcomputations, i.s., and computation(-tree) depths. Since
computations (e, ~x, ~α, y) are single-valued in y they can be unambiguously denoted by their “truncated”
counterparts (e, ~x, ~α).

Definition 2.3. (a) I–VI have no i.s.
(b) (〈10, k + 1, l, i, j〉, y, ~x, ~α, 0) has no i.s.
(c) (〈6, k, l, i, j〉, ~x, ~α) has (〈10, k + 1, l, i, j〉, 0, ~x, ~α) as its only i.s.7

(d) (〈10, k + 1, l, i, j〉, y, ~x, ~α, 1) has (〈10, k + 1, l, i, j〉, y + 1, ~x, ~α) as its only i.s.
(e) The only i.s. of (〈7, k + m + 1, l,m〉, f, ~em, ~x, ~α) are (ei, ~x, ~α) for i = 1, . . . ,m,
and (f, {e1}(~x, ~α), . . . , {em}(~x, ~α), ~x, ~α).
(f) (〈8, k, l,m, e, ~ym〉, ~x, ~α) has (e, ~ym, ~x, ~α) as its only i.s.
(g) The only i.s. of (〈9, k + 1, l〉, e, ~x, ~α) is (e, ~x, ~α).
(h) (〈11, k, l, e〉, ~x, ~α) has (e, y, ~x, ~α), for all y ∈ ω, as its i.s.
The subcomputation relation is the transitive closure of i.s.

Definition 2.4. If u = (e, ~x, ~α) is a computation, then its depth, ‖u‖, is an ordinal defined as follows: If
u falls under clauses I–VI, or if u = (〈10, k + 1, l, i, j〉, y, ~x, ~α, 0) ∈ ΠI, then ‖u‖ = 0.

Otherwise, if {ui : i ∈ n}, where n ⊆ ω,8 is the full set of i.s. of u, then ‖u‖ = sup+{ui : i ∈ n}.9

Thus, if n ∈ ω, then ‖u‖ = 1 + max{‖u0‖, . . . , ‖un−1‖}.
6See Definition 2.4.
7I.e., just “initialize” the clock.
8In this notation we think of n as an ordinal less than or equal to ω, i.e., if 0 6= n 6= ω, then n = {0, 1, . . . , n − 1}.
9For any set of ordinals {κ : . . .}, we let sup+{κ : . . .} mean the least upper bound of {κ + 1 : . . .}, following standard
set-theoretic notation.



Tourlakis / Computability in type-2 objects with well-behaved type-1 oracles is p-normal 5

Note. The semantics that makes the definition of depths meaningful is that type-1 oracles are determin-
istic. Thus, the time it takes to compute α(y) is fully determined by α and y. We may wish to extend the
above definition to include tuples u that are well-formed to be “computations” (i.e., in ΠI) but fail to be
so because they are “divergent”. For such u we may set ‖u‖ = ℵ1.10 As usual, one defines

Definition 2.5. A relation R of rank (k, l) is recursive in I iff its characteristic function, given by
χ(~x, ~α) = if R(~x, ~α) then 0 else 1, is in RΠ

I
. It is semi-recursive in I iff R(~x, ~α) = dom({e}I)

for some e ∈ ω.

The following are immediately obtained in the standard manner:

Theorem 2.1. (Kleene’s 2nd Recursion Theorem)
If F of rank (k + 1, l) is in PΠ

I
, then there is an e ∈ ω such that

{e}I(~x, ~α) = F (e, ~x, ~α) for all ~x, ~α.11

Corollary 2.1. PΠ
I

is closed under unbounded search, (µy).

Corollary 2.2. PΠ
I

is closed under primitive recursion.

Corollary 2.3. The relations semi-recursive in I are closed under ∧, (∀y), and (∀y)≤z .

Note. Closure under (∀y) is due to the equivalence “(∀y){e}(y, ~x, ~α) ↓ iff I
(

λy.{e}(y, ~x, ~α)
)

↓”. None
of the other results in the corollaries above need the presence of I.

Definition 2.6. A partial functional F of rank (0, 1) is weakly partial recursive in I iff there is an (ordi-
nary) primitive recursive function f of rank (3, 0) such that for all e ∈ ω and all ~x (k = length(~x)) and
~α (l = length(~α)), {f(k, l, e)}(~x, ~α) = F (λy.{e}I(y, ~x, ~α)).

