
Chapter II

The last word on Leibniz?

1. “8.12”, again

The reader should recall—from Chapter I of our notes, “Post’s Theorem and
other Tools”—the conventions regarding the use the symbols “�” and “��”

We show in Chapter II that Gries’s ([5]) Leibniz rules 8.12(a,b)—under a
number of different formulations—remain valid derived rules in the E-logic of
[10].� Until Section 3 the quantifier “∗” used in [5] will be the logical ∀ (equivalently,
∃). �

The twin rules “Leibniz (8.12)” ([5], p.148) are stated below in their “no-
capture” versions, using contextual substitution (carefully defined in [10]) and
“standard quantifier notation”.†

A ≡ B
(∀x)(C[p := A]⇒ D) ≡ (∀x)(C[p := B]⇒ D)

(8.12a)

and
D ⇒ (A ≡ B)

(∀x)(D ⇒ C[p := A]) ≡ (∀x)(D ⇒ C[p := B])
(8.12b)

We have proved the “weak” “full-capture” versions (stated below as (1)
and (2)) in [10]. As it was remarked there, we cannot do any better: Full-
capture “strong”‡ versions will yield strong generalization which the E-logic
of [10] does not support.§

` A ≡ B implies ` (∀x)(C[p \A]⇒ D) ≡ (∀x)(C[p \B]⇒ D) (1)
†The translation into standard notation uses the Trading Axiom (9.2) of [5] and the

definition “(∗x | true : A) means (∗x)A, where ‘∗’ is one of ∃ or ∀”.
‡“Weak” means that the premise is an absolute theorem. If this is not required, then we

have a “strong” rule.

§“Strong” generalization is the—unavailable to our E-logic of [10]—“rule”
A

(∀x)A
. Note

that the E-logic of [11] does support this rule!

The last word on Leibniz? c© by George Tourlakis



2 II. The last word on Leibniz?

and

` A ≡ B implies ` (∀x)(D ⇒ C[p \A]) ≡ (∀x)(D ⇒ C[p \B]) (2)

In that connection we had also shown that the D ⇒-part on the premise side
of 8.12b had to be dropped from (2) above, otherwise rule (2) would become
invalid ([10, 11]).

Finally, we had shown ([10]) that 8.12b is a valid derived rule if the premise
has an absolute proof

` D ⇒ (A ≡ B)

and that it is not valid as a “strong” rule (i.e., in the general case when the
premise D ⇒ (A ≡ B) does not have an absolute proof).

Similarly, 8.12a is not valid if the premise A ≡ B is not absolute (take B to
be true, C to be ¬p and D to be false to obtain the invalid A ` (∀x)A.)

� Are there “practical” conditions—that are not so restrictive as to render the
rules useless—under which 8.12(a, b) are valid with non absolute premises? �

Rick Ganong has informed me of a (restricted) “strong” version of 8.12(a, b),
proposed by Alan Dow. Namely, that the rules 8.12(a, b) remain valid with
non absolutely provable premises, on the condition that there is a proof of the
premises such that the “assumptions”† used in the proof contain no free x.

The theorem below proves the validity of these strong(er) rules, by proving
them to be derived rules in E-logic of [10]. As we want to reserve the term
“strong” to mean absolutely no restriction on the rules’ premises, we call the
strengthened rules just “stronger” (!)

1.1 Theorem. (“Stronger” 8.12) We are in E-logic of [10]. Let Γ be a finite
set of formulas that contain no free x.

If Γ can prove the premises of the rules 8.12(a, b) above, then it can also
prove the consequences of the two rules.

Pause. Why “finite”? Does this not restrict generality?

Proof. For 8.12a. Here is a Hilbert-style proof that yields the premise A ≡ B.

†Nonlogical axioms.

The last word on Leibniz? c© by George Tourlakis



1. “8.12”, again 3

We continue it until we get the conclusion of 8.12a.

Γ
〈
A finite number of “assumptions” used. None has a free x

〉
...

