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You already know that removing a leading ∀ “uncovers”

(in general†) “Boolean structure” which is amenable to proofs

“by Post”.

It would be a shame if we did not have techiques to remove

a leading ∃.

We DO have such a technique! Read on.

0.0.1 Metatheorem. (Aux. Hypothesis Metatheorem)

Suppose that Γ ` (∃x)A.

Moreover, suppose that we know that Γ, A[x := z] ` B,

where z is fresh for ALL of Γ, (∃x)A, and B.

Then we have Γ ` B.

†Clearly, removing ∀ from (∀x)x = y uncovers x = y. But that has no Boolean structure —no
glue. Hence I said “in general”.
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� In our annotation we call A[x := z] an “auxiliary hypothe-

sis associated with (∃x)A”. z is called the auxiliary variable

that we chose.

Essentially the fact that we proved (∃x)A allows us to adopt

A[x := z] as a NEW AUXILIARY HYPOTHESIS to help

in the proof of B.

I How does it help? (1) I have a new hypothesis to work

with; (2) A[x := z] has NO LEADING QUANTIFIER.

(2), in general, results in uncovering the Boolean structure

of A[x := z] to enable proof by “Post”!

Halt-and-Take-Notice-Important! A[x := z] is an

ADDED HYPOTHESIS!

I It is NOT TRUE that either (∃x)A ` A[x := z] or

that Γ ` A[x := z].J

WE WILL PROVE LATER IN THE COURSE

THAT SUCH A THING IS NOT TRUE! �
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Proof. of the Metatheorem.

By the DThm, the metatheorem assumption yields

Γ ` A[x := z]→ B

Thus, ∃-Intro —Corollary 0.1.5 on p.7 of the lecture Notes

http://www.cs.yorku.ca/~gt/papers/lec15.pdf

we get

Γ ` (∃z)A[x := z]→ B (1)

We now can prove Γ ` B as follows:

1) (∃x)A 〈Γ− thm〉
2) (∃z)A[x := z]→ B 〈Γ− thm; (1) above〉
3) (∃z)A[x := z] ≡ (∃x)A 〈Bound var. renaming since z fresh〉
4) (∃x)A→ B 〈(2, 3) + Post〉
5) B 〈(1, 4) + MP〉

�
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The most frequent form encountered in using Metatheorem

0.0.1 is the following corollary.

0.0.2 Corollary. To prove (∃x)A ` B IT SUFFICES to

pick a z that is FRESH for (∃x)A and B and

PROVE INSTEAD (∃x)A,A[x := z] ` B.

Proof. Take Γ = {(∃x)A} and invoke Metatheorem 0.0.1. �
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Some folks believe that the most important thing in logic is

to know that the following is provable but the converse is not.

True, it is important.

But so are so many other things in logic, like Metatheorem

0.0.1, precisely and correctly formulated AND proved in our

earlier pages.

0.0.3 Example. ` (∃x)(∀y)A→ (∀y)(∃x)A.

Let us share two proofs!

First Proof. By DThm it suffices to prove instead:

(∃x)(∀y)A ` (∀y)(∃x)A

(1) (∃x)(∀y)A 〈hyp〉
(2) (∀y)A[x := z] 〈aux. hyp for (1); z fresh〉
(3) A[x := z] 〈(2) + spec〉
(4) (∃x)A 〈(3) + Dual spec〉
(5) (∀y)(∃x)A 〈(4) + gen; OK, all hyp lines, (1,2), have no free y〉

We used the Corollary 0.0.2 of Metatheorem 0.0.1.
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Second Proof. ` A → (∃x)A (that is, the Dual of Ax2)

we get ` (∀y)A→ (∀y)(∃x)A by ∀-mon.

Applying ∃-intro (Cor. 0.1.5 in the previous lecture Notes

PDF, referred to also on p.3 of the present Notes) we get

` (∃x)(∀y)A→ (∀y)(∃x)A �
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0.0.4 Example. We prove (∃x)(A→ B), (∀x)A ` (∃x)B.