A partial functional of rank (0, 1) contains in its left field all partial functions ω → ω. Its domain, of
course, could be much smaller. A total restricted functional F satisfying Definition 2.6 must also satisfy
F (λy.{e}I(y, ~x, ~α)) ↓ iff λy.{e}I(y, ~x, ~α) is total. Such a functional will be called just weakly recursive,
dropping the qualification “partial” (hoping that confusion will not ensue).

In Definition 2.6 one normally asks for an additional condition, on subcomputations of the {e}I, but
we will not need this here. It is immediate from Definition 2.2 that I is weakly recursive (in I) since
I(λy.{e}I(y, ~x, ~α)) = {〈11, k, l, e〉}(~x, ~α), for all “parameters” ~x, ~α, and λkle.〈11, k, l, e〉 is primitive
recursive.

Definition 2.7. (Quantification over ω)
We define a total restricted functional Eω by

Eω(α) =

{

0 if (∀n ∈ ω)α(n) ↓ ∧(∃n ∈ ω)α(n) = 0

1 if (∀n ∈ ω)(∃m ∈ ω)(α(n) = m ∧m > 0)

10The rule-set used in the recursive definition of ΠI is ℵ1-based, i.e., all formation rules have premises with strictly fewer than
ℵ1 elements. Thus, every computation u ∈ ΠI satisfies ‖u‖ < ℵ1 (“all depths are finite or enumerable ordinals”). Hence, ℵ1

is appropriate notation to denote “infinity”—in other words non-membership in ΠI (or divergence of computation).
11Throughout this paper “=” denotes Kleene’s “weak equality”, that is, f(σ) = g(τ ) iff f(σ) ↑ ∧ g(τ ) ↑ ∨(∃x)(f(σ) =
x ∧ g(τ ) = x).



6 Tourlakis / Computability in type-2 objects with well-behaved type-1 oracles is p-normal

Theorem 2.2. (p-normality)
Assume that Eω is weakly recursive in I. Then, there is a functional H in P Π

I
satisfying

(a) ‖x‖ < ℵ1 ∨ ‖y‖ < ℵ1 implies H(x, y, ~α) ↓,

(b) ‖x‖ < ℵ1 ∧ ‖x‖ ≤ ‖y‖ implies H(x, y, ~α) = 0,

(c) ‖x‖ > ‖y‖ implies H(x, y, ~α) = 1.

Here the type-1 part of both truncated computations x = 〈s, σ〉 and y = 〈t, τ〉 is ~α with l =
length(~α), (σ, τ are the respective type-0 input sequences).

Proof:
The proof is standard. See for example [2] for a detailed account in the context where type-1 inputs are
total, or [1, 4] for a proof-sketch that involves only the “interesting cases” (these latter two works also
only deal with total type-1 inputs).

We too only confine ourselves to a few interesting cases, one of which involves computations that
evaluate a (partial) type-1 input (α(xi)). The latter are troublesome in the standard Kleene-schemata
setting, if α is allowed to be non-total, for they make H non-monotone (see introductory remarks in [6]),
causing the proof to break down. Here, in the presence of the “clock axiom”, non-monotonicity is not a
problem.12

We define λxy~α.H(x, y, ~α) by cases. The recursive definition of H is based on the observation (see
Definition 2.4):

if ‖x‖ < ℵ1, then ‖x‖ ≤ ‖y‖ iff

(∀x′)
(

x′ is i.s. of x → (∃y′)(y′ is i.s. of y ∧ ‖x′‖ ≤ ‖y′‖)
)

and therefore

‖x‖ > ‖y‖ iff

(∃x′)
(

x′ is i.s. of x ∧ (∀y′)(y′ is i.s. of y → ‖x′‖ > ‖y′‖)
)

Here are some interesting cases (we omit all the tedious but straightforward formalities):

(i) Let x = 〈〈7, k + m + 1, l,m〉, a,~bm, ~xk〉 and y = 〈〈7, k′ + m′ + 1, l,m′〉, c, ~dm′ ,