(1) A ≡ B
〈
Proved from Γ

〉
(2) (C[p := A]⇒ D) ≡ (C[p := B]⇒ D)

〈
(1) and SLCS

〉
(3) (C[p := A]⇒ D)⇒ (C[p := B]⇒ D)

〈
(2) and |=Taut

〉
(4) (C[p := A]⇒ D)⇐ (C[p := B]⇒ D)

〈
(2) and |=Taut

〉
(5) (∀x)

(
(C[p := A]⇒ D)⇒ (C[p := B]⇒ D)

) 〈
(3), gen., and cond. on Γ

〉
(6) (∀x)

(
(C[p := A]⇒ D)⇐ (C[p := B]⇒ D)

) 〈
(4), gen., and cond. on Γ

〉
(7) (∀x)(C[p := A]⇒ D)⇒ (∀x)(C[p := B]⇒ D)

〈
(5), Ax4 and MP

〉
(8) (∀x)(C[p := A]⇒ D)⇐ (∀x)(C[p := B]⇒ D)

〈
(6), Ax4 and MP

〉
(9) (∀x)(C[p := A]⇒ D) ≡ (∀x)(C[p := B]⇒ D)

〈
(7), (8) and |=Taut

〉

For 8.12b. Let some (finite set) of premises, Γ, where x does not occur free,
manage to prove D ⇒ (A ≡ B).

Thus we have:

Γ
〈
A finite number of “assumptions” used. None has a free x

〉
...

(1) D ⇒ (A ≡ B)
〈
Proved from Γ

〉
(2) D

〈
Add as an “assumption”

〉
(3) A ≡ B

〈
(1), (2) and MP

〉
(4) C[p := A] ≡ C[p := B]

〈
(3) and SLCS

〉
By the Deduction theorem,

Γ ` D ⇒ (C[p := A] ≡ C[p := B]) (∗)

Thus,

The last word on Leibniz? c© by George Tourlakis



4 II. The last word on Leibniz?

Γ
...

(1) D ⇒ (C[p := A] ≡ C[p := B])
〈
by (∗) above

〉
(2) (D ⇒ C[p := A]) ≡ (D ⇒ C[p := B])

〈
(1), distr. of ⇒ over ≡ and EQN

〉
(3) (D ⇒ C[p := A])⇒ (D ⇒ C[p := B])

〈
(2) and |=Taut

〉
(4) (D ⇒ C[p := A])⇐ (D ⇒ C[p := B])

〈
(2) and |=Taut

〉
(5) (∀x)

(
(D ⇒ C[p := A])⇒ (D ⇒ C[p := B])

) 〈
(3) and gen.

〉
(6) (∀x)

(
(D ⇒ C[p := A])⇐ (D ⇒ C[p := B])

) 〈
(4) and gen.

〉
(7) (∀x)(D ⇒ C[p := A])⇒ (∀x)(D ⇒ C[p := B])

〈
(5), Ax4 and MP

〉
(8) (∀x)(D ⇒ C[p := A])⇐ (∀x)(D ⇒ C[p := B])

〈
(6), Ax4 and MP

〉
(9) (∀x)(D ⇒ C[p := A]) ≡ (∀x)(D ⇒ C[p := B])

〈
(7), (8) and |=Taut

〉
�

While we are at it, we strengthen WLUS of [10].

1.2 Theorem. (“Stronger” WLUS) If Γ, a finite set of assumptions, proves
A ≡ B, then it also proves C[p\A] ≡ C[p\B]—provided that all free occurrences
of variables that are captured in the two substitutions above do not occur free
in Γ.

Proof. The proof is a simple amendment of that for WLUS (Metatheorem 4.2
in [10]).

The induction step involves an induction on the formula C. The interesting
case is when C is (∀x)D. By I.H. we have Γ ` D[p \ A] ≡ D[p \ B]. By the
Tautology Theorem Γ ` D[p\A]⇒ D[p\B], hence Γ ` (∀x)

(
D[p\A]⇒ D[p\B]

)
by generalization—applicable due to the restriction on Γ.

Thus Γ ` (∀x)D[p \A]⇒ (∀x)D[p \B] by Ax4 followed by MP.
Similarly we obtain Γ ` (∀x)D[p \ A] ⇐ (∀x)D[p \ B] and are done by the

Tautology Theorem. �

� If the reader will pardon the pedantry, we note that “stronger” WLUS is weaker
than “strong” [W]LUS (or SLUS). The latter—which we cannot have in our par-
ticular E-logic of [10], as already remarked—requires absolutely no restrictions
on what free variables Γ has or does not have. In particular Γ could just be the
set {A ≡ B}. �
The last word on Leibniz? c© by George Tourlakis



2. About “3.83” 5

2. About “3.83”

On p.60 of [5] we find

(3.83) Axiom, Leibniz: (e = f)⇒ (Eze = Ezf ) (E any expression)

In the context of Boolean expressions, that is, well-formed formulas (which
is the context of Chapter 3 in [5]), the above is not a new axiom, but follows
by techniques of Chapter 4 (loc cit), namely the Deduction theorem applied to
the instance of the Rule Leibniz below—where, in this case, the “=” above is
an alias for “≡”:

e ≡ f ` Eze ≡ Ezf (1)

for any Boolean expressions e, f, E and propositional variable z. The notation
“Eze” is an abbreviation of “E[z := e]”.