(1) (∃x)(A→ B) 〈hyp〉
(2) (∀x)A 〈hyp〉
(3) A[x := z]→ B[x := z]

〈
aux. hyp for (1); z fresh

〉
(4) A[x := z] 〈(2) + spec〉
(5) B[x := z] 〈(3, 4) + MP 〉
(6) (∃x)B 〈(5) + Dual spec〉

Remark. The above proves the conclusion using 0.0.1 and

Γ = {(∃x)(A→ B), (∀x)A}. Of course, this Γ proves (∃x)(A→
B). �
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0.0.5 Example. We prove (∀x)(A→ B), (∃x)A ` (∃x)B.

(1) (∀x)(A→ B) 〈hyp〉
(2) (∃x)A 〈hyp〉
(3) A[x := z] 〈aux. hyp for (2); z fresh〉
(4) A[x := z]→ B[x := z] 〈(1) + spec〉
(5) B[x := z] 〈(3, 4) + MP 〉
(6) (∃x)B 〈(5) + Dual spec〉 �
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0.0.6� Example. Here is a common mistake people make when

arguing informally.

Let us prove the following informally.

` (∃x)A ∧ (∃x)B → (∃x)(A ∧B).

So let (∃x)A(x) and (∃x)B(x) be true.†

Thus, for some value c of x we have that A(c) and

B(c) are true.

But then so is A(c) ∧B(c).

The latter implies the truth of (∃x)
(
A(x) ∧B(x)

)
.

Nice, crisp and short.

And very, very wrong as we will see once we have 1st-order

Soundness in hand. Namely, we will show in the near future

that (∃x)A∧(∃x)B → (∃x)(A∧B) is NOT a theorem schema.

It is NOT provable.

†The experienced mathematician considers self-evident and unworthy of mention at least two
things:

(1) The deduction theorem, and

(2) The Split Hypothesis metatheorem.
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What went wrong above?

We said

“Thus, for some value c of x we have that A(c) and B(c)

are true”.

The blunder was to assume that THE SAME c verified

BOTH A(x) and B(x).

Let us see that formalism protects even the inexperienced

from such blunders.
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Here are the first few steps of a(n attempted) FORMAL proof

via the Deduction theorem:

(1) (∃x)A ∧ (∃x)B 〈hyp〉
(2) (∃x)A 〈(1) + Post〉
(3) (∃x)B 〈(1) + Post〉
(4) A[x := z] 〈aux. hyp for (2); z fresh〉
(5) B[x := w] 〈aux. hyp for (3); w fresh〉

The requirement of freshness makes w DIFFERENT from z.

These variables play the role of two distinct c and c′. Thus the

proof cannot continued. Saved by freshness! � �
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0.0.7 Example. The last Example in this section makes clear

that the Russell Paradox was the result of applying bad Logic,

not just bad Set Theory!

I will prove that for any binary predicate φ we have

` ¬(∃y)(∀x)(φ(x,y) ≡ ¬φ(x,x)) (R)

By the Metatheorem “Proof by Contradiction” I can show

(∃y)(∀x)(φ(x,y) ≡ ¬φ(x,x)) ` ⊥

instead. Here it is

(1) (∃y)(∀x)(φ(x,y) ≡ ¬φ(x,x)) 〈hyp〉
(2) (∀x)(φ(x, z) ≡ ¬φ(x,x)) 〈aux. hyp for (1); z fresh〉
(3) φ(z, z) ≡ ¬φ(z, z) 〈(2) + spec〉
(4) ⊥ 〈(3) + Post〉

If we let the atomic formula φ(x,y) be Set Theory’s “x ∈ y”

then (R) that we just proved (in fact for ANY binaru predicate

φ not just ∈) morphs into

` ¬(∃y)(∀x)(x ∈ y ≡ x /∈ x) (R′)
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In plain English (R′) says that there is NO set y that con-

tains ALL x satisfying x /∈ x.

This theorem was proved without using even a single axiom

of set theory, indeed not even using “{. . .}-notation” for sets,

or any other symbols from set theory.

After all we proved (R′) generally and abstractly in the form

(R) and that expression and its proof has NO SYMBOLS from

set theory!

In short, Russell’s Paradox can be expressed AND demonstrated

in PURE LOGIC.