~yk′〉 where we have omitted the ~α-part for typographical convenience. The i.s. of x are 〈bi, ~xk〉, i =
1, . . . ,m and 〈a, {b1}(~xk), . . . , {bm}(~xk)〉 (of course, one, or all of the {bi}(~xk) might be undefined).
Correspondingly, the i.s. of y are 〈di, ~yk′〉, i = 1, . . . ,m′ and 〈c, {d1}(~yk′), . . . , {dm′}(~yk′)〉. For the
sake of notational convenience let us name all the above i.s., in the order they were written, by the sym-
bols ui (for i = 1, . . . ,m), u0, vi (for i = 1, . . . ,m′), v0. Then, H(x, y, ~α) is computed by the following
flowchart.

12It means however, as in [2], that we must use the 2nd recursion theorem (2.1) in our proof rather than the 1st recursion theorem
(used in [1, 4]).



Tourlakis / Computability in type-2 objects with well-behaved type-1 oracles is p-normal 7

H(u0, v0, ~α) = 0
yes

−−−−→ . . .
yes

−−−−→ H(um, v0, ~α) = 0
yes

−−−−→ 0

no





y

no





y

H(u0, v1, ~α) = 0
yes

−−−−→ . . .
yes

−−−−→ H(um, v1, ~α) = 0
yes

−−−−→ 0

no





y

no





y

...
...

no





y

no





y

H(u0, vm′ , ~α) = 0
yes

−−−−→ . . .
yes

−−−−→ H(um, vm′ , ~α) = 0
yes

−−−−→ 0

no





y

no





y

1 1

(ii) Let x = 〈〈7, k + m + 1, l,m〉, a,~bm, ~xk〉 and y = 〈〈11, k′, l, c〉, ~yk′〉. We denote the i.s. of x as in (i)
above. Let vt = 〈c, t, ~yk′〉, for all t ∈ ω, be the i.s. of y. H(x, y, ~α) is given by the flowchart below.

(∃t)H(u0, vt, ~α) = 0
yes

−−−−→ . . .
yes

−−−−→ (∃t)H(um, vt, ~α) = 0
yes

−−−−→ 0

no





y

no





y

1 1

where (∃t)H(ui, vt, ~α) = 0, for i = 0, . . . ,m, is implemented as Eω

(

λt.H(ui, vt, ~α)
)

= 0.

(iii) Let x = 〈〈6, k, l, i, j〉, ~xk〉 and y = 〈〈6, k′, l, i′, j′〉, ~yk′〉.
Here we have just two i.s., u = 〈〈10, k + 1, l, i, j〉, 0, ~xk〉 and v = 〈〈10, k′ + 1, l, i′, j′〉, 0, ~yk′〉

respectively. Set H(x, y, ~α) = H(u, v, ~α).

(iv) Let x = 〈〈10, k + 1, l, i, j〉, t, ~xk〉 and y = 〈〈10, k′ + 1, l, i′, j′〉, r, ~yk′〉.
Set u = 〈〈10, k+1, l, i, j〉, t+1, ~xk 〉 and v = 〈〈10, k′+1, l, i′, j′〉, r+1, ~yk′〉. These are the potential

i.s. of x, y respectively. Then,

H(x, y, ~α) =











H(u, v, ~α) if X(t, xi, αj) · X(r, yk′ , αj′) = 1

0 if X(t, xi, αj) = 0

1 otherwise

At the end of all this we have a recursive definition “H(x, y, ~α) = · · ·H(u, v, ~α) · · · ”. By 2.1, there
is an e ∈ ω such that {e}(x, y, ~α) = · · · {e}(u, v, ~α) · · · , for all x, y, ~α, and therefore H = {e}.

The proof that the inductive definition of H gives us what we want proceeds by a straightforward
induction on the ordinal min(‖x‖, ‖y‖), simultaneously for (b)–(c) of the theorem, while (a) follows
directly from (b) and (c). (See, for example, [1, 2, 4].) ut

Now one gets the Selection Theorem via the standard proof (see any of [1, 2, 4]).