Of course, since (1) above holds in Predicate Calculus as well (by SLCS), so
does 3.83.

However, there is a version of 3.83 that is different, and is worth emphasizing.
This is when e, f and E are non-Boolean expressions (not formulas, that is),
i.e., when they are terms, in which case z is an object variable.

In class and in [10] we are using ≈ as equality between terms (“objects”) to
avoid confusion with “=” which also means (!) “≡”.

Thus we set here to explore (3.83′) below, which still is not an axiom in our
([10]) setting! It is a theorem (schema).

(3.83′) e ≈ f ⇒ Eze ≈ Ezf (e, f, E are terms, z an object variable)

We will see that (3.83′) is a consequence of Ax6 of [10], namely

x ≈ t⇒ (A ≡ A[x := t]), for all terms t and formulas A

� Ax6 is kind of a “mixed-type 3.83” (≈ to the left and ≡ to the right of ⇒).
It is the axiom most Logicians ([3, 4, 6, 7] and [2, 8]†) take (along with Ax5)
to characterize equality of objects, and call it “the Leibniz axiom” since it was
invented by Leibniz, albeit in a “2nd-order version”.‡

A word for the hedging “kind of”: In the interest of “elegance”, Ax6 is given
in a simple, somewhat user-unfriendly form.§ Note the fact that to the left of
≡ we have just the original A, no substitution took place, and the first term (to
†Actually, these two authors split Ax6 into two axioms, one for predicate symbols and one

for function symbols. They give [I state the unary case for convenience], x ≈ y ⇒ (P (x) ≡
P (y)) and x ≈ y ⇒ (f(x) ≈ f(y)) for all variables x, y, predicates P and functions f .
‡That is, with a quantifier over predicates: (t ≈ s) ≡ (∀P )(P zt ≡ P zs ), where t, s are terms,

z an object variable and P a predicate variable. Note the two “≡”. We are not allowed to
quantify over predicates in our logic.
§[4] offers even more elegance, and takes away a bit more from friendliness, by restricting

A to be atomic.

The last word on Leibniz? c© by George Tourlakis



6 II. The last word on Leibniz?

the left of ≈) is just a variable. A distant cry from the user-friendly form (the
one actually used in [3])

(3.83′′) t ≈ s⇒ (A[x := t] ≡ A[x := s])

for any terms t, s and formulas A.
We show that we can have our pie (elegant axiom) and eat it too (user-

friendliness, via theorems) in Theorem 2.6 below. �
2.1 Lemma. ` x ≈ y ⇒ y ≈ x and ` x ≈ y ⇒ y ≈ z ⇒ x ≈ z

Proof. Easy exercise using Ax6 and Ax5 (the latter is “x ≈ x” and all its other
“partial generalizations”—see [10]) . �

2.2 Lemma. For any function symbol f of arity n,

` x ≈ y ⇒ f(z1, . . . , zi, x, zi+2, . . . , zn) ≈ f(z1, . . . , zi, y, zi+2, . . . , zn)

where the variable y is different from all the zi.

Proof. Let A stand for the formula

f(z1, . . . , zi, x, zi+2, . . . , zn) ≈ f(z1, . . . , zi, y, zi+2, . . . , zn)

Then, by Ax6,

` x ≈ y ⇒
(
f(z1, . . . , zi, x, zi+2, . . . , zn) ≈ f(z1, . . . , zi, y, zi+2, . . . , zn) ≡

f(z1, . . . , zi, y, zi+2, . . . , zn) ≈ f(z1, . . . , zi, y, zi+2, . . . , zn)
)

The subformula “f(z1, . . . , zi, y, zi+2, . . . , zn) ≈ f(z1, . . . , zi, y, zi+2, . . . , zn)”
can be dropped. Why? By (Ax5) (∀w)w ≈ w is an axiom, hence, by Ax2 and
MP we get

` f(z1, . . . , zi, y, zi+2, . . . , zn) ≈ f(z1, . . . , zi, y, zi+2, . . . , zn)

