Chapter I1X

APPENDIX
Why mathematicians need not lose sleep

over automatic theorem provers

This appendix presents the technical fact that any creative set L has trivially
describable (hence trivially recognizable) infinite recursive! subsets such that
any “verifier” for L—i.e., a ¢; such that L = W,—takes an unreasonably-
horrendously-outrageously humongous amount of time to verify membership
in such subsets.

More precisely, we will define a particular creative set L and show that for
any choice of a recursive ¢;,—e.g., one with a horrendously big run time, see
Chapter 7—and for any ¢;, such that L = W, there is a “trivially recognizable”
infinite subset T C L such that, for every x € T, the computation of ¢;, (x) will
take at least as many steps as that of ¢, ().

We will then offer an interpretation of this fact in the context of recursively
axiomatized theories such as Peano arithmetic and Set Theory.

1. A creative set
1.1 Definition. We define the set L as follows:
L= {igsa)  (6:4i,go)) L Ve (G, 4,2)) 1) A

¢:((i, §, x)) needs at least as many steps as ¢;((i, 7, x>)}

1.2 Theorem. L defined above is creative.

Proof. (1) L is semi-recursive (r.e.). Indeed, let

g(i,j,x) < (uy) (TG, G, 2),y) v T, (3G, 7))

fIndeed under some mild assumptions, regular.
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Then,

(i,5,2) € L =3y)(T, (i,5,2), ) VT, (i,4,2),y)) A
T(ja <Z,j7$>7g(l,j7$))

and we are done by strong projection, closure properties of Py, including the
fact that P, is closed under substitution of P-functions into variables.
(2) Next we prove that L is productive. We will argue that f = \i.(i,i,0) is
a productive function for L.
Let then
W;CL (2.1)

Question. Canit be (i,4,0) € L? Well, if yes, then, in particular, ¢;({i,,0)) |,
that is,% (i,4,0) € W; contradicting (2.1).

We conclude that (i,4,0) € L.

Question. Canit be (i,4,0) € W;? Well, if yes, then ¢;({i,,0)) |. Moreover
¢:((i,4,0)) takes no more time to compute than ¢;({(i,,0)) (i.e., itself). Thus,
the entrance requirement for L is met: (i,4,0) € L, contradicting (2.1) once
more. Thus, (,7,0) ¢ W, and we are done. O

With the theorem out of the way—for now—Ilet us choose and fix any re-

cursive ¢;, whatsoever. Next, let us choose any verifier whatsoeverY ¢;, for
L. That is

Let also
def

T L (io, jo,2) - 2 €N} (4)
We will argue two things:
I) TCL

(II) For all z € N, ¢;, ({i0, jo, x)) takes at least as much time as ¢;, ({io, jo, z))
to compute.

OK, fix an arbitrary x and let us pose and answer some questions:

Question. Can it be ¢;,({io, jo,z)) 17 If yes, then surely ¢;,({i0,jo,))
takes at least as much time as ¢, ((io, jo, «)) since the former is undefined and
the latter is defined (recall that ¢;, € R). Thus the entrance conditions for L
are met:

<i07j07x> €L

But ¢, ({(i0, jo, x)) T means
<i05j05I> % W’io

tIf Q(y, @) € Px and AZ.f(Z) € P, then Q(f(2),%) € Px since Q(f(2),7) — (Fy)(y =
f(Z) AN Q(y,X)). Now use the fact that the graph of f is in P, and closure under A and 3.

S0 is Ni.(4,1, k) for any k € N.

8Recall the definition: W; = dom(¢;).

YRecall the terminology “verifier”. It means that if z € L then ¢io(z) |—i.e., “program”
io verifies membership—else ¢;,(2) T, i.e., program ig runs forever.

Supplementary Lecture Notes, C5111/C4111 (Winter 2002)© by George
Tourlakis



1. A creative set 3

contradicting (3). Thus,
bio ({0, jo, x)) | (5)
By (3), (io, jo,x) € L, establishing (I).
Now for (I1):

Question. Can it be that ¢;,({io,jo,x)) | in strictly fewer steps than
5o ({0, jo, x)) 17

NO. Otherwise, we have the entrance sub-condition (for L) to the left of
“A” true, but the sub-condition to the right false. Hence (ig, jo,x) ¢ L (yet
(t0, jo, ) € W;,) contradicting (3) again. Thus, (II) is proved.

Since we can arrange to pick a ¢;, that runs horrendously-outrageously-
humongously slowly (Ch.7), what we have proved is that for any such ¢;, and
any choice of verifier “program” iy for L, we can build an infinite subset T’
(see (4)) of L that, despite being trivially recognizable on its own, the verifier
io for L will be horrendously-impractically-slow on every

input in T.
Let us now bring into the discussion the fact that L is creative. We cite two
facts without proof (for proofs see Ch.9 of “Computability”).

By the way, we can hope for no more than a verifier for a creative set. We can
have no yes/no recognizer (that is, decider) since such a set is not recursive (its
complement is productive, i.e., effectively non-r.e.).

Fact 1. The set of theorems of each of Peano arithmetic and (axiomatic)
Set Theory is creative.

Fact 2. Any two creative sets, A and B are recursively isomorphic. This
means that there is a recursive 1-1 and onto function f : N — N such that
f[4] = B.

Thus, there is, essentially, only one creative set. In particular, L can be
thought (within two-way 1-1 recursive encoding) that it is the set of all theorems
of Peano arithmetic.

Select now, as above, a very-very-very slowly computable total ¢;, and pick
any verifier ¢;, for L.

Consider the associated set T. This is a (sub)set of theorems (an infinite
one at that) of Peano arithmetic, since T'C L. Now, “humanly” speaking, the
T-theorems are trivial to recognize, since we can tell at a glance if a number
has the form (ig, jo,z)—i.e., 2i0F13J0H152+1_or not.

On the other hand, our arbitrary verifier ¢;, will have loads of trouble on
every theorem in T it will take more time on each such than what ¢;, needs.

Mathematicians (and computer scientists who prove theorems) will sleep
easy tonight.

If we think of natural numbers as strings over {0,1}, that is, if we identify N
with {0,1}*, then the set of theorems T is a regular language over the alphabet

{0,1,(,),; } where “;” represents “”. I mean, we can think of “(ig, jo,z)” as
the string “(io; jo; x)”, « € {0,1}*.
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