8 Tourlakis / Computability in type-2 objects with well-behaved type-1 oracles is p-normal

Corollary 2.4. If Eω is weakly recursive in I, then there is for each k, l a ΠI-computable partial func-
tional Sel(k,l) of rank (k + 1, l), such that

(1) (∃y){a}(y, ~x, ~α) ↓↔ Sel(k,l)(a, ~x, ~α) ↓, and
(2) (∃y){a}(y, ~x, ~α) ↓→ {a}(Sel(k,l)(a, ~x, ~α), ~x, ~α) ↓.

From the above, standard techniques yield that the ΠI-semi-recursive relations are closed under ∨, (∃y)
and (∃y)≤z and that a functional is in P Π

I
iff its graph is. The latter yields in the obvious way closure

of PΠ
I

under definition by positive semi-recursive cases. Namely, if each fi is in P Π
I

and each Si is
semi-recursive in I, then if f given by the following equivalence is a function, it is in P Π

I
: y = f(~x, ~α) ≡

y = f1(~x, ~α) ∧ S1(~x, ~α) ∨ · · · ∨ y = fk(~x, ~α) ∧ Sk(~x, ~α). It now follows that R(~x, ~α) is recursive in I

iff both R(~x, ~α) and ¬R(~x, ~α) are semi-recursive in I (for the if, define the characteristic function of R

by the two positive semi-recursive cases R and ¬R).
Note. It is clear that Π ⊆ ΠI, or (e, ~x, ~α, y) ∈ Π → (e, ~x, ~α, y) ∈ ΠI. In other words, for all e ∈ ω,
{e} ⊆ {e}I. Thus, if {e} is total, then {e} = {e}I. This yields RΠ ⊆ RΠ

I
. We can get a bit more,

indeed, we have

Corollary 2.5. If Eω is weakly recursive in I, then PΠ ⊆ PΠ
I

.

Proof:
Let f ∈ PΠ. Then λy~x~α.y = f(~x, ~α) is semi-recursive in the unrelativized sense.13 By the “weak”
normal form theorem of [6]14 in the unrelativized theory, there is a recursive L such that, for some e,
y = f(~x, ~α) ≡ (∃z)L(〈e, y, ~x〉, z, ~α) = 0.

By the preceding note, the predicate quantified by (∃z) is in RΠ
I

, thus the left hand side of ≡ is
semi-recursive in I. Therefore, f ∈ PΠ

I
. ut

3. Acknowledgements

I wish to thank the referee whose suggestions improved the clarity of the paper, in particular in connection
with the introduction of X in Section 2. The referee also pointed out that the presence of the “clock”,
X, makes it possible to simulate computations relative to a partial function α by computations relative to
some total function β. One introduces the latter by first letting

θ(t, x) = if X(t, x, α) = 0 then α(x) + 1 else 0

from which α and X can be recovered (i.e., computed) as

α(x) = θ((µt)[θ(t, x) > 0], x)− 1 (1)

and
X(t, x, α) = if θ(t, x) = 0 then 1 else 0 (2)

and finally setting β = λx.θ((x)0, (x)1).

13“Unrelativized” or “absolute” means that the clause for I is removed from Definition 2.1.
14The referee has produced a counterexample to the “strong” normal form theorem of [7].



Tourlakis / Computability in type-2 objects with well-behaved type-1 oracles is p-normal 9

References

[1] Fenstad, J. E.: General Recursion Theory; An Axiomatic Approach, Springer-Verlag, New York, 1980.

[2] Hinman, P. G.: Recursion-Theoretic Hierarchies, Springer-Verlag, New York, 1978.

[3] Kleene, S. C.: Recursive functionals and quantifiers of finite type, Transactions of the Amer. Math. Soc., 91,
1959, 1–52, 108, 1963, 106–142.

[4] Moldestad, J.: Computations in Higher Types, Springer-Verlag, New York, 1977, (Lecture Notes in Mathe-
matics series).

[5] Moschovakis, Y. N.: Abstract first order computability, Transactions of the Amer. Math. Soc., 138, 1969,
427–464; 465–504.

[6] Tourlakis, G.: Some reflections on the foundations of ordinary recursion theory and a new proposal, Zeitschrift
f. math. Logik u. Grund. d. Math., 32, 1986, 503–515.

[7] Tourlakis, G.: Recursion in partial type-1 objects with well-behaved oracles, Mathematical Logic Quarterly,
42, 1996, 449–460.