“Redundant true” does the rest. �

2.3 Corollary. For any function symbol f of arity n, and distinct variables xi
and yi,

` x1 ≈ y1 ⇒ · · · ⇒ xn ≈ yn ⇒
(
f(x1, . . . , xn) ≈ f(y1, . . . , yn)

)
(∗∗)

Proof. (Sketch) Move all the xi ≈ yi to the left of ` (invoking Deduction theo-
rem). Then, using Lemma 2.2, we deduce

f(x1, . . . , xn) ≈ f(y1, x2, . . . , xn) from x1 ≈ y1

The last word on Leibniz? c© by George Tourlakis



2. About “3.83” 7

f(y1, x2, . . . , xn) ≈ f(y1, y2, x3, . . . , xn) from x2 ≈ y2

f(y1, y2, x3, . . . , xn) ≈ f(y1, y2, y3, x4, . . . , xn) from x3 ≈ y3

...

lastly,

f(y1, y2, . . . , yn−1, xn) ≈ f(y1, y2, . . . , yn−1, yn) from x2 ≈ y2

Transitivity from Lemma 2.1 does the rest. �

2.4 Corollary. For any function symbol f of arity n, and any terms ti and si,
i = 1, 2, . . . , n,

` t1 ≈ s1 ⇒ · · · ⇒ tn ≈ sn ⇒
(
f(t1, . . . , tn) ≈ f(s1, . . . , sn)

)
Proof. By 2.3 and the substitution theorem ([10], Cor. 3.7). �

� In particular, 2.4 says that the restriction “and distinct variables xi and yi” in
the statement of 2.3 is not significant in practice, since the ti, si above can be
any variables. The stated constraint just helped to honour the restriction stated
in Lemma 2.2 and hence use the Lemma in the proof of 2.3. �
2.5 Theorem. The 3.83′ (p.5).

Proof. We do induction on terms E.
Basis-1. E is a constant or a variable other than z. Then 3.83′ reads

e ≈ f ⇒ E ≈ E

and is a(n absolute) theorem indeed, by ` E ≈ E and tautological implication.
Basis-2. E is the variable z. Then 3.83′ reads

e ≈ f ⇒ e ≈ f

and is a(n absolute) theorem since it is a tautology (Post, again).
Induction step. E is g(t1, . . . , tn), where g is a function symbol of arity n

and ti, i = 1, . . . , n, are terms.
Add now e ≈ f as an assumption so that we can use the Deduction theorem.

The induction hypothesis guarantees the claim for all terms that are “simpler”
or “smaller” than E. Thus, on the adopted assumption e ≈ f we have the
following n non-absolute theorems:

ti[z := e] ≈ ti[z := f ], for i = 1, . . . , n

By Corollary 2.4 and MP,

g(t1[z := e], . . . , tn[z := e]) ≈ g(t1[z := f ], . . . , tn[z := f ])

The last word on Leibniz? c© by George Tourlakis



8 II. The last word on Leibniz?

is a (non absolute) theorem. The above is the same as (assuming we remember
how substitution is defined!)

g(t1, . . . , tn)[z := e] ≈ g(t1, . . . , tn)[z := f ]

in short
Eze ≈ Ezf

By the Deduction theorem,

` e ≈ f ⇒ Eze ≈ Ezf .

�

2.6 Theorem. The 3.83′′ (p.6).

Proof. Let z be a variable that does not occur in A as either free or bound.
Then A[x := z] is defined, hence, by Ax6

` x ≈ z ⇒ (A ≡ A[x := z]) (1)

Applying the theorem on (simultaneous) substitutions ([10], Cor. 3.7) via the
simultaneous substitution [x, z := t, s] we obtain (from (1))

` t ≈ s⇒ (A[x := t] ≡ A[x := z][z := s])

i.e.,
` t ≈ s⇒ (A[x := t] ≡ A[x := s])

�

�� An “in-house” proof of 3.83′′ (that in reality just mimicks the proof of Cor. 3.7
of [10] in the special case above) is as follows:

Let z be a variable that does not occur in either t or s, and which moreover
does not occur in A as either free or bound.

Then A[x := z] is defined, hence, by Ax6

` x ≈ z ⇒ (A ≡ A[x := z]) (1′)

Next, let w be a new variable—different from z—which is not free in either t or
s and is neither free nor bound in A.