It is remarkable that Pure Logic can tell us that NOT ALL

COLLECTIONS are SETS, a fact that escaped Cantor. �

Basic Logic© by George Tourlakis



14

Basic Logic© by George Tourlakis



Semantics of First-Order
Languages —Simplified

Lecture #19 Nov. 20, 2020

0.1. Interpretations

An interpretation of a wff —and of THE ENTIRE language,

that is, the set of ALL Terms and wff— is INHERITED from

an interpretation of all symbols of the Alphabet.

This tool —the Interpretation— Translates each wff to

some formula of a familiar branch of mathematics that we

choose, and thus questions such as is the “translated formula

true?” can in principle be dealt with (see 0.1.2 below for de-

tails).

An interpretation is totally up to us, just as states were in

Boolean logic.

The process is only slightly more complex.
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Here we need to interpret not only wff but also terms as well.

The latter requires that we choose a NONEMPTY set of

objects to begin with. We call this set the Domain of our

Interpretation and generically call it “D” but in specific cases

it could be D = N or D = R (the reals) or even something

“small” like D = {0, 5}.
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� An Interpretation of a 1st-order language consists of a PAIR

of two things:

The aforementioned domain D and a translation mapping

M —the latter translates the abstract symbols of the Alphabet

of logic to concrete mathematical symbols.

I This translation of the ALPHABET INDUCES a trans-

lation for each term and wff of the language; thus of ALL THE

LANGUAGE. J

We write the interpretation “package” as D = (D,M) dis-

playing the two ingredients D and M in round brackets.

The unusual calligraphy here is German capital letter callig-

raphy that is usual in the literature to name an interpretation

package. The letter for the name chosen is usually the same as

that of the Domain. �

Let me repeat that both D and M are our choice.
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0.1.1 Definition. (Translating the Alphabet V1)
An Interpretation D = (D,M) gives concrete counterparts

(translations) to ALL elements of the Alphabet as follows:

In the listed cases below we may use notation M(X) to

indicate the concrete translation (mapping) of an abstract

linguistic object X .

We also may use XD as an alternative notation for M(X).

The literature favours XD and so will we.

(1) For each FREE variable (of a wff) x, xD —that is, the

translationM(x)— is some chosen (BY US!) FIXED mem-

ber of D.

� BOUND variables are NOT translated! They stay AS

IS. �

(2) For each Boolean variable p, pD is a member of {t, f}.

(3) >D = t and ⊥D = f .

This is just we did —via states— in the Boolean case. As

was the case there, I will remind the reader once again

that we choose the value pD anyway we please, but for >
and ⊥ we follow the fixed (Boolean) rule.
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(4) For any (object) constant of the alphabet, say, c, we choose

a FIXED cD, as we wish, in D.

(5) For every function symbol f of the alphabet, the trans-

lation fD is a mathematical function of the metatheory

(“real” or “concrete” MATH) of the same arity as f .

fD —which WE choose!— takes inputs from D and gives

outputs in D.

(6) For every predicate φ of the alphabet OTHER THAN “=”,

our CHOSEN translation φD is a mathematical RELATION

of the metatheory with the same arity as φ. It takes its in-

puts from D while its outputs are one or the other of the

truth values t or f.

INOTE THAT ALL the Boolean glue as well as

the equality symbol translate exactly as THEM-

SELVES: “=” for “equals”, ∨ for “OR”, etc.

Finally, brackets translate as the SAME TYPE

of bracket (left or right). �
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We have all we need to translate wff, terms and thus the

entire Language:

0.1.2 Definition. (The Translation of wff)

Consider a wff A in a† first-order language.

Suppose we have chosen an interpretation D = (D,M) of

the alphabet.

The interpretation or translation ofA via D a mathematical

(“concrete”) formula of the metatheory or a concrete object

of the metatheory that we will denote by

AD

It is constructed as follows one symbol at a time, scanning

A from left to right until no symbol is left:

†A, not THE. For every choice of constant, predicate and function symbols we get a different
alphabet, as we know, hence a different first-order language. Remember the examples of Set Theory
vs. Peano Arithmetic!
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(i) We replace every occurrence of ⊥,> in A by ⊥D,>D

—that is, by f , t— respectively.

(ii) We replace every occurrence of p in A by pD —this is an

assigned by US TRUTH VALUE; we assigned it when

we translated the alphabet.

(iii) We replace each FREE occurrence of an object variable

x of A by the value xD from D that we assigned when

we translated the alphabet.