Thus, A[x := w] is defined, and A[x := z][x := w] is just A[x := z]. (O)

By (1′) and generalization,

` (∀x)
(
x ≈ z ⇒ (A ≡ A[x := z])

)
The last word on Leibniz? c© by George Tourlakis



3. Reaching for the ∗’s 9

Hence, by Ax2 and MP (and using observation (O) above),

` w ≈ z ⇒ (A[x := w] ≡ A[x := z])

By generalization,

` (∀w)
(
w ≈ z ⇒ (A[x := w] ≡ A[x := z])

)
hence, by Ax2 and MP,

` t ≈ z ⇒ (A[x := w][w := t] ≡ A[x := z][w := t]) (2′)

Since A[x := z] contains no w, and A[x := w][w := t] is A[x := t], (2′) becomes

` t ≈ z ⇒ (A[x := t] ≡ A[x := z]) (3′)

One more “cycle” of what we have been doing, and we are done. So, generalize
(3′) to get:

` (∀z)
(
t ≈ z ⇒ (A[x := t] ≡ A[x := z])

)
Following this by an invocation of Ax2 and MP we obtain

` t[z := s] ≈ s⇒ (A[x := t][z := s] ≡ A[x := z][z := s]) (4′)

i.e.,
` t ≈ s⇒ (A[x := t] ≡ A[x := s])

since (explaining the simplifications effected to (4′), from left to right)

• t has no free z

• A[x := t] has no free z

• A[x := z][z := s] is A[x := s]

��
3. Reaching for the ∗’s
We address here “the other quantifiers” only briefly and anecdotally since all
these “others” are, or stem from, nonlogical symbols so that we cannot speak
intelligently or completely about them in the absence of nonlogical axioms
governing their intended behaviour.

In particular, I am here only interested in what happens to Leibniz 8.12(a,b)
when ∗ are one of “+” or “×”.

First off, both these latter symbols are nonlogical symbols. They are used
in the text [5] in the context of Arithmetic, or “Peano Arithmetic”.

The last word on Leibniz? c© by George Tourlakis



10 II. The last word on Leibniz?

The latter is a theory (based on first order logic), which has additional axioms
(nonlogical) that tell us how its nonlogical symbols, namely, +, ×, “S”,† “<”,
and “0” behave.

We sample the behaviour of the “binary” + and × before we turn to their
use in [5] as “quantifiers”.

Axioms for (binary) + For all (object) variables x, y (of type N, if we
have other types too),

x+ 0 ≈ x
x+ S(y) ≈ S(x+ y)

The above is a recursive or inductive definition. The recursion is using the
variable y as “recursion-variable”—x being just a “parameter”—using “value”
“0” for the basis, and then telling us: “if you know how to do “x + y”, then
the way to compute the “value” of x+ S(y)† is to add “1” to what you already
computed as the “value” of x+ y.”

Axioms for (binary) × For all (object) variables x, y (of type N, if we
have other types too),

x× 0 ≈ 0
x× S(y) ≈ (x× y) + x

To “serve” these inductive definitions (and other needs) Peano Arithmetic
also features the “Induction Axiom”, to the effect that for every formula A and
(object) variable x (of type N, of course), the following is an axiom

A[x := 0] ∧ (∀n)
(
A[x := n]⇒ A[x := S(n)]

)
⇒ (∀x)A

Now, the above induction axiom is instrumental towards allowing us to in-
troduce new function symbols in Peano Arithmetic by recursive definitions just
like the above two.� Please note that a “ definition” in this context (“recursive definition”) is formal,
i.e., defines a new formal symbol via defining Axioms. As such it should not
be confused with informal abbreviations we usually make, such as allowing the
“text” (∃x)A be a brief way of writing (¬(∀x)(¬A)). �

As it is beyond our scope to pursue this discussion formally (for reasons well
beyond the fact that I did not even spell out all the Peano axioms) we will
continue our investigation informally, heavily “cheating” (!) on the way by—
among other logical indiscretions—including concepts from sets in the theory.‡

†The successor unary function, meant to convey “+1”, i.e., S(x), “has as standard mean-
ing” x+ 1.
†That is, x+ (y + 1).
‡Formal Peano Arithmetic is developed outside set theory and thus does not benefit from

set-theoretic techniques and tools.

The last word on Leibniz? c© by George Tourlakis



3. Reaching for the ∗’s 11

Given the above resolution, we will also stop using ≈ (and use “=” in-
stead) to equate arithmetical objects, and will use 1, 2, 3, 4, etc. (instead of
S(0), S(S(0)), S(S(S(0))), S(S(S(S(0)))), etc.) and “x+ 1” rather than “S(x)”
in what follows.

We have stated that + and × are “built-in” functions in Peano Arithmetic.
We can have many (infinitely many) “user-defined” functions.

For example, we can define a new function h by the axioms

h(0) = 1
h(n+ 1) = (n+ 1)× h(n)

h(n) is our familiar “factorial function”, usually denoted by “n!”. This tech-
nique of axiomatically introducing new functions by recursive definitions is om-
nipresent in Arithmetic.

Here are the two examples of main interest in this section.

Suppose we are give a function f (of arity 2, to avoid needless “generality”).
We first define a function called “sum” in terms of f by the axioms (recursive
schema):

sum(0, y) = 0
sum(x+ 1, y) = sum(x, y) + f(x, y)

Thus, we have the following endless sequence of Peano Arithmetic theorems
(stated without formal proof,† but whose validity should be intuitively obvious!)

sum(0, y) = 0

sum(1, y) = f(0, y)

sum(2, y) = f(0, y) + f(1, y)

sum(3, y) = f(0, y) + f(1, y) + f(2, y)

and so on.� This function, sum, is what we normally write as∑
0≤i<x

f(i, y)

or, in [5]-notation, using “+” to now mean the “quantifier” (
∑

, really) rather
than the “built-in” binary “+”,(

+ i | 0 ≤ i < x : f(i, y)
)

The “range” 0 ≤ i < x does not dictate any particular order of summation.
However, commutativity and associativity of the (binary) “+” make the order
of summation of the f(i, y) irrelevant, hence we have chosen the convenient
ascending (with respect to i) order. �
†Which is not difficult. The first one is the first axiom for sum anyway.

The last word on Leibniz? c© by George Tourlakis



12 II. The last word on Leibniz?

Thus, an “application” of 8.12 here would be

t = s `
(

+ i | (0 ≤ i < x)[x := t] : f(i, y)
)

=
(

+ i | (0 ≤ i < x)[x := s] : f(i, y)
) (a)

and

0 ≤ i < x⇒ t = s `
(

+ i | 0 ≤ i < x : f(i, y)[y := t]
)

=
(

+ i | 0 ≤ i < x : f(i, y)[y := s]
) (b)

Now, if neither t nor s have a free i, then we can add all the terms (f(0, y), f(1, y),
. . . ) and do the substitutions into x or y afterwards, that is, in this restricted
case, (a) and (b) become (a′) and (b′) below.

t = s ` sum(t, y) = sum(s, y) (a′)

and

0 ≤ i < x⇒ t = s ` sum(x, t) = sum(x, s) (b′)

(a′) is valid by Theorem 2.5 (3.83′).
As for (b′), we assume that we have obtained a proof of the premise

0 ≤ i < x⇒ t = s

from assumptions that have no free i (compare with the restriction in Theo-
rem 1.1). First off, if x = 0, then without consulting the hypothesis we have
that sum(x, t) = sum(x, s) is a theorem (from the first axiom for sum, 3.83′,
and Lemma 2.1). Let then x > 0.

By generalization we obtain (∀i)(0 ≤ i < x ⇒ t = s), hence the following
segment of equational proof yields t = s:

(∀i)(0 ≤ i < x⇒ t = s)

=
〈

WLUS
〉

(∀i)
(
(0 > i ∨ x ≥ i) ∨ t = s

)
=
〈
t = s has no free i

〉
t = s ∨ (∀i)(0 > i ∨ x ≥ i)

=
〈

(∀i)(0 > i ∨ x ≥ i) is provably ≡false since x > 0
〉

t = s

Having obtained a proof of t = s, sum(x, t) = sum(x, s) follows by 3.83′.
The verification of (b) gets somewhat trickier if t or s do have free occurrences

of i, in which case the substitutions cannot be done “afterwards”, and “sum”
is therefore useless.

The last word on Leibniz? c© by George Tourlakis



3. Reaching for the ∗’s 13

� The assumption that 0 ≤ i < x⇒ t = s was proved from premises with no free
occurrences of i still holds. �

To preserve our sanity, let t specifically be g(i, y, z) and s specifically be
h(i, y, z), where g and h are functions of arity 3 that have already being intro-
duced in Arithmetic.