(iv) We replace every occurrence of (∀x) in A by (∀x ∈ D),

which means “for all values of x in D”.

(v) We emphasise again that Boolean connectives (glue) trans-

late as themselves, and so do “=” and the brackets “(”

and “)”.

Theory-specific symbols in A:

(vi) We replace every occurrence of a(n object) constant c in

A by the specific fixed cD from D —which we chose when

translating the alphabet.

(vii) We replace every occurrence of a function f in A by the

specific fixed fD —which we chose when translating the

alphabet.
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(viii) We replace every occurrence of a predicate φ in A by the

specific fixed φD —which we chose when translating the

alphabet. �

0.1.3 Definition. (Partial Translation of a wff) Given

a wff A in a first-order language and an interpretation D of the

alphabet.

Sometimes we do NOT wish to translate a FREE variable

x of A. Then the result of the translation that leaves x as is

is denoted by AD
x .

Similarly, if we choose NOT to translate ANY of

x1,x2, . . . ,xn, . . .

that (may) occur FREE in A, then we show the result of such

“partial” translation as

AD
x1,...,xn

� Thus AD has no free variables, but AD
x will have x free IF x

actually DID occur free in A —the notation guarantees that if

x so occurred, then we left it alone. �

�
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0.1.4 Remark. What is the use of the concept and notation

“AD
x ”?

Well, note that when we translate (∀x)A FROM LEFT TO

RIGHT, we get “(∀x ∈ D)” followed by the translation of A.

However, ANY x that occur free IN A BELONG to (∀x)

in the wff (∀x)A thus are NOT FREE in the latter and hence

are NOT translated!

Therefore, “(∀x ∈ D)” concatenated with “AD
x ” is what we

get: “(∀x ∈ D)AD
x ”. �

Basic Logic© by George Tourlakis



24

0.1.5 Example. Consider the AF φ(x, x), φ is a binary pred-

icate.

Here are some possible interpretations:

(a) D = N, φD =<.

Here “<” is the “less than” relation on natural numbers.

So
(
φ(x, x)

)D
, which is the same as φD(xD, xD) —in fa-

miliar notation is the formula over N:

xD < xD

More specifically, if we took xD = 42, then
(
φ(x, x)

)D
is

specifically “42 < 42”.

Incidentally,
(
φ(x, x)

)D
is false for ANY choice of xD.

� We will write
(
φ(x, x)

)D
= f to denote the above sentence

symbolically.

I would have preferred to write something like “V
((
φ(x, x)

)D)
=

t —“V ” for value— but it is so much easier to agree that

writing the above I mean the same thing! :) �
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For the sake of practice, here are two partial interpreta-

tions.

In the first we exempt the variables y, z. In the second we

exempt x:

(i)
(
φ(x, x)

)D

y,z
is xD < xD. WHY?

(ii)
(
φ(x, x)

)D

x
is x < x.

(b) D = N, φD =≤ (the “less than or equal” relation on N).

So,
(
φ(x, x)

)D
is the concrete xD ≤ xD on N.

Clearly, independently of the choice of xD, we have(
φ(x, x)

)D
= t

�

0.1.6 Example. Consider next the wff

f (x) = f (y)→ x = y (1)

where f is a unary function.

Here are some interpretetions:
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1. D = N and fD is chosen to satisfy fD(x) = x + 1, for all

values of x in D.

Thus
(
f (x) = f (y)→ x = y

)D
this formula over N:

xD + 1 = yD + 1→ xD = yD

Note that every choice of xD and yD makes the above true.

2. D = Z, where Z is the set of all integers, {. . . ,−2,−1, 0, 1, 2, . . .}.

Take fD(x) = x2, for all x in Z.

Then,
(
f (x) = f (y) → x = y

)D
is, more concretely, the

following formula over Z:

(xD)2 = (yD)2 → xD = yD

The above is true for some choices of xD and yD but not

for others:

E.g., it is false if we took xD = −2 and yD = 2.

Finally here are two partial interpretations of (1) at the

beginning of this example:

(i)
(
f (x) = f (y)→ x = y

)D
x

is x2 = (yD)2 → x = yD.

(ii)
(
f (x) = f (y)→ x = y

)D
x,y

is x2 = y2 → x = y. �
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