We use Sumg and Sumh below to handle (b):

Sumg(0, y, z) = 0
Sumg(x+ 1, y, z) = Sumg(x, y, z) + f(x, g(x, y, z))

and

Sumh(0, y, z) = 0
Sumh(x+ 1, y, z) = Sumh(x, y, z) + f(x, h(x, y, z))

Informally,
Sumg(x, y, z) =

(
+ i | 0 ≤ i < x : f(i, g(i, y, z))

)
and

Sumh(x, y, z) =
(

+ i | 0 ≤ i < x : f(i, h(i, y, z))
)

Thus, (b) becomes

0 ≤ i < x⇒ g(i, y, z) = h(i, y, z) ` Sumg(x, y, z) = Sumh(x, y, z) (b′′)

and we prove it by induction on x. This induction must be carried out within
Peano Arithmetic, but we agreed to be sloppy, so we sketch it informally.

The induction hypothesis allows

Sumg(x, y, z) = Sumh(x, y, z)

and we then try to prove

Sumg(x+ 1, y, z) = Sumh(x+ 1, y, z)

on the assumption that

0 ≤ i < x+ 1⇒ g(i, y, z) = h(i, y, z) (1)

that is, we try to prove

Sumg(x, y, z) + f(x, g(x, y, z)) = Sumh(x, y, z) + f(x, h(x, y, z)) (2)

Now, since 0 ≤ x < x + 1 is provable, we have a proof of g(x, y, z) = h(x, y, z)
from (1) and substitution (Cor. 3.7, [10]†) followed by MP, hence f(x, g(x, y, z)) =
f(x, h(x, y, z)) is provable by 3.83′. The induction hypothesis and one more ap-
plication of 3.83′ yield (2).
†Which is applicable because (1) was proved from premises with no i.

The last word on Leibniz? c© by George Tourlakis



14 II. The last word on Leibniz?

For x = 0 (basis) the conclusion is valid (since Sumg(0, y, z) = 0 and
Sumh(0, y, z) = 0 are axioms).

Before we look at case (a) (p.12) we generalize (b) by allowing the range 0 ≤
i < x to be a general formula R[i, x], where “[i, x]” indicates dependence on the
free variables i and x without precluding dependence on other free variables. This
time we use this terse notation also for the terms t and s, i.e., t[i] and s[i]—rather
than specifying g(i, y, z) and h(i, y, z)—to indicate dependence on i, sweeping
under the rug the unimportant (possible) dependence on other variables.

We want to argue that still

0 ≤ i < x⇒ t = s `
(

+ i |R[i, x] : f(i, y)[y := t[i]]
)

=
(

+ i |R[i, x] : f(i, y)[y := s[i]]
) (b3)

To this end we introduce

• Range-set (depends on x and any other free variables of R; but not on i):

S[x] def= {i : R[i, x]}

• The characteristic function of R:

cR[i, x] =

{
1 if R[i, x]
0 if ¬R[i, x]

• The maximum element function, M :

M [x] def= 1 + maxS[x]

� The introduction of characteristic functions is possible in formal Peano Arith-
metic. The definition yields the two theorems (of Arithmetic) that cR[i, x] =
1 ≡ R[i, x] and cR[i, x] = 0 ≡ ¬R[i, x]. Informally, “cR[i, x] = 1 iff R[i, x] is
‘true’ ” and “cR[i, x] = 0 iff R[i, x] is ‘false’ ”.

The M -function is undefined for those values of x, and any other free vari-
ables, that S[x] is infinite. We allow it to have the value 1 when S[x] = ∅. �

Thus, informally, using a brand new variable w,(
+ i |R[i, x] :f(i, y)[y := t[i]]

)
=
(

+ i | 0 ≤ i < M [x] :
(
cR[i, x]× f(i, y)

)
[y := t[i]]

)
=
(

+ i | 0 ≤ i < w :
(
cR[i, x]× f(i, y)

)
[y := t[i]]

)[
w := M [x]

]
and(

+ i |R[i, x] :f(i, y)[y := s[i]]
)

=
(

+ i | 0 ≤ i < M [x] :
(
cR[i, x]× f(i, y)

)
[y := s[i]]

)
=
(

+ i | 0 ≤ i < w :
(
cR[i, x]× f(i, y)

)
[y := s[i]]

)[
w := M [x]

]
The last word on Leibniz? c© by George Tourlakis



3. Reaching for the ∗’s 15

and (b3) reduces to the already verified case (b), using 3.83′, for all cases where
M [x] is defined.

We now turn to case 8.12(a) (p.12):

� We continue to assume that we have a proof of t[i] = s[i] from assumptions, Γ,
that have no free i. �

We want to know if we can prove(
+ i |R

[
i, t[i]

]
: f(i, y)

)
=
(

+ i |R
[
i, s[i]

]
: f(i, y)

)
(a3)

from the same assumptions, Γ.
We define

St
def= {i : R

[
i, t[i]

]
} and Ss

def= {i : R
[
i, s[i]

]
}

By 3.83′′,
Γ ` R

[
i, t[i]

]
≡ R

[
i, s[i]

]
hence (generalization and assumption on Γ)

Γ ` (∀i)
(
R
[
i, t[i]

]
≡ R

[
i, s[i]

])
thus

St = Ss (1)

Note that the St and Ss may depend on free variables (but not on i). As before,
we set Mt = 1 + maxSt and Ms = 1 + maxSs. Thus, by (1), Mt = Ms (or they
are both undefined). Therefore, the question (a3) is now whether Γ can prove(

+ i | 0 ≤ i < Mt : f(i, y)
)

=
(

+ i | 0 ≤ i < Ms : f(i, y)
)

which it certainly can ((a′) of p.12)—if Mt (and hence Ms) is defined—using
3.83′ (recall that Mt and Ms have no free i).

We can redo all this (but will not!) changing “+” throughout into “×”. The
formal function for ∏

0≤i<x

f(i, y)

or (
× i | 0 ≤ i < x : f(i, y)

)
we could call pro. It would satisfy the two axioms

pro(0, y) = 1
pro(x+ 1, y) = pro(x, y)× f(x, y)

Indeed, one can use a more general algebraic system, that of a “commuta-
tive monoid”—that is, a nonempty set D along with a binary operation, “∗”,

The last word on Leibniz? c© by George Tourlakis



16 II. The last word on Leibniz?

that is associative, commutative, and has an identity—and with some effort
successfully revisit 8.12(a, b) in cases where the range is finite. Finiteness allows
us to give to the members of the range integer subscripts and effect recursive
definitions on the subscript variable (to define things such as “a1 ∗a2 ∗ · · · ∗an”).
Commutativity and associativity remove the ambiguity arising from order and
grouping of “summation”. Finally, the presence of identity makes for a graceful
handling of empty ranges—cf. pro(0, y) and sum(0, y).

3.1� Remark. Proving theorems—the practice—is an art, aided by our recog-
nition and utilization of “patterns”.

Because of this, it is helpful that [5] draws our attention to the strong sim-
ilarity between the logical quantifier rules 8.12(a, b) [for ∗ ∈ {∃,∀}] and the
“monoid” quantifier rules 8.12(a, b) [for ∗ ∈ {+,×, other}].

Some caution is necessary, however: Logical quantifier rules 8.12 are valid
in all mathematics, they are logical rules and come equipped with a (formal
proof) certificate. The other “quantifiers” have behaviour dictated by nonlogical
axioms, and that behaviour must be formally certified before use. We have not
provided such a “certificate” (nor did [5]).

All I have done above was to informally argue that 8.12(a, b) hold for Peano
Arithmetic, but, do recall, I argued with the help of sets (with extreme discom-
fort this can be avoided). �

The last word on Leibniz? c© by George Tourlakis



Bibliography

[1] Jon Barwise, editor. Handbook of Mathematical Logic. North-Holland,
Amsterdam, 1978.

[2] Jon Barwise. An introduction to first-order logic, chapter A.1, pages 5–46.
In [1], 1978.

[3] N. Bourbaki. Éléments de Mathématique; Théorie des Ensembles. Her-
mann, Paris, 1966.

[4] Herbert B. Enderton. A mathematical introduction to logic. Academic
Press, New York, 1972.

[5] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.
Springer-Verlag, New York, 1994.

[6] Yu. I. Manin. A Course in Mathematical Logic. Springer-Verlag, New York,
1977.

[7] Elliott Mendelson. Introduction to mathematical logic, 3rd Edition.
Wadsworth & Brooks, Monterey, California, 1987.

[8] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, Mas-
sachusetts, 1967.

[9] Raymond M. Smullyan. Gödel’s Incompleteness Theorems. Oxford Univer-
sity Press, Oxford, 1992.

[10] G. Tourlakis. A basic formal equational predicate logic. Technical Report
CS-1998-09, York University, Dept. of Comp. Sci., 1998.

[11] G. Tourlakis. On the soundness and completeness of equational predicate
logics. Technical Report CS-1998-08, York University, Dept. of Comp. Sci.,
1998.

The last word on Leibniz? c© by George Tourlakis


